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standard RNA-seq analysis methods13,14, and the reported sets 
of top differentially expressed genes can include high-magnitude 
outliers or dropout events, showing poor consistency within each 
cell population (Fig. 1b). The abundance of dropout events has 
been previously noted in single-cell quantitative PCR data and 
accommodated with zero-inflated distributions15.

Two prominent characteristics of dropout events make them 
informative in further analysis of expression state. First, the overall  
dropout rates are consistently higher in some single-cell samples  
than in others (Supplementary Figs. 1 and 2), indicating that the 
contribution of an individual sample to the downstream cumula-
tive analysis should be weighted accordingly. Second, the dropout 
rate for a given cell depends on the average expression magnitude 
of a gene in a population, with dropouts being more frequent for 
genes with lower expression magnitude. Quantification of such 
dependency provides evidence about the true expression mag-
nitude. For instance, dropout of a gene observed at very high 
expression magnitude in other cells is more likely to be indicative 
of true expression differences than of stochastic variability.

We modeled the measurement of each cell as a mixture of two 
probabilistic processes—one in which the transcript is amplified 
and detected at a level correlating with its abundance and the other 
in which a transcript fails to amplify or is not detected for other 
reasons. We modeled the first, ‘correlated’ component with a nega-
tive binomial distribution13,16. The RNA-seq signal associated with 
the second, dropout component could in principle be modeled 
as a constant zero (i.e., zero-inflated negative binomial process); 
however, we used a low-magnitude Poisson process to account for 
some background signal that is typically detected for the dropout 
and transcriptionally silent genes. Importantly, the mixing ratio 
between the correlated and dropout processes depends on the 
magnitude of gene expression in a given cell population. We ana-
lyzed two single-cell data sets—a 92-cell set consisting of mouse 
embryonic fibroblast (MEF) and embryonic stem (ES) cells2 and 
a data set of cells from different stages of early mouse embryos12. 
To fit the parameters of an error model for a particular single-cell 
measurement, we used a subset of genes for which an expected 
expression magnitude within the cell population can be reliably 
estimated. Briefly, we analyzed pairs of all other single-cell samples 
from the same subpopulation (for example, all MEF cells except 
for the one being fit) with a similarly structured three-component 
mixture containing one correlated component and dropout com-
ponents for each cell (Fig. 1c and Supplementary Figs. 1 and 2). 
We deemed a subset of genes appearing in correlated components 
in a sufficiently large fraction of pairwise cell comparisons to be 
reliable. We estimated the expected expression magnitude of these 
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Single-cell data provide a means to dissect the composition 
of complex tissues and specialized cellular environments. 
However, the analysis of such measurements is complicated 
by high levels of technical noise and intrinsic biological 
variability. We describe a probabilistic model of expression-
magnitude distortions typical of single-cell RNA-sequencing 
measurements, which enables detection of differential 
expression signatures and identification of subpopulations of 
cells in a way that is more tolerant of noise.

Methodological advances are making it possible to examine tran-
scription in individual cells on a large scale1–4, facilitating unbiased 
analysis of cellular states5–8. However, profiling the low amounts 
of mRNA within individual cells typically requires amplification  
by more than 1 million fold, which leads to severe nonlinear distor-
tions of relative transcript abundance and accumulation of nonspe-
cific byproducts. A low starting amount also makes it more likely 
that a transcript will be ‘missed’ during the reverse-transcription  
step and consequently not detected during sequencing. This 
leads to so-called ‘dropout’ events, in which a gene is observed at 
a moderate or high expression level in one cell but is not detected 
in another cell (Fig. 1a). More fundamentally, gene expression is 
inherently stochastic, and some cell-to-cell variability will be an 
unavoidable consequence of transcriptional bursts of individual 
genes or coordinated fluctuations of multigene networks9. Such 
biological variability is of high interest, and several methods have 
been proposed for detecting it10–12. Collectively, this multifactorial 
variability in single-cell measurements substantially increases the 
apparent level of noise, posing challenges for differential expres-
sion and other downstream analyses.

Comparisons of RNA-seq data from individual cells tend to 
show higher variability than is typically observed in biological  
replicates of bulk RNA-seq measurements. In addition to strong 
overdispersion, there are high-magnitude outliers as well as dropout  
events (Fig. 1a). Such variability is poorly accommodated by 
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genes as a median magnitude observed across the cells in which 
they were found to be part of the correlated components. We then 
used these expected magnitudes to fit the parameters of the nega-
tive binomial distribution as well as the dependency of the dropout 
rate on the expression magnitude for a given single-cell measure-
ment (Fig. 1d). We found that the dropout-rate dependency on the 
expected expression magnitude can be reliably approximated with 
logistic regression (Supplementary Fig. 3). Notably, the dropout 
rates vary among cells, depending on the quality of a particular 
library, cell type or RNA-seq protocol (Fig. 1e,f).

