
DNA sequencing has undergone constant improvement 
since its inception in the 1970s. Today, next-generation 
sequencing (NGS) approaches are accelerating in speed 
and decreasing in cost more quickly than Moore’s law1. 
DNA sequencing technologies have improved in preci-
sion and throughput, and have enabled the sequenc-
ing of entire genomes of species2,3 and individuals4. 
An increasing number of questions can be addressed 
by DNA-sequencing-based technologies. In particular, 
transcriptomic5, epigenomic6 and proteomic7 analyses 
are being carried out using methods that reduce a spe-
cific analysis problem to a DNA-sequencing problem, as 
explained in FIG. 1.

DNA sequencing technology has not only scaled up 
rapidly in throughput but — through advances in sam-
ple preparation — has also scaled down in terms of the 
amount of DNA that is required for analysis, to the point 
at which it is now feasible to analyse the DNA content of 
individual cells8,9. This opens up a wealth of previously 
impossible applications in both basic research and clini-
cal science. Examples are: the study of microorganisms 
that cannot be cultured, using direct single-cell genome 
sequencing10; transcriptome analysis of rare, circulating 
tumour cells11; characterization of the earliest differentia-
tion events in human embryogenesis; the investigation of 
transcriptional noise and stochastic fate choice; and the 
study of tumour heterogeneity12 and microevolution13.

Single cells can be studied and tracked using many 
detection technologies, including quantitative imaging 
and mass spectrometry. However, our Review focuses on 
single-cell analysis using DNA-sequencing-based tech-
nologies. Although single-cell sequencing-based analysis 
has been applied to both unicellular14 and multicellular 
organisms15, this Review focuses on mammalian (pri-
marily mouse and human) single-cell analysis. We first 
survey current technologies for single-cell isolation, 
which is essential for DNA-sequencing-based single-
cell analysis. We then review technologies for single-cell 
genomic and transcriptomic analysis, and their applica-
tions. We briefly discuss methods for sequencing-based 
epigenomic and proteomic analyses that have yet to be 
scaled to single cells. Finally, we describe the impact that 
the integration of these methods will have on whole-
organism science (FIG. 1). We predict an era of integrated 
single-cell genomic, epigenomic, transcriptomic and 
proteomic analysis, which we believe will revolutionize 
whole-organism science by enabling the reconstruction 
of organismal cell lineage trees for higher organisms, cul-
minating in the reconstruction of an entire human cell 
lineage tree16, which will have broad implications for 
human biology and medicine.

Naturally, in such a diverse, rapidly developing and 
interdisciplinary field, we cannot possibly cover all of the 
work that has been carried out over the past few years. 
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Next-generation sequencing
(NGS). High-throughput DNA 
sequencing of a large number 
of DNA molecules in parallel. 
There is a trade-off between 
read length and throughput 
that depends on the 
sequencing technology,  
run time and quality.

Single-cell sequencing-based 
technologies will revolutionize  
whole-organism science
Ehud Shapiro1,2, Tamir Biezuner1,2 and Sten Linnarsson3

Abstract | The unabated progress in next-generation sequencing technologies is fostering a 
wave of new genomics, epigenomics, transcriptomics and proteomics technologies. These 
sequencing-based technologies are increasingly being targeted to individual cells, which will 
allow many new and longstanding questions to be addressed. For example, single-cell 
genomics will help to uncover cell lineage relationships; single-cell transcriptomics will 
supplant the coarse notion of marker-based cell types; and single-cell epigenomics and 
proteomics will allow the functional states of individual cells to be analysed. These 
technologies will become integrated within a decade or so, enabling high-throughput, 
multi-dimensional analyses of individual cells that will produce detailed knowledge of the 
cell lineage trees of higher organisms, including humans. Such studies will have important 
implications for both basic biological research and medicine.
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Organismal cell lineage tree
A mathematical entity 
capturing all cell division and 
death events in the life of an 
organism up to a particular 
time point. The tree consists of 
labelled nodes, which represent 
all organismal cells, and 
directed edges, which represent 
progeny relationships among 
them. A reconstructed tree 
describes lineage relationships 
among cells sampled from an 
organism, and is precise only  
if it is a subtree of the (true) 
organismal cell lineage tree. 

Cell type
A classification of cells by 
morphology, genotype, 
phenotype or developmental 
origin. There is no consensus 
on which properties are 
necessary and sufficient for  
this classification, nor is there 
general agreement on the 
actual number of cell types or 
their proper classification in 
any higher organism, including 
in humans.

Fluorescence-activated  
cell sorting
(FACS). A tool that enables 
high-speed counting and/or 
sorting of cells according  
to features detected by 
fluorescence.

Also, we expect that by the time this Review is published, 
additional progress will have been made, which we 
have been unable to cover. We apologize to the authors 
whose work we have not discussed.

Methods for single-cell isolation
Tissues are rarely homogenous, and typically consist of 
tens or hundreds of distinct cell types, which are often 
intermingled and present at widely different abun-
dances. Single cells can be isolated from such tissues in 
various ways (TABLE 1), which can be classified as either 
unbiased (randomized) or biased (targeted) sampling. 
In principle, an unbiased sample better reflects the 
composition of the tissue, but a targeted sample may 
be necessary in order to isolate rare cell types.

There are two key steps in the isolation of single  
cells from a solid tissue. First, the tissue must be 
removed from the animal or plant — typically by dis-
section or biopsy — and dissociated into its constituent 
individual cells, usually using enzymatic disaggrega-
tion. Second, single cells must be placed into individual 
reaction chambers for lysis and further processing.

Individual cells can be isolated using micro-
manipulation, for example, using a simple mouth 
pipette9,17 or by serial dilution18,19. As micromanipula-
tion methods are easy and cheap, they are the most 
commonly used single-cell isolation methodologies. 

Their disadvantages are that they are only applicable 
to cells in suspension, they are low-throughput, and 
they are susceptible to errors, such as misidentifica-
tion of a cell under a microscope. These disadvantages 
are partially addressed by semi-automated devices for 
cell isolation, with which an expert operator can iso-
late approximately 50–100 cells per hour20. A different 
approach, which is also classified as micromanipula-
tion, is the optical tweezers technology, which uses a 
laser beam to capture cells. Although not commonly 
used, it allows specific cell micromanipulation and 
measurement21.

