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Mutational and fitness landscapes of an RNA virus
revealed through population sequencing
Ashley Acevedo1, Leonid Brodsky2 & Raul Andino1

RNA viruses exist as genetically diverse populations1. It is thought
that diversity and genetic structure of viral populations determine
the rapid adaptation observed in RNA viruses2 and hence their
pathogenesis3. However, our understanding of the mechanisms
underlying virus evolution has been limited by the inability to accur-
ately describe the genetic structure of virus populations. Next-
generation sequencing technologies generate data of sufficient depth
to characterize virus populations, but are limited in their utility
because most variants are present at very low frequencies and are
thus indistinguishable from next-generation sequencing errors.
Here we present an approach that reduces next-generation sequen-
cing errors and allows the description of virus populations with
unprecedented accuracy. Using this approach, we define the muta-
tion rates of poliovirus and uncover the mutation landscape of the
population. Furthermore, by monitoring changes in variant frequen-
cies on serially passaged populations, we determined fitness values for
thousands of mutations across the viral genome. Mapping of these
fitness values onto three-dimensional structures of viral proteins
offers a powerful approach for exploring structure–function relation-
ships and potentially uncovering new functions. To our knowledge,
our study provides the first single-nucleotide fitness landscape of
an evolving RNA virus and establishes a general experimental plat-
form for studying the genetic changes underlying the evolution of
virus populations.

To overcome the limitations of next-generation sequencing error,
we developed circular sequencing (CirSeq), wherein circularized geno-
mic RNA fragments are used to generate tandem repeats that then
serve as substrates for next-generation sequencing (for DNA adapta-
tion, see ref. 4). The physical linkage of the repeats, generated by
‘rolling circle’ reverse transcription of the circular RNA template, pro-
vides sequence redundancy for a genomic fragment derived from a
single individual within the virus population (Fig. 1a and Extended
Data Fig. 1). Mutations that were originally present in the viral RNA
will be shared by all the repeats. Differences within the linked repeats
must originate from enzymatic or sequencing errors and can be excluded
from the analysis computationally. A consensus generated from a three-
repeat tandem reduces the theoretical minimum error probability assoc-
iated with current Illumina sequencing by up to 8 orders of magnitude,
from 1024 to 10212 per base. This accuracy improvement reduces
sequencing error to far below the estimated mutation rates of RNA
viruses (1024 to 1026) (ref. 5), allowing capture of a near-complete
distribution of mutant frequencies within RNA virus populations.

We used CirSeq to assess the genetic composition of populations of
poliovirus replicating in human cells in culture. Starting from a single
viral clone, poliovirus populations were obtained following 7 serial
passages (Fig. 2a). At each passage, 106 plaque forming units (p.f.u.)
were used to infect HeLa cells at low multiplicity of infection (m.o.i.
,0.1) for a single replication cycle (8 h) at 37 uC (Methods).

We assessed the accuracy of CirSeq relative to conventional next-
generation sequencing by estimating overall mutation frequencies as a
function of sequence quality (Fig. 1b). The observed mutation frequency

using CirSeq analysis was significantly lower than that using conven-
tional analysis of the same data (Fig. 1b). In contrast to conventional
next-generation sequencing, the mutation frequency in the CirSeq
consensus was constant over a large range of sequencing quality scores
(Fig. 1b and Extended Data Fig. 2, quality scores from 20 to 40). The
mutation frequency obtained in the stable range of the CirSeq analysis
is similar to previously reported mutation frequencies in poliovirus
populations—approximately 2 3 1024 mutations per nucleotide3,6

(Fig. 2b and Extended Data Table 1).
We also compared transition-to-transversion ratios (ts:tv) obtained

by CirSeq and conventional next-generation sequencing. Although
purine (A/G) to purine, or pyrimidine (C/T) to pyrimidine transitions
(ts) are the most commonly observed mutations in most organisms7,
error stemming from Illumina sequencing exhibits substantial purine
to pyrimidine or pyrimidine to purine transversion (tv) bias8. This bias
is reduced using CirSeq, as resulting ts:tv ratios are significantly higher
than in the conventional repeat analysis (Fig. 1c). Notably, even if
conventional next-generation data are filtered at high sequence quality
(that is, quality scores over 30), the ts:tv ratio is still up to 10 times
lower than that obtained with CirSeq. Thus, filtering conventional data
fails to eliminate most sequencing errors (Fig. 1c). Our results indicate
that CirSeq efficiently reduces errors generated during sequencing,
producing mutation frequencies and ts:tv ratios consistent with the
high values expected for poliovirus6,9,10.

Using these results, we selected an average quality score of 20 as a
threshold for further CirSeq analysis. This threshold corresponds to an
estimated error probability of 1026 (see Methods), setting a limit of
detection for minor genetic variants two orders of magnitude below
the expected average mutation frequency for RNA viruses. In compar-
ison, the same quality threshold of 20, generally accepted for conven-
tional analysis of next-generation sequencing data, limits variant
detection to a minimum of 1% (ref. 11), two orders of magnitude
higher than the average mutation frequency of many RNA viruses.

With an average coverage of more than 200,000 reads per position
(Extended Data Fig. 3a), we detected on average more than 16,500
variants, ,74% of all possible variant alleles, per population per pas-
sage (Fig. 2b and Extended Data Table 1). Many alleles were detected
for virtually all positions in the genome: mutations for all three alterna-
tive alleles (from the remaining three possible alternative nucleotides)
were detected at 45.7% of genome positions; mutations for two of three
were detected at 42% of positions; and mutations for only one alterna-
tive allele were detected at 12.2% of positions. The vast majority of
variants are homogenously distributed at low frequencies between
1023 and 1025, with very few populating the range between 1 and
1023 (Fig. 2c). Thus, we can infer that the structure of a virus popu-
lation replicating in the stable environment used here, is characterized
by a sharp peak, representing the population consensus sequence,
surrounded by a dense array of diverse variants present at very low
frequencies (Extended Data Fig. 5a).