The error models of individual cells provide a basis for further 
statistical analysis, for instance to analyze expression differences 
between groups of single cells. Our Bayesian method for such dif-
ferential expression analysis (single-cell differential expression, 
SCDE) incorporates evidence provided by the measurements of 
individual cells in order to estimate both the likelihood of a gene 
being expressed at any given average level in each subpopulation and 
the likelihood of expression fold change between them (Fig. 2a,b).  
This approach provides a natural way of integrating uncertain 
information gained from individual measurements. For example, 
although an observation of a dropout event in a particular cell does 
not provide a direct estimate of expression magnitude, it constrains 
the likelihood that a gene is expressed at high magnitude, in accord-
ance with the overall error characteristics of that cell measurement. 
To moderate the impact of high-magnitude outlier events, we calcu-
lated the joint posterior probability of expression in a cell group by 
using bootstrap resampling. The resulting sets of top differentially 
expressed genes can be browsed at http://pklab.med.harvard.edu/
scde/. To quantitatively assess the performance of our approach, we 
evaluated false-positive and false-negative rates based on the expres-
sion differences observed in traditional bulk measurements of mouse 
ES and MEF cells17 (Fig. 2c). The SCDE method shows higher sensi-
tivity than do the common RNA-seq differential expression methods 
(DESeq and CuffDiff) and the zero-inflated approach developed for 

quantitative PCR data15. The higher SCDE sensitivity was particularly 
pronounced for genes that are expressed at higher magnitude in ES 
cells (Supplementary Fig. 4), probably owing to the lower total RNA 
abundance and higher noise levels observed in these cells.

A key promise of the single-cell approach is the ability to 
discern new subpopulations of cells within complex mixtures in 
an unbiased manner, without a priori knowledge of which cells 
are which. Although a variety of existing multivariate analysis 
techniques can be used to group cells by transcriptional signa-
tures2,5, dropout and outlier events pose substantial problems 
for standard similarity measures. Our error models can be used 
to derive more robust measures. We compared the classification 
performance of the Pearson linear correlation measure, which 
has been used in combination with hierarchical clustering to 
identify transcriptionally distinct subpopulations of cells, with 
two modified correlation measures that use our error models to 
account for the likelihood of dropout events. The first measure 
(‘direct dropout’) evaluates correlation over a simulated data set 
in which likely dropout events are designated as missing data. 
The second (‘reciprocal dropout’) weights the contribution of 
each gene on the basis of the probability that the gene will fail 
(drop out) in the second cell, given its expression level in the 
first cell (Online Methods). Evaluating the performance of dif-
ferent correlation measures over increasingly difficult cell clas-
sification, we found that measures adjusted on the basis of the 
derived error models perform consistently better in resolving 
cell populations (Fig. 2d and Supplementary Fig. 5).