Cell isolation can also be achieved by flow sorting 
using fluorescence-activated cell sorting (FACS), either 
using cell-type-specific markers for a biased, targeted 
sample, and/or using the light-scattering properties of 
cells to obtain an unbiased sample. The main advan-
tages of FACS-based sorting are the ability to choose 
between biased and unbiased isolation, high levels of 
accuracy and high-throughput single-cell isolation12. 
However, FACS requires a large number of cells in sus-
pension as starting material, which might affect the 
yield with respect to low-abundance cell subpopula-
tions. In addition, the rapid flow in the machine might 
damage the cells, and care must be taken to ensure the 
viability of the collected cells if live cells are necessary 
for downstream protocols.

Figure 1 | Single-cell sequencing-based analysis methods and their anticipated integration.  a | Architecture of 
single-cell DNA-sequencing-based technologies. Current implementations include single-cell genomics (targeted 
exome or mutational analysis9,16,56,59, copy-number variation8,9,58, and recombination analysis in germ cells27,68), 
transcriptomics (transcriptome analysis11,99,102,104 and recombination analysis in the immune system136) and epigenomics113. 
b | Architecture of future integrated single-cell DNA-sequencing-based analysis. We expect that within a decade  
this architecture will allow the simultaneous analysis of multiple properties of an individual cell, including 
genomics3,4,38,60–63,76,78–81,83,84,137–139, epigenomics (methylation6,82,106,107,140, chromatin108 and conformational110,111 analysis), 
transcriptomics (transcriptome analysis5,141–143, allele-specific gene expression94 and molecule counting93–97) and 
proteomics7,127, all of which are currently limited to bulk experiments.
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Laser-capture 
microdissection
(LCM). A method that 
combines high-resolution 
microscopy and the accurate 
isolation of user-defined 
regions of a tissue slice for 
downstream analysis. Typically, 
a powerful laser is used to cut 
an outline of the target region, 
which can then be ejected into 
a sample tube.

Microsatellites
Repetitive elements in the 
genome that consist of basic 
units 1–6 bp long that are 
repeated from a few to a few 
dozen times. Microsatellites 
occupy 3% of the human 
genome.

Cell depth
The number of divisions a cell 
underwent since the zygote.

Laser-capture microdissection (LCM)22,23 can be used 
to cut cells from fixed tissues or cryosections and is 
effective for collecting nuclei for genomic analyses. The 
great advantage of LCM is that knowledge of the spa-
tial location of a sampled cell within a tissue is retained, 
unlike methodologies in which tissue disaggregation 
is required. There are several current disadvantages of 
LCM. First, it requires expert manual operation and is a 
low-throughput technique. Second, in our opinion it is 
less suitable than other methods for transcriptome anal-
ysis, because it is nearly impossible to capture all or most 
of the cytoplasm of a cell without also collecting material 
from neighbouring cells. Third, because the section to  
be dissected has to be of a single-cell width, DNA might be  
lost by partial nuclei dissection. Finally, selection may 
be biased owing to the misuse of markers24. For these 
reasons, LCM is less widely used than other methods for 
single-cell isolation.

Recently introduced microfluidic devices have 
opened new horizons in single-cell isolation and analy-
sis12,25. These devices allow the compartmentalization 
and controlled management of nanolitre reactions using 
fabricated microfluidic chips, and they use controlled 
liquid streaming. The ability to accurately construct 
low-volume chambers and tubes makes microfluidics 
ideal for single-cell isolation, as well as for further down-
stream processes. Microfluidic devices provide inherent 
advantages by allowing higher throughput with less 
effort, reducing reagent cost and improving accuracy. 
In recent years several implementations of microfluidic 
devices have been presented for single-chromosome 
isolation26 and single-cell isolation followed by analy-
sis27,28. We expect microfluidic technologies and prod-
ucts to continue their advance and ultimately to provide 
a robust foundation for single-cell sequencing-based 
analysis29.

Single-cell genomics
Reconstructing cell lineage trees using somatic muta-
tions. Different cells from the same individual were ini-
tially thought to harbour identical genomes. This turns 
out to be false, not only for the immune system30 and 
cancer cells31 (which both undergo somatic evolution) 
and for germline cells that undergo recombination27, 
but for all cells in our bodies. During normal mitotic 
cell division DNA is replicated with very high, but 
not absolute, precision, which leads to the incorpora-
tion of somatic mutations. These somatic mutations, 

accumulated since the zygotic stage, endow each cell 
in our bodies with a genomic signature that is unique 
with a very high probability16. As the differences in cel-
lular genomic signatures are mostly without phenotypic 
effect, what would science gain by knowing them?

The answer is that knowing the unique genomic 
signatures of our body cells allows the reconstruction 
of cell lineage trees with very high precision16. Central 
unresolved problems in human biology and medicine 
are in fact questions about the human cell lineage tree: its 
structure, dynamics and variability during development, 
growth, renewal, ageing and disease. For example: does 
the oocyte pool renew during adulthood32? Do β-cells 
renew33? Do neural progenitor cells produce each brain 
cell type as needed, or do specialized progenitors each 
produce a single cell type34,35? Information about the cell 
lineage trees of higher organisms consists largely of data 
from cell fate maps36,37, which are mostly derived from 
clonal-marking experiments that are not applicable to 
humans. Complete knowledge of the unique somatic 
mutations that are accumulated in each cell would allow 
the reconstruction of cell lineage trees with extremely 
high precision16,38.

Work in this direction has focused on identifying 
somatic mutations in microsatellites39 that are hyper-
mutable in normal cells and even more so in microsat-
ellite-instable (MSI) cells19,40,41 and in mismatch repair 
(MMR)-deficient organisms16,42,43. Knowing only a small 
proportion of such mutations allowed fairly precise lin-
eage reconstruction using standard phylogenetic algo-
rithms, depending on cell depth40,44,45. By applying this 
approach to samples of cells from tissues of interest, key 
aspects of the underlying cell state dynamics were char-
acterized. The cell lineage trees thus obtained provided 
information about the substructure of the population, 
such as the existence of small populations of stem cells. 
Such information has applications for developmental 
biology (for example, oocyte maturation, colon crypt 
development18 and muscle stem cell lineages46) and for 
leukaemia19.