Mutation rates are central to evolution, as the rate of evolution is
determined by the rate at which mutations are introduced into the
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population12,13. Determination of virus mutation rates is difficult and
often unreliable because accuracy depends on observing rare events5.
We employed CirSeq to measure the rates for each type of mutation
occurring during poliovirus replication in vivo. To do so, we estimated
the frequency of lethal mutations, which are produced anew in each
generation at a frequency equal to the mutation rate14. These included
mutations producing stop codons within the virus polyprotein or
those causing amino acid substitutions at catalytic sites of the essential
viral enzymes 2A, 3C and 3D15–17. We find that mutation rates vary by
more than two orders of magnitude depending on mutation type,

transitions averaging 2.5 3 1025 to 2.6 3 1024 substitutions per site
and transversions averaging 1.2 3 1026 to 1.5 3 1025 substitutions per
site (Fig. 3). Even within these groups, transitions or transversions, the
rates of the various nucleotide changes differ by an order of magnitude
(Fig. 3). These nucleotide-specific differences in mutation rate likely
reflect the molecular mechanism of viral polymerase fidelity, which
may ultimately provide a means for the directionality of evolution. For
example, C to U and G to A transitions accumulate up to 10 times
faster than U to C and A to G; this inequality may provide a mech-
anistic basis for Dollo’s law of irreversibility18 because the likelihood of
moving in one direction in sequence space is not equivalent to the
reverse. Our analysis of mutation rates is consistent with biochemical
estimations9 and provides a physiological view of how the spectrum of
mutation rates contribute to the genetic diversity of virus populations.

We next measured the fitness of each allele in the population by
determining the change in mutation frequency for each variant over
the course of seven passages (Fig. 2a). Variant frequency is governed by
mutation and selection19, assuming that our experimental conditions
(low m.o.i. and large population size at each passage) minimize genetic
drift and complementation. We employed a simple model based on
classical population genetics to estimate fitness:

at

At
~

at{1

At{1
Nwrelzmt{1 ð1Þ

where a and A are the counts of variant and wild type alleles, respectively,
wrel is the relative fitness of a to A (ratio of growth rates), t is time in
generations (infection cycles) and m is the specific rate of mutation from
A to a. We measured proportions of A and a over the seven passages and,
using mutation rates we previously determined (Fig. 3), calculated wrel

for mutations across the viral genome. The current length limitations of
next-generation sequencing preclude CirSeq from providing direct
information about haplotypes. Accordingly, our fitness measurements
represent the average relative fitness of the population of haplotypes
containing a variant allele compared to the population of haplotypes
containing the wild-type allele at that position (see Supplementary
Information).

Overall, the distribution of mutational fitness effects we obtained
(Fig. 4a) is highly consistent with previous small-scale analyses of
RNA viruses20–22, validating CirSeq as a robust method for large-scale
fitness measurement. In our analysis, the non-lethal distribution of
mutational fitness effects for synonymous mutations is centred near
neutrality (Fig. 4a), reflecting the predominantly neutral effects anti-
cipated for synonymous mutations. In contrast, the distribution of
non-lethal mutational fitness effects for non-synonymous mutations
encompasses primarily deleterious mutations, consistent with previous
findings21–23.

Notably, despite the expectation that synonymous mutations will
have relatively low impact on fitness, a significant fraction of synonym-
ous changes were subject to strong selection, with 2% being highly
beneficial (relative fitness .1.2) and 10% being lethal (Fig. 4a and
Extended Data Fig. 6c). Synonymous mutations under strong selection
are relatively evenly dispersed throughout the coding sequence, rather
than clustered at known functional elements (Extended Data Fig. 6a).
Given that the entire capsid-coding region can be deleted without
disrupting replication or translation, indicating that this region con-
tains no essential RNA structural elements, it is probable that RNA
structure is not the primary driving force behind strong selection of
synonymous mutants in poliovirus. Although it is possible that ob-
served mutational fitness effects could be the result of codon usage or
codon pair bias, in practice, deoptimization of these biases does not
result in lethality based on single nucleotide substitutions24,25. Future
studies will be necessary to elucidate the mechanisms modulated by
these synonymous mutations. Furthermore, the variance in fitness for
non-synonymous mutations was significantly larger (P , 0.001, Extended
Data Fig. 6c) than for synonymous; indeed the largest beneficial fit-
ness effects (not shown in Fig. 4a) were the result of non-synonymous
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substitutions. Notably, a large number of substitutions are beneficial
(145 significantly beneficial mutations, see Methods), indicating the
potential for a highly dynamic population structure, where selection
for minor genetic components constantly drives the population to new
regions of sequence space, even in a relatively constant environment.

The genome-wide distribution of mutational fitness effects does not
apply uniformly to each protein as non-synonymous mutations exhibit
distinct mutational fitness effects distributions in structural genes
(those encoding the viral capsid) and non-structural genes (encoding
enzymes and factors involved in viral replication) (Fig. 4b, Extended
Data Fig. 6b for synonymous). Although non-structural genes show
slightly lower mean mutational fitness effects when considering lethal
mutants, they have significantly larger variance in mutational fitness
effects (P , 0.001, Extended Data Fig. 6c), indicating that these pro-
teins may have intrinsic differences in their tolerance of mutations.
These differences may relate to biophysical properties, like stability
constraints26, or the density of functional residues, for example, non-
structural proteins often play multifunctional roles and participate in a
greater number of host–pathogen interactions27.