Genome-wide transcriptional examination of cellular heterogene-
ity within complex tissues will redefine the boundaries separating  
cellular states in statistical terms18. Here we have used a simple 
mixture model to capture the uncertainty in expression magnitude 
observed in a given cell, propagating this uncertainty into subsequent 
analyses. As single-cell studies gain in scope, such probabilistic views 
of the transcriptional state will become increasingly important.
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Figure 1 | Modeling single-cell RNA-seq measurement.  
(a) Smoothed scatter plot comparing gene-expression estimates  
from two MEFs, illustrating the types of cell-to-cell variability observed.  
RPM, reads per million. (b) Plots showing expression of Rnaseh2a and  
Bmp4, as examples of top differentially expressed genes, from CuffDiff2  
(ref. 14) comparison of ten ES and ten MEF cells. Triangles show expression  
magnitudes observed in different cells, and whiskers span the range of  
observed expression magnitudes. (c) Plot showing a cross-comparison  
of single-cell measurements in cells of the same type, determining  
whether the transcript is likely to have been successfully amplified in  
both experiments (correlated component). (d) Plot showing read counts observed for a particular cell (y axis) relative to the expected expression 
magnitude (x axis; see c). The measurement is modeled as a mixture of dropout (red) and successful amplification processes (blue), with magnitude-
dependent mixing of the two processes. (e,f) Probability of transcript-detection failures (dropout events) as a function of expression magnitude for 
individual ES and MEF cells2 (e) and for individual cells from 4-, 8- and 16-cell embryos12 (f). 
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Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 2 | Applying single-cell models for differential expression and subpopulation analyses. (a) Expression differences of Sox2 between all ES and MEF 
cells, measured by Islam et al.2. The plots show posterior probability (y axis, probability density) of expression magnitudes in mouse ES (mES, top) and  
MEF (bottom) cells. The model fitted for each single cell is used to estimate the likelihood that a gene is expressed at any particular level, given the 
observed data (red or blue curves). The black curve shows the estimated joint posterior distribution for the overall level for each cell type. The posterior 
probability of the fold-expression difference is shown in the middle plot with the associated raw P value (two-sided) of differential expression.  
(b) Expression differences of Dazl between cells of 8-cell and 16-cell mouse embryo stages12, as in a. A regulatory factor expressed in mammalian 
embryos19,20, Dazl is expressed at earlier stages and shows a drop-off between 8- and 16-cell stages. (c) Receiver operating characteristic curves comparing 
the ability to detect differentially expressed genes, with bulk expression measurements as a benchmark17. SCA, single-cell assay15; AUC, area under curve. 
(d) Performance of error model–based transcriptional similarity measures in distinguishing ES and MEF cell types. The plot shows the fraction of correctly 
classified cells, assessed for increasingly difficult classification problems by iterative exclusion of up to 7,000 of the most informative genes (i.e., genes 
differentially expressed between ES and MEF, x axis). The 95% confidence bands (of the mean) are shown in light shading. 
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ONLINE METHODS
Data sets and initial abundance estimates. ES and MEF single-
cell measurements (96 cells) from Islam et al.2 were used. The 
initial RPM estimates were obtained with TopHat21 and HTSeq. 
The mouse embryo data were taken from Deng et al., with the 
read alignments described in the manuscript12.

Fitting individual error models. To identify a subset of genes 
that can be used to fit error models for particular single-cell 
measurements, all pairs of individual cells belonging to a given 
subpopulation (for example, all MEF cells) were analyzed with  
a three-component mixture model. To do so, the observed  
abundance of a given transcript in each cell was modeled as a 
mixture of the dropout (Poisson) and ‘amplification’ (negative 
binomial, NB) components. This way, the expression of a gene 
with observed RPM levels of r1 and r2 in cells c1 and c2, respec-
tively, was modeled as

r Poisson c

r NB r
r NB r

r

1 0 1

1 2

2 1

2

≈

≈
≈




≈

( )

( )
( )

l Dropout in

Amplified

PPoisson c( )l0 2Dropout in











The background read frequency for the dropout components 
was set at λ0 = 0.1. The mixing between the three components 
was determined by a multinomial logistic regression on a mixing 
parameter m = log(r1) + log(r2). Pseudocounts of 1 were added 
to r1 and r2 for log transformations. The mixture was fit with an 
EM algorithm, implemented under the FlexMix framework22. 
Alternatively, the initial three-component segmentation can be 
determined on the basis of a user-defined background threshold, 
which is much less computationally intensive. The genes that were 
assigned to the amplified components were noted, and a set of 
genes appearing in the amplified components in at least 20% of all 
pairwise comparisons of cells of the same subpopulation (exclud-
ing the cell for which the model was being fit) was used to fit the 
individual error models, as described below. The expected expres-
sion magnitude of these genes was estimated as a median observed 
magnitude between all the cell measurements in which a gene was 
classified to be in the amplified component. The aim of the 20% 
threshold is to have a sufficiently large number of measurements 
for a given gene so that the median expression-magnitude esti-
mate would be reliable, and the model parameters resulting from 
the fitting procedure would correlate well for a range of values 
corresponding to 6–12 cells (Supplementary Fig. 3d).

To fit an individual error model Ωc for a measurement of a 
single cell c, the observed RPM values were modeled as a function 
of an expected expression magnitude, with the set of estimates for 
a subset of genes described in the previous paragraph. The RPM 
level rc observed for a gene in cell c was modeled as a mixture of a 
dropout and amplified components, as a function of an expected 
expression magnitude e, as

r NB e
r Poisson

c

c

≈
≈





( )
( )

Amplified
Dropoutl0

with the mixing parameter m = log(e). For each cell, the model 
Ωc was fit with an EM algorithm based on the set of genes for 

which expected expression magnitudes have been obtained. The 
resulting estimates of parameters for the negative binomial and 
concomitant (mixing) regression were used as a description of an 
error model Ωc in the subsequent analysis.