Somatic mutations can be used for cell lineage recon-
struction only if: the mutations do not confer a selec-
tive advantage or disadvantage, they are associated 
with DNA replication (rather than elapsed time, for 
example) and/or their dynamics is well understood and 
can be modelled. The accuracy of lineage reconstruc-
tion increases with the fraction of the genome analysed 
per cell, and there is a trade-off between accuracy and 

Table 1 | Advantages and disadvantages of common single-cell isolation methods

Method Unbiased (randomized) 
or biased (targeted)?

Throughput Cost Manual or automatic 
isolation process?

Refs

Micromanipulation Unbiased Low-throughput Low Mainly manual 9,17–20

Fluorescence-
activated cell sorting

Either biased or unbiased High-throughput High Automatic 12

Laser-capture 
microdissection

Unbiased Low-throughput High Manual 22–24

Microfluidics Unbiased High-throughput High Automatic 26–29
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Sequencing depth
The total amount of raw 
sequence mapped to a 
reference genome, divided by 
the length of the genome.

Whole-genome 
amplification
(WGA). Refers to methods  
that are used to amplify the 
genomic DNA of single cells to 
increase the number of copies 
of DNA for downstream 
processing.

cost per cell. Given a fixed fraction of the genome to be 
analysed, the accuracy of its sequencing is crucial. One 
way to increase sequencing accuracy (up to a point) is 
by increasing the sequencing depth. Sequencing accu-
racy is decreased by the bias and infidelity introduced 
by the biochemical steps of preparing cellular DNA for 
sequencing, including whole-genome amplification (elabo-
rated on below), library preparation and the sequencing 
process itself 47. Trade-offs between cost and accuracy 
require fine-tuning these parameters (for example, car-
rying out additional sequencing runs using fewer cells 
per run or increasing the number of analysed loci).

A disadvantage of cell lineage reconstruction using 
somatic mutations is that it cannot provide, by itself, 
information on the state of inferred ancestor cells. It can 
show the depth of sampled cells and the lineage rela-
tionships among them, but not the type of the ances-
tor cells that are represented by internal nodes in the 
reconstructed cell lineage tree. In particular, the results 
of ‘time-lapse’ experiments — in which different tissue 
samples of the same or different organisms are analysed 
at different organism ages — cannot be superimposed 

on the same cell lineage tree, as has been done for 
Caenorhabditis elegans (BOX 1), and labels of internal 
nodes of a cell lineage tree can only be approximated 
from the properties of the sampled cells, namely the 
leaves of the tree. Labelling the leaves and internal nodes 
of the reconstructed cell lineage tree with cell type and 
state information requires further single-cell epigenomic 
and transcriptomic analyses, as explained below.

Cell lineage reconstruction of cancer will elucidate 
its development. Cancer patients typically do not die 
from the effects of the primary tumour but from those 
of its metastases. Yet, despite decades of research, the 
key question of where metastases originate from has 
not been fully answered48 (FIG. 2). For example, can 
metastases originate from any tumour cell or only 
from a distinct tumour subclone (for example, cir-
culating tumour cells49)? In the latter case, are these 
subclones created early or late in the development of  
the tumour23,50? Alternatively, perhaps metastases and the  
primary tumour are both independent descendants of 
cancer stem cells51,52. Or maybe metastases are formed 
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Box 1 | Whole-organism science: the Caenorhabditis elegans benchmark and the principle of biological uncertainty

Caenorhabditis elegans is the best-studied multicellular organism and hence offers a 
benchmark for the systematic and integrative study of organismal biology at the 
molecular, cellular, organ and organismal levels, which we refer to as ‘whole-organism 
science’. The scaffold on which the comprehensive knowledge of C. elegans biology  
is structured is its cell lineage tree131,132, a fragment of which is shown in the figure. The 
structure of the tree shows the lineage relationships among all the organism’s cells, past 
and present; the labels give the identities and types of organismal cells, and the length 
of tree edges represent the timing of cell division and death events. Additional 
knowledge that is not shown in the tree is the location within the organism of each cell. 
New knowledge is constantly being added to this scaffold (for example, the 
transcriptome of each organismal cell99).

Whereas the development of C. elegans is deemed to be deterministic, higher 
organisms exhibit great variability during development, renewal, ageing and disease, 
which is caused by genetic and environmental differences. Owing to this variability, we 
postulate that whole-organism science of higher organisms must deal with a ‘biological 
uncertainty principle’. Heisenberg’s uncertainty principle states that it is impossible to 
measure accurately and simultaneously the position and momentum of an elementary 
particle. Similarly, in general it is not possible to measure accurately and simultaneously 
the ‘cellular position’ (for example, the genomic, transcriptomic, epigenomic and 
proteomic state of a cell) and the ‘cellular momentum’ (for example, the next 
differentiation, division or degradation event of a cell) for individual cells in an 
organism. In order to know accurately the state of a cell, one must destroy it and analyse 
its content, thereby eliminating cellular momentum. Alternatively, to observe cellular 
momentum, one cannot interfere with the behaviour of the cell and hence must 
compromise on precisely knowing the state of the cell. For example, using fluorescent 
reporters that are minimally invasive, limited information can be obtained on both the 
state and momentum of single cells133–135. The use of external markers may still have an 
effect on the cell, and currently their use is limited to measuring a small number of 
parameters and is not applicable to humans. In non-deterministic higher organisms the 
structure of the cell lineage tree may be affected by nature (the genome), or nurture 
(the environment), as well as stochastic events such as cancerous mutations. Integrated 
single-cell analysis providing knowledge of the genome, epigenome, transcriptome and 
proteome of each sampled cell can be used to reconstruct detailed lineage trees of the 
sampled cells and to infer the functional state of ancestor cells. Such inferred trees can 
be used to predict the next differentiation or division decision of a cell on the basis of its 
functional state, thus overcoming (to some extent) the limitations imposed by the 
biological uncertainty principle. The figure is reproduced, with permission, from  
http://www.wormatlas.org/images/BYUFlineages.jpg © (2013) WormAtlas.
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Clonal expansion
A method to retrieve 
representative DNA from a 
single cell following its 
proliferation. A single cell is 
isolated, cultured ex vivo, and 
allowed to divide several times. 
DNA is isolated from the bulk 
cell population using standard 
DNA extraction techniques 
that do not involve 
amplification.