To investigate further the relationship between mutational fitness
effects and protein structure and function, we mapped fitness values
onto the three-dimensional structure of the well characterized poliovirus
RNA-dependent RNA polymerase28. We find a remarkable agreement
between our fitness data and known structure–function relationships
in this enzyme (see Supplementary Information and Extended Data
Table 2). For example, many detrimental mutations map to residues
associated with RNA binding and catalysis in the central chamber of
the polymerase (Fig. 4d, red). Intriguingly, two clusters of beneficial
mutations, discontinuous on the genome sequence, mapped to uncha-
racterized and structurally contiguous regions on the surface of the
polymerase (Fig. 4c, blue). Our data suggest that this domain must be
functionally relevant to viral replication, as it is clearly tuned by evolu-
tion over the course of passaging. Such genome-wide fitness calcula-
tions enabled by CirSeq, combined with structural information, can
provide high-definition, bias-free insights into structure–function
relationships, potentially revealing novel functions for viral proteins
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and RNA structures, as well as nuanced insights into a viral genome’s
phenotypic space. Such analyses have the power to reveal protein
residues or domains that directly correspond to viral functional plas-
ticity and may significantly inform our structural and mechanistic
understanding of host–pathogen interactions.

The analytical approach we describe provides an opportunity to
examine and quantify evolutionary dynamics at nucleotide resolution
on a genome-wide scale and to integrate evolutionary information
with structural and physiological data. Such large-scale measurements
of fitness are a fundamental step in understanding the effects of muta-
tion on phenotype and evolutionary trajectory. Modelling the evolu-
tionary dynamics of infection, transmission, host-switching and drug
resistance may be central for developing innovative strategies for drug
and vaccine design, personalized treatment and the containment of
emerging viruses.

METHODS SUMMARY
Viral populations were obtained by serial passaging of a single poliovirus clone at
m.o.i. of 0.1. Populations were amplified in vivo before library preparation to
increase the ratio of viral to cellular RNA. RNA extracted from amplified popula-
tions was polyA purified, Zn21 fragmented, size selected (Extended Data Fig. 3b),
circularized, reverse transcribed and then cloned by standard mRNA sequencing
library preparation methods (Extended Data Fig. 1).

Libraries were sequenced 323 cycles on an Illumina MiSeq. Custom analysis
software, using Bowtie 2 (ref. 29) for sequence mapping, was developed to identify
and align repeats, generate a consensus by majority logic and recalculate estimated
error probabilities.

Consensus data was filtered at average quality score 20, where the estimated error
probability is 1026 (1022 3 1022 3 1022 for three repeats). The statistical signifi-
cance of mutations detected was determined by a one-sided binomial test in R using
the average estimated error probability at each genome position as the null prob-
ability of success. The accuracy of frequencies (Extended Data Fig. 4) was estimated
using the standard error of a binomial distribution.

Fitness was determined using variant frequencies over seven passages (Extended
Data Fig. 7) and a regression model, equation (1), describing the change in fre-
quency of variants over time based on their selection and the accumulation of
de novo mutations, assuming that the counts of the variant allele are negligible
compared to wild type and that selection is constant over the series of passages
(Extended Data Fig. 5b). Genetic drift was accounted for in our fitness calculations
by simulating random fluctuations in variant frequencies in our fitness model
(Extended Data Fig. 8). The highest relative fitness value of non-synonymous
mutations observed at each codon of the viral polymerase was mapped to the
polymerase structure (Protein Data Bank accession code 3OL6)28 using UCSF
Chimera30.