Differential expression analysis. With a Bayesian approach, the 
posterior probability of a gene being expressed at an average level x  
in a subpopulation of cells S was determined as an expected value 
(E) according to

p x E p x rS c c
c B

( ) ( | , )=












∈

∏ Ω
 

where B is a bootstrap sample of S, and p(x|rc,Ωc) is the posterior 
probability for a given cell c, according to

p x r p x p x p x p x rc c d Poisson d NB c( | , ) ( ) ( ) ( ( )) ( | )Ω = + −1

where pd is the probability of observing a dropout event in cell c  
for a gene expressed at an average level x in S, pPoisson(x) and 
pNB(x|rc) are the probabilities of observing expression magnitude 
of rc in case of a dropout (Poisson) or successful amplification 
(NB) of a gene expressed at level x in cell c, with the parameters 
of the distributions determined by the Ωc fit. For the differential 
expression analysis, the posterior probability that the gene shows 
a fold expression difference of f between subpopulations S and G 
was evaluated as

p f p x p fxS G
x X

( ) ( ) ( )=
∈
∑

 

where x is the valid range of expression levels. The posterior dis-
tributions were renormalized to unity, and an empirical P value 
was determined to test for significance of expression difference.

Comparison of differential expression performance. The 
results of SCDE, DESeq, CuffDiff2 and single-cell assay (SCA) 
were benchmarked against an expression data set by Moliner  
et al.17 that measured bulk MEF and ES cells grown with the same 
suspension growth protocol23 as used by Islam et al.2. The ability 
to recover the top 1,000 genes showing the highest expression 
difference in Moliner et al. was assessed with ROC/AUC (Fig. 2c  
and Supplementary Fig. 4), ranking genes by significance of  
differential expression as determined by different methods.

Similarity measures and subpopulation analysis. The standard 
measure of the genome-wide similarity between two single-cell 
measurements was determined as a Pearson linear coefficient  
on log-transformed RPM values. Genes that did not show  
expression signals in any of the cells were excluded from the 
analysis. The Bray-Curtis similarity measure was also calculated 
on log-transformed values (and linear-based values showed  
lower performance).

The direct dropout similarity measure aims to estimate Pearson 
linear correlation excluding likely dropout events in any given 
cell. To achieve that, we evaluated average correlation across 1,000 
sampling rounds, in each round probabilistically excluding likely 
dropout observations. Specifically, in each round, an observation 
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of a given gene at an expression level x in a particular cell was 
substituted with a missing value with probability pd(x)k, where 
pd(x) is the probability of a dropout event in the current cell at an 
expression-magnitude level x, and k = 0.9 is an additional factor 
(to stabilize similarity measure in cases when dropout rates are 
very high in a given cell). The overall similarity between any two 
cells was then calculated as an average (across 1,000 sampling 
rounds) Pearson linear correlation between log-transformed  
values of observations that are valid (not missing) in both cells.

The reciprocal dropout similarity measure aims to reduce the 
impact of dropout events on the Pearson linear correlation mea
sure by weighting down the contribution of genes that are not 
likely to be reliably measured in both cells. For instance, if a gene 
was observed at a level x1 in the first cell, we will weigh its contri-
bution by the likelihood that such level of expression can be reli-
ably detected (i.e., without dropout) in the second cell. This kind 
of reciprocal weighting minimizes the contribution of discrepant 
(i.e., amplified versus dropout) measurements to the overall simi-
larity. Specifically, the reciprocal dropout similarity was calculated 
as a weighted Pearson linear correlation on log-transformed RPM 
values, weighting the contribution of each gene by

k p x p x kd d( ( ))( ( )) ( )1 1 11
2

2
1− − + −  

where p1
d(x2) is a probability of observing a dropout event in cell 1  

for an expression magnitude x2 at which the gene was observed in 

cell 2. k = 0.95 was used in calculating reciprocal dropout similar-
ity. We find that both direct and reciprocal similarity measures 
show robust improvements in classification performance for a 
range of k values above 0.85 (Supplementary Fig. 3e).

All similarity measures do well when all 90+ cells and a  
complete gene set are considered. To provide a meaningful  
comparison, we measured performance on more challenging  
classification problems based on partial data. Specifically, a sub-
set of 20 random ES and 20 MEF single-cell measurements was 
sampled in each iteration. Furthermore, an increasing fraction of  
top differentially expressed genes was excluded from the analysis 
(Fig. 2d, x axis) to pose a more challenging classification prob-
lem. The cells were clustered with the Ward method. The fraction 
of correctly classified cells was determined on the basis of the  
top-level split of the resulting clustering. The performance was 
evaluated on the basis of 200 such random sampling iterations.

Implementation. The algorithms were implemented as an  
R package, which is available for download at http://pklab.med.
harvard.edu/scde/ or as Supplementary Software.
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