Single-nucleotide 
polymorphism calls
(SNP calls). Following 
sequencing read assembly, this 
is the identification of single 
nucleotides that are different 
from the nucleotide at the 
same position in a specific 
reference genome. This 
process requires high- 
quality sequencing and 
adequate sequencing depth  
for statistical significance.

Sequencing coverage
In a sequencing experiment, 
the number of reads covering a 
specific nucleotide position is 
the coverage of that position. 
Increasing read depth leads  
to increasing coverage, and to 
increasing accuracy of the  
base calls.

through the fusion of primary tumour cells and nor-
mal mobile cells such as macrophages53,54. As another 
example, consider the origin of cancer relapse after 
chemotherapy. Is this caused by ordinary tumour cells 
escaping chemotherapy stochastically, or by a distinct 
subpopulation of infrequently dividing cancer-initiating 
cells that escape chemotherapy owing to their slow divi-
sion rate? The answers to these questions are encoded  
in the patient’s cancer cell lineage tree19,55. Understanding 
the emergence and distribution of driver mutations  
in the context of the cancer cell lineage tree is also of 
prime importance56.

Early experiments analysed a few key markers in each 
individual cell. In one recent example, heterogeneity and 
tumour origin in acute lymphoblastic leukaemia were 
studied by assaying the occurrence of up to eight chro-
mosomal aberrations and their combinations in single 
cells using fluorescence in situ hybridization (FISH). 
This allowed an analysis of subclonal architecture dur-
ing cancer progression57. More recently, sequencing of 
hundreds of single nuclei was used to generate approxi-
mated copy-number profiles for individual breast cancer 
cells8,58, thus allowing the reconstruction of tumour pop-
ulation structure and evolutionary history. In another 
study59, whole-exome single-cell sequencing in a patient 
with myeloproliferative neoplasm was carried out to 
reconstruct tumour ancestries and to identify candidate 
driver mutations. In a final example, single-cell DNA 
templates were extracted following clonal expansion and 
were sequenced60 (a method that is discussed below) to 
study the lineage of normal cells and to determine the 
earliest precancerous mutations that ultimately led to  
the development of the tumour.

Bulk sequence analysis methods are practical and 
efficient predecessors to single-cell studies. They can 
be used to extract efficiently distributions of markers 
of interest (for example, somatic mutations) from a  
large number of cells. Recent bulk studies have used  
a two-tier design of low-depth, whole-genome sequenc-
ing combined with deep sequencing of loci underlying 
putative driver carcinogenic events. The approach can 
quantify the frequencies of genetic and epigenetic vari-
ants in vitro38 or in vivo; for example, it can be used to 
estimate tumour cellular dynamics such as mutation 

penetrance, to construct models that distinguish driver 
and passenger mutational events and to reconstruct 
tumour ancestries using coalescent models23,61–63.

Lineage tracing using NGS of somatic mutations 
has been demonstrated in vivo for bulk cell populations 
but not for single cells. Bulk methods do not provide 
accurate information on how different combinations of 
mutations or aberrations emerge, and precise answers 
to such questions await single-cell lineage analysis 
of cancer.

The road to single-cell genomics. Although sequencing 
the DNA of a cell population is now straightforward61, 
sequencing DNA from single cells is still a challenge. 
Historically, the cost of sequencing multiple individual 
cells at adequate depth for genetic profiling was prohibi-
tively high, and despite the remarkable recent increase 
in throughput, the sequencing cost is still a hurdle to 
large-scale single-cell genomics, transcriptomics and 
epigenomics. The current prevailing DNA sequenc-
ing approach combines WGA with the preparation of 
amplified, nanogram-sized DNA libraries. WGA can be 
achieved through multiple variants of PCR-based ampli-
fication8,58,64–66 or isothermal amplification using multi-
ple-displacement amplification16,27,56,59,67. Demand for 
unbiased single-cell DNA amplification has inspired the 
development of new techniques for WGA. These include 
the multiple-annealing and looping-based amplification 
cycles (MALBAC) method9,68 and single-cell-specific 
WGA kits such as the single-cell RepliG kit, by Qiagen. 
Performance of the available methods varies between 
applications, and a comprehensive side‑by‑side com-
parison of the different methods is still much needed14,69. 
In this article we do not provide a comprehensive sum-
mary of all the available techniques. For a recent review  
summarizing WGA methods see REF. 14.

A high-fidelity, low-bias method for genome ampli-
fication is especially crucial for single-cell DNA analysis 
because the initial copy number is one, unlike for DNA 
sequencing from bulk cell populations or even for single-
cell RNA analysis. Low-fidelity amplification can produce 
non-representative and biased sequencing results, which 
in turn may lead to incorrect single-nucleotide polymor-
phism calls (SNP calls), uneven sequencing coverage and 
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Mobile cells

Figure 2 | Alternative hypotheses on the origin of metastases.  a | Metastases originate from random cells during 
tumour development. b | Following tumour growth, metastases originate from a specific tumour subpopulation, which 
underwent many divisions (that is, a ‘deep’ subpopulation). c | At the initial tumour growth stages, metastases originate 
from a specific tumour subpopulation (that is, a ‘shallow’ subpopulation). d | Metastases originate from other metastases.  
e | Tumour cells engage metastasis by fusion with other cells, which endow a mobility property.
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Amplicons
DNA products of PCR 
amplifications.

missing loci (termed locus-dropout or allele-dropout).  
Such biases have less effect when sequencing bulk 
cell populations or even WGA products from a few  
hundred cells14.

An alternative single-cell DNA extraction technique 
uses clonal expansion60,70. However, this method suf-
fers from several drawbacks. First, the efficiency of 
the proliferation of a single cell ex vivo is dependent  
on the cell type, cell stress that occurs post-isolation 
and the availability of suitable conditioned growth 
media71. Second, cell death or decomposition prevents 
culturing8. Third, this approach is contamination-
prone, laborious and more time consuming than single-
cell WGA procedures, especially when a large number 
of cells need to be cultured and their DNA extracted 
independently. Finally, mutations are introduced dur-
ing this procedure, especially in MMR-deficient cells. 
When single-cell WGA techniques mature, it will 
be valuable to compare them comprehensively with 
clonal expansion for reproducibility and for artefacts 
caused by polymerase bias. Nevertheless, as previously 
explained, subsequent biochemical steps following 
clonal expansion can also cause artefacts, even more 
than the single-cell WGA itself 32.