A complete description of the materials and methods used to generate this data
and its result is provided in the Methods.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
Cells and viruses. HeLa S3 cells (ATCC, CCL2.2) were propagated in DMEM high
glucose/F12 medium supplemented with 10% newborn calf serum (Sigma) and
13 penicillin streptomycin glutamine (Gibco) at 37 uC. Wild-type poliovirus type
1 Mahoney was generated by electroporation of cells with T7 in vitro transcribed
RNA from linearized prib(1)XpA31. A single plaque isolated from this initial
population was amplified and Sanger sequenced to ensure the founding clone
was wild-type poliovirus. This clone was serially passaged on monolayers contain-
ing 107 cells at an m.o.i. of approximately 0.1. To generate populations for sequen-
cing, each passage was amplified on monolayers containing 107 cells at an m.o.i.
greater than 5 for 6–8 h. Once a cytopathic effect was observed, the medium was
removed and replaced with 2 ml of TRIzol reagent (Ambion).
Library preparation. Total cellular RNA was extracted and precipitated using
TRIzol reagent according to the manufacturer guidelines. The RNA was precipi-
tated two times with 0.3 M sodium acetate (pH 5.5) and 2.5 volumes of ethanol
before poly(A) selection using the MicroPoly(A)Purist kit (Ambion) according to
the manufacturer guidelines. Then 2–5mg of poly(A)-containing RNA was frag-
mented with fragmentation reagent (Ambion) for 7.5 min at 70 uC. A practical
minimum for this library preparation is 1mg to ensure that enough fragmented
RNA is obtained to produce a library with sufficient complexity and handle
reproducibly. Approximately 80–90-base RNA fragments (Extended Data Fig. 3b,
for discussion of size) were isolated by 12.5% urea–PAGE and eluted by the
crush and soak method. The size-selected RNA was purified from gel fragments
using a Spin-X (Costar) cellulose acetate column and ethanol precipitated with
glycogen as a carrier. RNA was circularized using polynucleotide kinase and RNA
ligase 1 in RNA ligase 1 buffer (NEB) containing 1 mM ATP. Circularized RNA
was ethanol precipitated and reverse transcribed with SuperScript III (Life
Technologies) using the following conditions. First, circularized RNA and
100 ng of random hexamers were combined in a total volume of 10 ml with
dNTPs at a final concentration of 2 mM. The reaction was heat denatured at
65 uC for 5 min and then placed on ice for 3 min. Next, 400 U of SuperScript III
was added as well as dithiothreitol (DTT) to 5mM and First-Strand Buffer to 13 in
a total volume of 20 ml. The reaction was incubated at 25 uC for 10 min, followed
by 42 uC for 30 min. After the shift to 42 uC, 0.008 U RNaseH was added to the
reaction to allow degradation of the circular form of the RNA. Importantly,
Superscript III is a strand-displacing polymerase. As the polymerase transcribes
the template, any complementary sequence hybridized downstream of the rep-
lication site is displaced by the polymerase allowing transcription of many copies
of the same template. In the case of our circular templates, this process results in
the polymerase displacing the 59 end of the nascent strand that it is actively
transcribing resulting in multiple copies of the same template on the same nascent
strand. After cDNA synthesis, samples were cloned using the following kits con-
secutively and according to the manufacturer guidelines: NEBNext mRNA Second
Strand Synthesis Module (NEB), NEBNext End Repair Module (NEB), NEBNext
dA-Tailing Module (NEB) and NEBNext Quick Ligation Module (NEB). Samples
were extracted with phenol:chlorofom:isoamyl alcohol (25:24:1 v/v) (Ambion) and
precipitated between each reaction. For ligation, oligonucleotides containing
Illumina paired-end adaptor sequences (59-P-GATCGGAAGAGCGGTTCAGC
AGGAATGCCGA*G and 59-ACACTCTTTCCCTACACGACGCTCTTCCGA
TC*T, where * indicates a phosphorothioate bond), purchased from IDT, were
annealed and used at a final concentration of 2.4mM. Ligated DNA was size
selected from approximately 360–500 bases by 10% urea–PAGE, eluted and pre-
cipitated. This purified DNA was then amplified with 1 U Phusion High-Fidelity
DNA Polymerase in HF Buffer (NEB) with Primers 1.01 and 2.01 (59-AATGATA
CGGCGACCACCGAGATCTACACTCTTTCCCTACAC GACGCTCTTCCGA
TC*T and 59-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCAT TC
CTGCTGAACCGCTCTTCCGATC*T, respectively) at final concentrations of
0.5mM using the following cycling parameters: 98 uC for 30 s, 15 cycles of 98 uC
for 10 s, 65 uC for 30 s, 72 uC for 30 s, followed by 72 uC for 5 min. The amplified
library was purified by 5% non-denaturing PAGE. Extended Data Fig. 1 presents a
schematic representation of this protocol.
Sequencing and primary data analysis. The 323-cycle single-end sequencing of
each library was performed on an Illumina MiSeq. Tandem repeats were identified
using an algorithm to define the most common periodicity of subsequences within
each read. This was accomplished by looking for the patterns of reoccurrence of
substrings within each read. The most common distance between reoccurrences of
multiple substrings was set as the periodicity for the read and used to slice the read
into individual repeats. These repeats were required to share at least 85% identity
in order to accept a consensus, which was generated by majority logic decoding
using three repeats.

As each consensus contains information derived from three repeats, the quality
of that consensus is determined by the quality of each of those repeats. The quality of
each base in each repeat is assessed by base-calling software and given a numerical

score, called a quality score. This quality score is a measure of the estimated error
probability, or the probability that the base was called incorrectly, according to the
following relationship, where Q is the quality score of the base and e is its estimated
error probability.

Q~{10N log10 (e)

Because each repeat is an independent observation of the initial genomic template,
we can apply the multiplication rule to calculate the estimated error probability of
each consensus base. When all three repeat bases are in agreement with the con-
sensus base, the estimated error probabilities derived from each base’s quality score
can be directly multiplied to obtain the estimated error probability of the consensus
base. For example, if all three repeat bases are the same and the quality score for each
base is Q20 (e 5 1022), the estimated error probability for the consensus base is
1026 (10223102231022).

econsensus~erepeat1Nerepeat2Nerepeat3

For bases not in agreement with the consensus, the probability that the true repeat
base did not match the consensus was defined as 1 2 e/3. For example, if the con-
sensus base was defined as G and the repeat base was read as A, then the probability
that the true repeat base was not G is the probability that A was read correctly (1 2 e)
plus the probability that A was read incorrectly and that the true repeat base was
either C or T (2e/3), assuming an equal probability of reading C, G or T.

eGconsensus~eGrepeat1NeGrepeat2N 1{
eArepeat3

3

� �

Once multiplied, these adjusted error probabilities were transformed to quality
scores and divided by three to represent an average quality score. The quality scores
were averaged to avoid null characters in the ASCII scale used to represent quality
scores in FASTQ format.

Consensus sequences along with their corresponding average quality scores
were input to Bowtie 2 (ref. 29) using the poliovirus Mahoney strain (accession
number V01149) with a single nucleotide substitution U2133C as a reference
sequence. Because reverse transcription of circular RNA templates was initiated
randomly, the 59 end of the tandem repeats is not necessarily the 59 end of the
circularized fragment from which they were templated. As a result, most con-
sensus sequences do not align to the reference in their entirety. To accommodate
this, all consensus sequences that required soft clipping at one end of the sequence
were rearranged by swapping the position of the clipped nucleotides to the oppos-
ite end of the sequence. These rearranged sequences were then realigned to the
reference. Because mutations, especially those near the fragment ends, can affect
alignment and clipping, consensus sequences containing mutations according to
their alignment or that required additional clipping after rearrangement were
subjected to a more stringent rearrangement algorithm to reduce the chance of
introducing artefacts in subsequent analyses. The more stringent rearrangement
algorithm optimizes the edit distance of each consensus sequence from the ref-
erence by using a repetitive indexing strategy to identify the longest possible seed
containing no mutations. This seed was extended base-by-base on either end
allowing for the minimum number of mutations and excluding mutations directly
at the ends. These rearranged sequences were then run through Bowtie 2 again.
Only consensus sequences devoid of indels and clipped bases were used for further
analyses to avoid artefacts.
Analysis of mutation frequency. A table of counts of each base at each reference
position for each quality score was generated using alignments from the primary
analysis. Overall mutation frequencies were calculated for each quality score by
dividing the number of mutations called by the total number of bases called for all
genome positions for each of the quality scores. Additionally, these frequencies
were broken down by transition (purine . purine, pyrimidine . pyrimidine) and
transversion (purine . pyrimidine, pyrimidine . purine) mutations for each
quality score.

Analysis of the relationship between average quality score and mutation fre-
quency shows that, overall, mutation frequency is stable between Q20 and Q40
(Fig. 1b). This indicates that the frequencies obtained by CircSeq are at or
approaching the correct population average mutation frequency over this range.
A steep increase followed by a plateau of the transition:transversion (ts:tv) ratio is
observed over this same interval (Fig. 1c), indicating that ts:tv ratios obtained by
CircSeq are at or approaching the true population ts:tv ratio. One noticeable
difference in these measures is the tiered plateau of the ts:tv ratio. This tiered
plateau is the result of a tiered plateau of mutation frequencies for transversions
(Extended Data Fig. 2). The reason for this tiering is that each type of mutation
plateaus at a different level based mostly on its mutation rate. Before the mutation
type with the lowest mutation rate levels off, small amounts of error can contribute
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to an increased mutation frequency for all of the mutation types as a group. This is
the effect seen in the upper tier of the transversions. The result of this effect is less
apparent in the total mutation frequency where transversions are a much smaller
proportion of the total mutations; however, the ts:tv ratio is much more sensitive to
small changes in the transversion frequency. All further analyses were carried out
with data filtered for a minimum average quality score of 20, because this analysis
revealed Q20 to be generally reliable. Quality can be improved further, especially
for ultra-rare variants (frequency ,1026), by shifting this threshold to higher
quality scores, however, a higher threshold will result in greater loss of data
quantity. A summary of the final sequencing output threshold at Q20 can be found
in Extended Data Table 1.

Although the measurement accuracy of the overall mutation frequency for the
population is determined by quality scores, the measurement accuracy of indi-
vidual mutation frequencies at each position of the genome is affected by both the
depth of coverage at that position (Extended Data Fig. 3a) and its true mutation
frequency. The standard error of a binomial distribution can be used to approx-
imate this error, where n is the coverage depth and p is the mutation frequency
measured by sequencing.

SE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1{p)

n

r

Extended Data Fig. 4a demonstrates that lower error estimated by this distribution
corresponds to highly correlated frequency measurements from technical replicates.
For the technical replicate data sets, this high correlation/low measurement error
tends to occur where frequencies are relatively high (,1024 to 1021). However, even
at high frequencies, many variants still have substantial measurement error.
Extended Data Fig. 4b shows that this can mainly be explained by coverage, where
positions that are covered more deeply also tend to correlate more strongly between
replicates. However, the coverage depth required for good correlation increases as
frequency decreases, thus coverage must be tailored to the range of frequencies
expected for each population.

Random PCR amplification bias (jackpotting) could potentially affect the reli-
ability of mutation frequency measurements. To evaluate this potential source of
error, we analysed the distribution of frequencies of nonsense mutations. For the
same type of nonsense mutation, their frequency should be at approximately the
same frequency (see analysis of mutation rates) in a given passage, but, because
there are many of them dispersed throughout the genome, if there is amplification
bias (jackpotting), we will likely see at least one instance of uncharacteristically
high frequency. Looking at C to U nonsense mutants, which have the highest
frequencies and thus give higher quality information, frequencies are clustered
around the mean with no large deviations (Extended Data Fig. 4c). This strongly
indicates that our experiment is not affected by pervasive jackpotting.
Analysis of mutation rates. The frequencies of lethal mutations were used to
estimate the mutation rate of each mutation type13. Nonsense mutations and non-
synonymous mutations in active site residues of proteins 2A, 3C and 3D14–16 were
used for this purpose. Mutation rates were defined by the number of nonsense or
non-synonomous codons caused by each type of mutation divided by the total
number of codons sequenced at sites susceptible to those mutations. This was done
separately for each mutation type and provides the specific mutation rate for each
type of mutation rather than the rate of mutation per site in the genome. The rates
measured here are mutation rates per cell infection.
Calculation of relative fitness. Lethal fitness was assigned to a variant if for all
seven passages its frequency was either less than or equal to the highest measured
frequency of a catalytic site mutant of the same type or, because in some cases no
mutations were detected, if coverage at positions having no mutations was at least
three times the inverse of the highest measured frequency of a catalytic site mutant
of the same type. It is possible that some variants defined as lethal using this
criterion may be at a frequency slightly higher than the mutation rate, however,
the likelihood of this misclassification is reduced because each variant must meet
this requirement seven times. The stringency of this criterion may need to be
adjusted for experiments using fewer time steps. Fitness for all other variants with
at least one mutation per passage was calculated as described below.