Single-molecule sequencing methods (often referred 
to as third-generation sequencing technologies)72–75 
eliminate the amplification step before sequencing. As 
such, they eliminate amplification bias and hold great 
promise for single-cell sequencing. Yet, these technolo-
gies currently suffer from high error rates, low-through-
put and low sequencing efficiency, owing to slow and 
non-robust detection74,75.

For some applications, analysing the entire genome 
(or transcriptome) is not essential, and targeting a 
genomic subset using genomic enrichment methods 
may allow higher sensitivity and lower per-sample cost. 
For example, genomic subsets can include exomes76,77 
or specific mutations in genes of interest78–81. High-
throughput sequencing has the combined advantages of 
both high-throughput analysis and sample multiplexing 

using DNA barcodes in a single sequencing run, which 
makes it ideal for large-scale analysis of multiple single 
cells (BOX 2; TABLE 2). Genomic enrichment was initially 
approached through PCR amplification of a few to a 
hundred amplicons, and single-cell isolation followed by 
PCR is a current practical alternative to whole-genome 
sequencing due to technological advancements in this 
field80,81. Specifically, the ability to cost-effectively syn-
thesize thousands of custom-designed oligonucleotides 
enabled the development of more-powerful genome 
enrichment techniques based on the hybridization of 
target material to oligonucleotide probes and subsequent 
processing (namely selective circularization methods82,83 
and hybridization-based capture methods56,59,62,84). These 
methods allow cost-efficient targeted DNA enrichment 
and high-throughput NGS library preparation. Further 
development of the sensitivity and throughput of these 
techniques will probably make these methods more 
common in single-cell genomics, as an interim step to 
whole-genome sequencing or as a long-term companion 
to such a capability.

Single-cell transcriptomics
The molecular state of cell populations. Given a het-
erogeneous cell population, measurement of the mean 
values of key factors, such as the genotype, RNA out-
put or epigenetic state of a locus of interest, provide 
only a partial characterization of the state of the sys-
tem. Unfortunately, most of the methods that are used 
for quantifying the molecular state of a cell popula-
tion, from transcriptional profiling to proteomics, are 
based on estimating mean behaviours in ensembles of 
millions of cells by averaging the signal of individual 
cells. For example, it is impossible to determine the 
cell‑to‑cell variation of gene expression based on 
microarray or RNA sequencing (RNA-seq) data, or to 
determine whether intermediate levels of a signalling 
protein are a consequence of a bimodal or uniform 
intrapopulation distribution based on standard prot-
eomics. Going beyond mean-based characterization of 

Box 2 | How many individual cells are needed for quantitative transcriptomic analysis?

In a standard bulk RNA sequencing (RNA-seq) experiment, precision is limited only by sequencing depth. Typically, ten 
million reads are generated, and a threshold of 50 reads per kb per million reads (RPKM) is considered adequate to call a 
gene as expressed. For a gene that is 1 kb long, this corresponds to 500 reads, thus leading to a minimum coefficient of 
variation (CV; which is equal to the standard deviation divided by the mean) of 4%, as given by the Poisson distribution. 
In a fairly typical single mammalian cell containing 200,000 mRNA molecules, 50 RPKM corresponds to about ten mRNA 
molecules. Again, assuming a Poisson distribution across cells, the expected CV is 32%, but this can be reduced by 
pooling data from many cells. How many cells are needed to reduce this error to that of the bulk experiment? The 
answer is 50, because the pooled data from 50 cells will contain 500 mRNA molecules. These are ideal numbers, and in 
practice more cells will be required. For example, if the efficiency of converting mRNA to cDNA is only 10% (which is not 
an unrealistic assumption), then tenfold more cells will be required. Similarly, when additional noise is introduced (for 
example, by PCR amplification) the number of cells required will increase correspondingly. Furthermore, if the sample is 
heterogeneous, then enough cells must be analysed so that all representative cell types are observed. Finally, all these 
estimates assume that the single-cell measurements are accurate, as systematic inaccuracies (for example, due to 
amplification bias) will not be cured by collecting more cells.

Although necessarily simplistic, these ‘back‑of‑the-envelope’ calculations suggest that hundreds or thousands of 
single cells will need to be analysed to answer targeted questions in single tissues. For a whole-organism view, at least 
millions of cells will need to be analysed (that is, thousands of cells in thousands of tissues and time points), which is a 
feat that will require miniaturization, automation and further reductions in the cost of DNA sequencing.
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cell populations requires balancing the number of sam-
pled cells and the completeness of functional coverage  
on varying scales (TABLE 2).

Applications of single-cell transcriptomics. One major 
application for single-cell transcriptomics is in the anal-
ysis of rare cell types. For example, circulating tumour 
cells can be obtained from patient blood, but typically 
only a few cells are isolated per blood sample and these 
will often be contaminated by a larger number of nor-
mal cells. Single-cell RNA-seq could be used to differ-
entiate between these cell types and simultaneously to 
obtain expression data from the tumour. Similarly, the 
early human embryo by definition contains only rare 
cell types, which exist only transiently. Key questions 
about early development could be addressed using 
transcriptomics. In this context, transcriptomics has 
the advantage of being able to use sequence polymor-
phisms (for example, SNPs) to distinguish transcripts 
that are derived from each of the two parental genomes. 
Another area that will benefit immensely from single-
cell transcriptomics is the study of adult stem cells, 
which are often rare, sometimes exist only transiently, 
and can be intermingled with other cell types. However, 
by using single-cell RNA-seq, each cell type can be 
extensively sampled simply by taking unbiased samples 
of cells from the tissue.

Individual cells differ greatly in their size, morphol-
ogy, developmental origin and functional properties. 

Yet, our current level of understanding of cell types, 
their origin, evolution and diversity is embarrass-
ingly poor, despite progress in some specific cases85,86. 
Furthermore, there is no general agreement on the 
number of cell types in a mammalian body. In fact, 
there is no agreement on what defines a cell type, and 
finding such a definition must surely be one of the 
most important goals as we embark on large-scale 
single-cell transcriptome analysis. As a starting point, 
we suggest that cell types can be provisionally identi-
fied as cells for which global transcriptional states are 
similar. Just how similar, and just which parts of the 
transcriptome are relevant, will be crucial questions 
for the future. But this provisional concept of cell type  
leads immediately to an unbiased method of cell- 
type discovery (FIG. 3): collect a large, unbiased sample 
of cells from the tissue of interest, generate transcrip-
tomes for each cell and use computational methods 
to find sets of similar cells. Established clustering and 
dimension-reduction methods — such as K‑means, 
affinity propagation and hierarchical clustering, and 
principal component analysis — will be useful starting 
points87. Because some laboratories are already ana-
lysing hundreds or thousands of single-cell transcrip-
tomes, we anticipate that the time will soon be ripe to 
embark on large-scale, whole-body cell-type discovery 
and characterization.