The relative fitness of a mutation can be described by a linear model with two
parameters for proportions of a mutation across serial passages:

at
At

~
at{1

At{1
Nwrelzmt{1 ð1Þ

where a and A are the counts of a mutated and wild-type alleles, respectively, in
passages t and t 2 1, measured via sequencing, mt21 is the estimated mutation rate
for the specific mutation type in passage t 2 1, and an unknown parameter wrel is
the relative fitness of the given mutation, which is assumed to be the same for all
passages. Because our measurements of allele frequencies have error (Extended
Data Fig. 4), especially at low mutation frequencies, we employed a Bayesian

autoregression approach to provide a more accurate estimation of fitness with
credibility intervals. We further incorporated the stochastic effect of genetic drift
in our calculations by simulating random fluctuation in variant frequencies. This
approach provides a more realistic estimation of error in our fitness calculations.

Since a finite number of virions (106) are transferred from one passage to the
next, the number of mutant viruses in this sample is subject to genetic drift such

that bt21 is binomially distributed from 0 to 106 with parameter p~
at{1

At{1
.

Equation (1) can be rewritten as:

at

At
~wrelN

bt{1

106
zmt{1

or

at

At
N106~wrelNbt{1zmt{1N106

or

at

At
N106{mt{1N106~wrelNbt{1 ð2Þ

From equation (2) we will get:

a
00

t ~106N
at

At
{mt{1

� �
~wrelNbt{1 ð3Þ

a
00
t ~wrelNbt{1 ð4Þ

The number mutations a
00

t (total number of normalized mutations minus the
number of expected random mutation in 106 genomes) should follow a Poisson
distribution with unknown parameter lt21 that is defined by simulated counts
bt21 based on the mutation frequency from the previous passage, and the fitness
parameter, wrel:

lt{1(wrel)~wrelNbt{1

where bt21 is simulated from a binomial distribution B
at

At
,106

� �
.

The direct maximum likelihood estimation of wrel using a product of the
Poisson likelihood functions for each passage:

arg max
wrel

P
n

t~2

lt{1(wrel)
a
00
t

a00t !
Ne{l(wrel)

t{1

interprets passages as independent experiments. This is inaccurate because the
passages are chain-dependent.

We applied a generalized Bayesian autoregression approach32,33 to more accur-
ately estimate wrel. In the initial step, an estimation of relative fitness, ŵrel0 , is
calculated by a simple regression:

ŵrel0 ~

Pn
t~2 a

00

t Nbt{1
� �

Pn
t~2 bt{1ð Þ2

This estimation is also inaccurate because, in order to be the maximum likelihood
estimation, it assumes that values of a

00

t are taken from normal distributions, when in
fact, they are taken from Poisson distributions with lt21(wrel) parameters. The
Bayesian improvement of this ŵrel0 estimation is as follows. Let us approximate
counts of ‘selected’ mutations, a

00
t , by normally distributed zt values with variances

s2
t . The distributions of zt depend on parameters lt{1 wrelð Þ and the likelihood

function of ztapproximates the likelihood function of a
00

t in the neighbourhood of
lt{1 ŵrel0ð Þ—the previous parameter estimation. Thus, the log-likelihood function
for a

00
t :

L a
00

t lt{1j wrelð Þ
� �

~ log
1

a00t !
Nlt{1 wrelð Þa

00
t Ne{lt{1 wrelð Þ

� �

is approximated by the log-likelihood function for zt:

M zt lt{1 wrelð Þjð Þ< 1
2s2

t
zt{lt{1 wrelð Þð Þ2zC

in a neighbourhood of lt{1 ŵrel0ð Þ . Equalizing term-to-term for the two first terms

of a Taylor series representation of the L a
00

t lt{1j wrelð Þ
� �

and M zt lt{1 wrelð Þjð Þ log-

likelihood functions in the neighbourhood of lt{1 ŵrel0ð Þ, we get the following
equations for zt values and their variances s2

t :

zt~lt{1 ŵrel0ð Þ{ L̂
0

t

L̂00t
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s2
t ~{

1

L̂00t

where L
0
t~

dL a
00
t lt{1 wrelð Þj

� �
dlt{1 wrelð Þ and L

00

t ~
d2L a

00
t lt{1 wrelð Þj

� �
d lt{1 wrelð Þð Þ2

are first and second

derivatives with their estimations calculated at ŵrel0 . Indeed, denoting lt{1 ŵrel0ð Þ
as l and taking derivatives of L and M with respect to l, we get:
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Therefore, zt{l~{

dL
dl
d2L

dl2

or zt~l{

dL
dl
d2L

dl2

where, according to the Taylor series rules, the first and second derivatives of L
with respect to l are taken at the lt{1 ŵrel0ð Þ point. The final step is to obtain a new
autoregression estimation of wrel by the weighted least square procedure:

matrix of inverse variances zt : V~diag {L̂
00

t

� �
ŵrel1 ~ XT NVNXð Þ{1

NXT NVNz

Var ŵrel1ð Þ~diag XT NVNXð Þ{1
h i

where XT~ b1:::,bn{1f g and zT~ z2,:::,znf g. As a result, we obtained a better
autoregression estimation, ŵrel1 , and its interval of credibility for every simulation
of random variable b1,:::,bn{1. 1,000 simulations were estimated for each variant.
To prevent negative values of fitness, if mt21 is larger than

at

At
, then a

00
t is set to 1.

To mitigate error in frequency measurements and the effects of random genetic
drift, we use multiple serial passages to calculate fitness. The larger the number of
serial passages sampled, the more accurate the fitness data will become. Extended
Data Fig. 7 shows how increasing the number of passages increases the accuracy of
fitness determination. However, a potential pitfall of using a larger number of
serial passages is that fitness may change over time as a result of the accumulation
of mutations and the emergence of epistatic interactions within the population. To
balance the need to obtain accurate fitness values with the need to avoid the impact
of long-term evolution, we have sampled the population within a moderate win-
dow of time, 7 passages.
Determination of significantly beneficial mutations. Of 8,970 relative fitnesses
determined as described above, 944 were greater than 1, that is, were beneficial.
However, because many of these values are very close to 1, to be more rigorous, we
have calculated the number of these that significantly deviate from neutrality
(relative fitness 5 1). Taking into consideration the fact that our fitness estima-
tions have posterior t-test distributions, we centralized this distribution by deduct-
ing the theoretically expected mean equal to 1, and normalized the distribution by
the estimated standard deviation obtained from the distribution of the 1,000
simulated values of wrel for each position. P values were calculated for every
mutation with beneficial fitness. For every given P value, P, the false discovery
rate (FDR)34 value was calculated as a P-expected portion of randomly selected
positions in the interval of the sorted P value list of positions: from the smallest P
value down to P. Based on an FDR of 5%, we found that there are 145 significantly
beneficial mutations (P value threshold P , 0.00072).
Drift simulation. Populations of 106 genomes were created for the initial mutation
frequencies of 1023, 1024, 1025 and 1026. In each population, the number of exist-
ing mutants was multiplied by its relative fitness to get a new number of mutants.
Additionally, each wild-type genome was randomly mutagenized with a probability

equal to the mutation rate (same as the initial frequency of the mutation) to get an
additional set of mutants. The total number of mutants resulting from mutation
and selection were combined with the remaining wild-type genomes to compose
the replicated population. This population was randomly sampled with replace-
ment 106 times to recapitulate the bottleneck imposed in our experiment. This
sampled population then repeated this mutation-selection-drift process to simu-
late changes in mutation frequencies that could be expected over the course of
7 passages. This simulation was run 1,000 times for each initial frequency and
relative fitness (Extended Data Fig. 8, top row). A simple regression of our muta-
tion-selection model for fitness, equation (1), was used to calculate the relative
fitness for each simulation (Extended Data Fig. 8, distributions of relative fitness).
Haplotype simulation. The structure of haplotypes in the sequenced populations
was simulated by first determining the frequency of each mutation in each passage
and normalizing that frequency by multiplying by 106, yielding the total number of
each mutation in a population of 106 genomes (equivalent to the bottleneck size in
our experiment). The total normalized number of mutations in the first passage
was randomly distributed between 106 genomes. Each mutation was classified as
either lethal or non-lethal based on calculations of fitness (above) and the total
proportion of lethal mutations was determined (generally 40–50% of the total).
The number of genomes containing 0, 1, 2, etc. mutations were then reduced by the
probability of a genome containing a lethal mutation. For example, genomes with a
single mutation had a probability of 0.4 to 0.5 of containing a lethal mutant and
genomes with two mutations had a probability of 0.64 to 0.75 of containing a lethal
mutant. From the remaining genomes containing non-lethal mutations, a popu-
lation of 106 genomes was sampled to carry on to the next passage (generation).
This population is shown in Extended Data Fig. 5a as passage 2. In subsequent
generations, the total number of mutations in the population from the previous
generation were tabulated and subtracted from the total normalized number of
non-lethal mutants in the current generation. We considered these pre-existing
mutations, thus they should not be reintroduced into the current generation. After
removing these pre-existing non-lethal mutants from the total normalized
mutants, we randomly distributed the remaining de novo mutations between a
new set of 106 genomes. The number of genomes containing different numbers of
de novo mutations were then reduced by the probability of a genome containing a
lethal mutation, which was defined by the proportion of lethal mutants in the total
de novo mutants. To combine the pre-existing mutations from the previous gen-
eration and the non-lethal de novo mutations from current generation, a randomly
chosen genome from the current generation was added to each genome in the
population from the previous generation. This produced a population of 106

genomes containing only non-lethal mutants both pre-existing and de novo
(Extended Data Fig. 5a) that could be carried on to the next generation.
Mutation accumulation. To analyse the rate of accumulation of selected muta-
tions, we counted the number of times each reference position was read and mul-
tiplied by each of the three mutation rates applicable to that site. For example, the
number of bases read at a reference position coded by an A was multiplied by the
mutation rates of A . C, A . G and A . T to obtain the number of de novo
mutations expected at that site. These de novo expectations can be summed across
the genome to obtain the total number of de novo mutations expected in each
passage. This number was subtracted from the total number of mutations detected
in the passage and divided by the total number of bases sequenced to obtain the
frequency of mutations accumulated by selection in each passage (Extended Data
Fig. 5b). The rate of accumulation of mutations by selection is approximately linear,
meaning that, overall, selection is constant over the course of the experiment.
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Extended Data Figure 1 | CirSeq library preparation scheme. As described
in Methods, purified populations of ssRNA viral RNA genomes are converted