A further area of application for single-cell tran-
scriptomics is the characterization of transcriptional 

Table 2 | Current trade-offs in sampling heterogeneous cell populations

Experimental approach

Bulk average Tagged 
libraries

Multi-
dimensional 
cell sorting

Deep 
sequencing of 
bulk samples

Small samples 
of single cells

Large samples of 
single cells

Number of cells Millions Hundreds per 
marker

Millions Millions Tens to hundreds Thousands to tens of 
thousands

Molecular markers Any RNA or tagged 
proteins

Surface markers 
or signalling 
molecules

Genetics or DNA 
methylation

RNA, genetics or 
DNA methylation

RNA, genetics or DNA 
methylation

Typical costs Low High setup cost 
but subsequently 
low

High Low to medium Medium, 
depending on 
the sequencing 
component

High, depending 
on the sequencing 
component, but low 
per-cell cost if samples 
are multiplexed

Mean? Global For markers 
(thousands)

For markers (<50) Yes Yes Yes

Variance? No For markers 
(thousands)

For markers (<50) No Yes (of limited 
accuracy)

Yes

Pairwise 
covariance?

No No For profiled 
markers (<50)

Only linked 
marks

Yes (of limited 
accuracy)

Yes

Complex 
correlations and/or 
causal networks?

No No Among profiled 
markers (<50)

No No Possibly

Subpopulation 
structure?

No No Excellent, but 
only if markers 
are appropriate

model-based 
(for example, 
carcinogenesis)

Good, but only for 
subpopulations 
with significant 
(>10%) frequency

Excellent

Cell lineage tree? No (averaged to 
most-recent common 
ancestor (MRCA))

No (averaged to 
MRCA)

No (averaged to 
MRCA)

No (averaged to 
MRCA)

Yes Yes
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Higher moments
Measures of the shape of a 
statistical distribution beyond 
mean and variance, such as 
skewness and kurtosis.

fluctuations. Dynamic changes in RNA content are 
associated with cyclic processes, such as the cell cycle 
in dividing cells and circadian rhythms. Other fluctua-
tions are stochastic and reflect the fact that transcription 
is a discrete process composed of many probabilistic 
steps. Further heterogeneity is introduced by uneven 
partitioning of the cellular content at cell division (for 
example, REF. 88). Direct transcriptome analysis of large 
numbers of single cells should open up the study of 
oscillatory and stochastic regulatory processes in unper-
turbed cell populations. In a population of putatively 
identical cells, sets of co‑regulated genes can be identi-
fied. Each set must be part of a functional process, such 
as an oscillator or a stochastic process. For example, 
genes that share a common upstream regulator would 
presumably show correlated expression. At present, the 
number of single cells that must be analysed in order 
to discover covariant genes is unknown, and finding 
first estimates of these numbers will be a key task in the 
near future. There is also evidence that transcription 
is subjected to strong intrinsic fluctuations89,90. Models 
to explain this intrinsic noise lead to predictions about 
the shape of the mRNA copy-number distribution, 
which can be tested against experimentally measured 
distributions89. Such tests cannot be carried out using 
bulk measurements, which do not give any information 
about the variance or any higher moments. Nonetheless, 
single-cell transcriptome analysis provides only a snap-
shot in time, and it will remain important to comple-
ment this view with dynamic, long-term measurements 
by, for example, time-lapse microscopy91.

The road to single-cell transcriptomics. Despite advances 
in single-molecule DNA72–74 and RNA92 sequencing, 
it is not yet possible to sequence RNA directly from 
single cells. Currently, RNA needs to be converted to 
cDNA and amplified, and this must be achieved with 
minimal losses and without introducing too much 
quantitative bias.

There are several sources of noise in a single-cell tran-
scriptome experiment. There are biological fluctuations, 
both global (that is, affecting the total amount of RNA 

in the cell) and local (for example due to co‑regulation or 
large-scale chromatin modifications). There is also tech-
nical noise, for example due to pipetting errors, tempera-
ture differences, differences in sequencing depth, PCR 
amplification bias and differences in reverse transcrip-
tion efficiency. It is important to realize that single-cell 
transcriptome analysis is also a single-molecule analysis, 
because many genes are expressed at only a few mRNA 
molecules per cell. Amplification from small numbers of 
molecules is subject to the Monte Carlo effect, in which 
stochastic events in the first few cycles of PCR are amplified  
exponentially, causing large quantitative errors.

The ultimate goal of quantitative single-cell tran-
scriptome analysis must be to count every RNA mol-
ecule in the cell exactly, resulting in near-zero technical 
error. This is required, for example, if we are to use the 
shape of mRNA count distributions to infer the kinetics 
of transcription. Accurate molecule counting is in fact 
possible by using unique labels for molecules93–97. After 
amplification and deep sequencing, each original mole-
cule can be identified. As long as the sample is sequenced 
deeply enough, so that each molecular label is observed 
at least once, differences in amplification efficiency do 
not matter. Although the use of unique molecular labels 
has until now been used only for bulk samples, it is a key 
advance that will probably enable a more quantitative 
analysis of single-cell transcriptomes.

Another source of error is losses, which can be severe. 
The detection limit of published protocols is 5–10 mol-
ecules of mRNA. If, as seems likely, the limit of detection 
is primarily determined by losses during sample prepa-
ration, this would indicate that 80–90% of mRNA was 
lost. Or, to put it the other way around, a 90% loss leads 
to an approximately 50% chance of failing to detect a 
gene that is expressed at a level of seven mRNA mol-
ecules (from the binomial distribution). These losses 
are especially problematic in small cells, such as stem 
cells, in which the mRNA content is low to begin with. 
But even in larger cells, such losses introduce a severe 
quantitative error owing to the stochastic sampling of 
small numbers of molecules. For example, measuring 
100 molecules with a 90% loss leads to 10 ± 3 detected 

Figure 3 | Cell-type discovery by unbiased sampling and transcriptome profiling of single cells.   
a | A sample of cells is taken from the tissue of interest, with the aim of obtaining a representative sample of the 
types of cells that are present in the tissue. b | Each cell is profiled using single-cell RNA sequencing (RNA-seq).  
c | Subsequently, the resulting expression profiles are clustered. The result is a map of ‘cell space’, in which similar 
cells are grouped close to each other. The strategy is shown here in cartoon form, but in practice it will be 
necessary to collect and analyse thousands of cells in each tissue (that is, millions of cells overall) to make a 
comprehensive cell space map of a whole organism.
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molecules, which means that the loss alone has intro-
duced a 30% standard deviation. To mitigate the impact 
of technical noise, we suggest analysing large numbers of  
single cells (BOX 2).

The earliest single-cell transcriptomes were generated 
by in vitro transcription (IVT)98, and recently IVT was 
used to produce libraries for Illumina sequencing, in a 
method called cell expression by linear amplification and 
sequencing (CEL–seq)99. The main advantage of IVT is 
the linear amplification, which should in theory be less 
biased than exponential amplification methods such 
as PCR. A disadvantage is that the resulting library is 
biased towards the 3′ end of genes, and this bias can be 
difficult to control. By contrast, PCR-based protocols are 
capable of amplifying full-length cDNA.

A second approach is to add a homopolymer tail to 
the first-strand cDNA, which allows the cDNA strand 
to be amplified by PCR. An early example used deoxy
guanosine-tailing followed by PCR100. Subsequently, 
this protocol was optimized101 and adapted for sequenc-
ing102. Like IVT, homopolymer tailing is biased towards 
the 3ʹ end.

A third approach uses ‘template switching’. Common 
reverse transcriptases of the Moloney murine leukaemia 
virus family tend to add a short tail of (preferentially) 
cytosines to the end of the first-strand cDNA. If a helper 
oligonucleotide, carrying a short GGG motif, is included 
in the reaction, it will anneal to the cytosine motif and 
the reverse transcriptase will switch template and copy 
the helper oligonucleotide sequence103. The result is that 
an arbitrary sequence can be introduced at the 5ʹ end 
(by tailing the reverse transcription primer) and at the 3ʹ 
end (by template switching) of the cDNA, thus allowing 
subsequent amplification by PCR. Additionally, template 
switching has a preference for 5ʹ-capped RNA, so that the 
resulting cDNA is enriched for full-length transcripts. 
This is also the main disadvantage, as template switch-
ing will occur only if reverse transcription successfully 
reaches the 5ʹ end of the mRNA; any partially reverse-
transcribed mRNA will fail to be amplified, which 
limits the total yield. Two alternative approaches have 
been published for processing the full-length cDNA: 
single-cell tagged reverse transcription (STRT)104, which 
isolates and sequences the 5ʹ end, corresponding to  
the transcription start site; and switching mechanism at the  
5ʹ end of the RNA template (SMART)–seq11, which frag-
ments the cDNA and generates reads that cover the full 
length of each transcript.

Protocols also differ in when they introduce a bar-
code for multiplexing. The great advantage of already 
introducing barcodes at the first step is that many cells 
(for example, 96) can be processed together in one tube, 
reducing both cost and time by a considerable factor. 
However, no early-multiplexed protocols are currently 
capable of sequencing the full length of RNA, because 
barcodes are added only to one end of each cDNA 
molecule.

Several recently published protocols are compared 
in TABLE 3. The most important differences between 
them are shown, but it is also important to stress that 
the approaches have much in common: similar detection 
limits (5–10 molecules of mRNA), quantitative biases 
due to amplification, limitation to polyadenylated RNAs, 
and gene-specific biases due to GC content or secondary 
structure.

Through automation and the optimization of rea-
gent consumption, the sample preparation costs of all of  
the published protocols are similar, and the overall cost 
is dominated by the cost of sequencing. For a typical 
mammalian cell that contains 200,000 mRNA mol-
ecules, and assuming tenfold oversampling, at least two 
million reads must be generated. The current minimal 
cost per cell, when sequencing at high-throughput on 
an Illumina HiSeq 2000 machine, will be approximately 
US$10. However, sequencing costs continue to decrease 
exponentially, which should make it feasible, within five 
years, to analyse millions of single-cell transcriptomes.

Single-cell epigenomics and proteomics
Clearly, the genome and transcriptome of a cell capture 
only part of its state, and much of the function of the cell 
is determined by its epigenome and proteome, which 
add to the diversity of cells in a population. The epig-
enomic state of a cell includes epigenomic marks such as 
DNA methylation and histone methylation and acetyl
ation, the structural and regulatory proteins bound to 
chromatin, the spatial interactions between enhancers 
and promoters forming transcriptional complexes, and 
the three-dimensional orientation of the chromosomes.

Bulk bisulphite sequencing provides information on 
the average DNA methylation states for groups of clus-
tered CpG sites at a locus. Depletion of CpG methylation 
is associated with transcriptional activation, and may 
be a consequence of the binding of regulatory proteins. 
Bulk experiments can provide data on the distribution 
of methylation within cells or alleles105,106, or support 

Table 3 | Recently published single-cell RNA-seq methods

Method Principle Strand-specific? Positional bias? Early multiplexing? Ref

Tang et al. Homopolymer tailing No Weakly 3′-biased No 102

STRT Template switching Yes 5′ (TSS) Yes 104

SMART–seq Template switching No Nearly full-length No 11

CEL–seq In vitro transcription Yes Strongly 3′-biased Yes 99

Quartz–seq Homopolymer tailing No Weakly 3′-biased No 144

CEL–seq, cell expression by linear amplification and sequencing; SMART–seq, switching mechanism at the 5ʹ end of the RNA 
template sequencing; STRT, single-cell tagged reverse transcription; TSS, transcription start site.
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models for the stochastic emergence of differential 
methylation107. However, in bulk experiments it is gen-
erally impossible to determine whether two methylated 
sites are actually present in an individual cell, unless the 
methylated sites are so close that they can be detected in 
a single sequencing read.