by a series of molecular cloning steps to a library compatible with Illumina
sequencing. Illumina paired-end Y-adaptors are represented in blue.
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Extended Data Figure 2 | Mutation frequencies of transitions and
transversions. Because transitions (Ts) and transversion (Tv) occur at
different rates, the overall frequencies of these types of mutations stabilize at
different levels. The lower the mutation frequency, the longer it takes to

stabilize, because smaller quantities of error can more dramatically impact their
measured frequency. An important consideration for CirSeq is at what quality
score to threshold data in order to minimize the contribution of error in the
final output and maximize the total quantity of the data used.
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Extended Data Figure 3 | Genome coverage per base. a, Coverage for
sequenced passages. The coverage for each base for each library above the
minimum quality threshold of average Q20 was mapped. On average, we
obtained 204,205-fold coverage for our populations. The coverage profile is
extremely consistent between libraries and experiments. b, Effect of RNA

fragment size on coverage bias. Use of fragments less than 80–90 bases in length
results in over-representation of A-rich sequences. This bias is likely the result
of inefficient priming of certain short templates by reverse transcriptase.
Fragments should be at least 80–90 bases, which limits coverage bias to within
approximately 103, typical of RNA-seq.
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Extended Data Figure 4 | Frequency measurement error. a, b, Error in
measurement of mutation frequencies is determined by coverage depth and
mutation frequency. A library prepared from 30 base fragments, which
increases variability in the level of coverage (see Extended Data Fig. 3b) over
different regions of the poliovirus genome, was broken into 10 million read sets
(sets 1 and 2). The frequency of each variant for the two sets was mapped
against each other to visualize their correlation. a, Measurement error can be
estimated as the standard error of a binomial distribution. Per cent error is
obtained by dividing this standard error by the variant frequency. Low

measurement error corresponds to high correlation between variant
frequencies measured in each set. b, Correlation between measured variant
frequencies also corresponds to coverage, where greater coverage increases
correlation. The amount of coverage required to obtain good correlation
between measurements scales with variant frequency. c, Amplification bias.
The distribution of frequencies of nonsense mutations generated by C . U
mutation are shown for passages 2 and 3. In each case, frequencies are tightly
distributed around the mean, ruling out PCR amplification bias in contributing
substantially to measurement error of variant frequencies.
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Extended Data Figure 5 | Inferred population structure and selection over
seven passages. a, Simulation of population structure from sequencing data.
The histograms display the proportion of genomes at each passage containing
the given number of mutations (Hamming distance from the reference) after
removing genomes containing lethal mutations from the population. The
proportion of genomes containing single point mutations is relatively constant
throughout the passages whereas the proportions of wild-type and multi-variant

genomes decrease and increase, respectively. Theses proportions are based on a
simulation where mutations are distributed randomly and all viable mutants
have fitness equivalent to wild type. b, Accumulation of mutations by selection.
The frequency of mutations accumulated as a result of selection, that is, after
removing de novo mutations, is plotted for each passage. Mutations accumulate
approximately linearly over the course of the experiment suggesting that
selection is constant.
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Extended Data Figure 6 | Analysis of mutational fitness effects. a, Spatial
distribution of synonymous mutations by fitness effect. Synonymous
mutations were binned by the magnitude of their fitness effect and plotted
against their respective genome position. Each bin of fitness effects is well
distributed across the genome, indicating that synonymous mutations with
strong fitness effects map to discrete regions. b, The distributions of mutational
fitness effects of synonymous mutations for structural (black) and

non-structural (green) genes are similar. c, Summary of mutational fitness
effects. Differences in variance are statistically significant between non-
synonymous mutations in structural and non-structural genes both including
and excluding lethal mutations (P , 0.001, one-sided F-test). Differences in
variance are also statistically significant between non-synonymous and
synonymous mutations the coding sequence both including and excluding
lethal mutations (P , 0.001, one-sided F-test).
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Extended Data Figure 7 | Number of passages used to calculate fitness
affects accuracy. Fitness for each variant was calculated for varying numbers of
serial passages and normalized to the fitness calculated using the full set of seven
passages. As the number of passages used to calculate fitness increases, the
variation in fitness decreases, indicating that the calculated fitness is more
accurate.
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Extended Data Figure 8 | Simulation of genetic drift and its impact on
fitness measurement. Top row shows one thousand simulations of a mutation-
selection-drift process in a population of 106 genomes are shown for mutations
initiated at their mutation rate: 1023 (black), 1024 (blue), 1025 (green) and 1026

(red). Because of the low number of mutations in populations where the mutation
rate was set to 1026, it is common for the population to lose the mutant by drift.

As frequency was plotted on a log scale, a frequency of 0 was represented as 1027.
The histograms show fitness calculated using a simple mutation-selection model
for each simulation. The standard deviation for each set of calculations is noted
in the title of each set of simulations. The stronger drift experienced by low
frequency variants reduces the accuracy of fitness measurements. To account for
this effect, we have incorporated drift into our fitness model.
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Extended Data Table 1 | Summary of data collected from sequenced passages

Data represented in this table are from consensus sequences filtered at average quality score 20. Variants(*) reported here are statistically significant (P value # 0.05) by an exact binomial test using the average
estimated error probability for each site, the coverage and number of mutations detected at each site (for each variant separately).
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Extended Data Table 2 | Comparison of the phenotypes of published mutants16,35–39 with fitness calculated using CirSeq
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