Chromatin immunoprecipitation followed by 
sequencing (ChIP–seq) is used to study protein–DNA 
interactions genome-wide108, as well as to generate 
genome-wide maps of histone modifications. ChIP–seq 
has been used to determine genome-wide patterns of 
transcription factor binding and their relationships to 
active transcription and epigenomic marks. Using chro-
mosome conformation analysis and all its derivative 
methods (for example, 3C109, 4C110 and Hi-C111), it is also 
possible to measure the interaction between distal chro-
matin elements directly, thus revealing the large-scale 
chromosome organization within the nucleus, as well as 
the finer details of enhancer–promoter interactions at 
individual loci. Again, however, by using bulk experi-
ments it is impossible to know if a complex chromatin 
conformation or a combination of bound transcription 
factors actually exists in an individual cell. For example, 
consider the analysis of a tumour sample. The observa-
tion that a transcription factor is bound to a promoter 
and that the corresponding gene is transcribed does not 
necessarily imply that these two events have occurred 
in the same cell. Instead, it is possible that one event 
occurred in the tumour and another in the infiltrating 
stromal cells. Combined measurements of epigenomic 
and transcriptomic states in single cells are required to 
settle the issue.

Broad applications of sequencing-based methods 
to single-cell epigenomics have yet to be reported. The 
challenges in extending epigenetics to the single-cell 
level are similar to those faced by single-cell transcrip-
tomics: avoiding loss of material and minimizing quan-
titative bias. For this reason, widespread and largely 
binary marks such as DNA methylation and histone 
modifications should be relatively easy to detect in sin-
gle cells. Indeed, proof‑of‑concept single-cell epigenetic 
analyses have already been demonstrated for both DNA 
methylation112,113 and histone modification114. By con-
trast, ChIP–seq targeting transcription factors in single 
cells is a formidable challenge because of the small num-
ber of transcription factors that are present in any single 
cell, the low affinity for their target sequence and the 
often imperfect nature of antibodies.

Epigenetic markers were used on bulk cell populations 
to analyse the dynamics of colorectal cancer41,115,116 and to  
construct lineage trees for colon crypt stem cells117–119.

Proteomic analysis methods include protein 
arrays120, FACS analysis121, co-immunoprecipitation122, 
pull-down assays123 and mass spectrometry assays124, 
and they reveal different protein properties in a sample 
(for example, protein concentration or protein–protein 
interactions). Methods for DNA-based proteomic anal-
ysis have also been developed — for example, immuno-
PCR125 and proximity ligation assays126 — and these 
were recently applied using NGS7,127. As in epigenom-
ics, broad applications of sequencing-based methods to 

single-cell proteomics have yet to be reported, although 
preliminary proof-of‑concept studies have been 
published128,129.

Conclusions
Single cells are the fundamental units of life. Therefore, 
single-cell analysis is not just one more step towards 
more-sensitive measurements, but is a decisive jump 
to a more-fundamental understanding of biology. Here 
we have described recent advances in sequencing-based 
single-cell analysis. These advances include sequencing 
the genomes and transcriptomes of single cells, and we 
predict that it will soon be possible to sequence fully all 
the nucleic acids in many thousands or even millions of 
cells. In addition, we have described how other cellular 
phenomena can be converted into a DNA-sequence-
based readout. For example, epigenomic marks such 
as histone modifications can be converted into a DNA 
signal by ChIP–seq. Similarly, protein modifications and 
interactions can be converted to DNA by the proximity 
ligation assay.

The enormous and ever-increasing power of DNA 
sequencing means that many different cellular phenom-
ena are likely to be convertible to a DNA readout. A for-
tuitous consequence of this convergence should allow 
integrated measurements of multiple modalities. The 
feasibility of such integration has been already demon-
strated for genomic and transcriptomic analysis100, and 
simultaneous DNA, RNA and protein measurements 
in single cells can be used to quantitatively describe the 
central dogma of molecular biology130. Nonetheless, 
although single-cell analysis methods for single proper-
ties (such as only DNA or only RNA) are developing at 
a rapid pace, there is still a long road ahead for assaying 
multiple properties in single-cell integrated analyses. 
The biochemical differences between the cellular prop-
erties lead to variations in the methods that are needed 
to isolate them, and modifications of current isolation 
methods will be needed to develop a unified single-cell 
multi-property analysis protocol.

Such integrated single-cell genetic, epigenetic, tran-
scriptional and proteomic sequencing-based analyses 
(FIG. 1), will allow modelling of the relationships among 
multiple molecular markers, unbiased identification of 
complex cell population structure, and characterization 
of direct, indirect and in some cases causal dependen-
cies among factors. Development of complex single-cell 
genetic analysis methods may allow for a better under-
standing of these cellular properties and for redefining 
the concept of ‘cell type’. The feasibility of such integra-
tion has been already demonstrated for genomic and 
transcriptomic analysis100.

Finally, the accumulation of mutations in single cells 
during development can be used to infer the lineage 
ancestry of each cell. Although cell-fate maps describe 
potential next states for cells in a particular state36, they 
do not capture precise lineage relationships. By con-
trast, cell lineage trees reconstructed using somatic 
mutations capture the lineage relationships among  
the sampled cells, but do not provide information on the 
state of ancestor cells. C. elegans is the first and highest 
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organism with a known cell lineage tree that captures 
both its cell fate map and the lineage relationships 
among cells131,132. We anticipate that integrated single-
cell analysis culminating from the wave of developments 
reviewed here will allow similarly powerful results for 
higher organisms such as mice and humans. If the states 
of the sampled cells — as determined by their transcrip-
tomes and epigenomes, and perhaps further enhanced 
by their proteomes — that constitute the leaves of a 
reconstructed cell lineage tree, could be known with 
high precision, then additional assumptions about the 
states of ancestor cells represented by internal nodes in 
the tree can be formalized into a mathematical model. 
This would allow the reconstruction paradigm to be 

expanded to describe state dynamics and to integrate 
cell lineage trees with cell fate mapping.

Cell lineage trees of higher organisms harbour 
answers to many open questions in human biology and 
medicine, and have the potential to transform medicine 
towards personalized, rather than generalized, diagnosis 
and treatment. Almost a decade ago it was suggested16 
that advances in single-cell genomics may inspire the 
initiation of a ‘‘Human Cell Lineage Project,’’ the aim 
of which would be to reconstruct an entire human cell 
lineage tree. We believe that the advances reviewed and 
anticipated here in single-cell sequencing-based technol-
ogies will bring us closer to achieving this goal and along 
the way will revolutionize whole-organism science.
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