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ABSTRACT

Motivation: With the advent of high-throughput sequencing technol-

ogy, bisulfite–sequencing-based DNA methylation profiling methods

have emerged as the most promising approaches due to their

single-base resolution and genome-wide coverage. However, statis-

tical analysis methods for analyzing this type of methylation data are

not well developed. Although the most widely used proportion-based

estimation method is simple and intuitive, it is not statistically ad-

equate in dealing with the various sources of noise in bisulfite-sequen-

cing data. Furthermore, it is not biologically satisfactory in applications

that require binary methylation status calls.

Results: In this article, we use a mixture of binomial model to char-

acterize bisulfite-sequencing data, and based on the model, we pro-

pose to use a classification-based procedure, called the methylation

status calling (MSC) procedure, to make binary methylation status

calls. The MSC procedure is optimal in terms of maximizing the overall

correct allocation rate, and the false discovery rate (FDR) and false

non-discovery rate (FNDR) of MSC can be estimated. To control FDR

at any given level, we further develop an FDR-controlled MSC proced-

ure, which combines a local FDR-based adaptive procedure with the

MSC procedure. Both simulation study and real data application are

carried out to examine the performance of the proposed procedures. It

is shown in our simulation study that the estimates of FDR and FNDR

of the MSC procedure are appropriate. Simulation study also demon-

strates that the FDR-controlled MSC procedure is valid in controlling

FDR at a prespecified level and is more powerful than the individual

binomial testing procedure. In the real data application, the MSC pro-

cedure exhibits an estimated FDR of 0.1426 and an estimated FNDR

of 0.0067. The overall correct allocation rate is 40.97. These results

suggest the effectiveness of our proposed procedures.

Availability and implementation: The proposed procedures are im-

plemented in R and are available at http://www.stat.purdue.edu/*
cheng70/code.html.

Contact: cheng70@purdue.edu

Supplementary information: Supplementary data are is available at

Bioinformatics online.
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1 INTRODUCTION

DNA methylation is an epigenetic modification to the genomic

DNAs by adding the methyl group to some C-5 positions of

DNA sequences. It plays a crucial role in a variety of biological

processes including cell development, imprinting and X-chromo-

some inactivation. It is prevalent at CpG positions with 60–90%

of all CpGs being methylated in mammals, whereas it is much

less frequent at non-CpG sites with only 53% of non-CpGs

being found to be methylated. Unmethylated CpGs tend to clus-

ter in small regions of DNA sequences called CpG islands, most

of which coincide with promoter regions of many genes. The

link between abnormal DNA methylation pattern and cancer

is 2-fold (Robertson, 2005). First, a global hypomethylation is

associated with genomic instability and is a common character-

istic of cancer cells. Second, hypermethylation of CpG islands

located at gene promoters results in suppression of gene expres-

sion and is conventionally observed in cancer cells. Therefore, it

is desirable to reveal both genome-wide and promoter-specific

DNA methylation patterns of a cell.

Various methods for genome-wide DNAmethylation detection

have been developed in the past 20 years. They can be classified

into three categories, which are methylation-sensitive enzyme-

based methods, enrichment-based methods and bisulfite conver-

sion-based methods (Laird, 2010). In the past, array-based tech-

niques, such as microarray technology, were the leading platforms

to be combined with methods from all those three categories to

survey methylation status. Although the application of these plat-

forms enables comprehensive DNA methylation profiling at eco-

nomical cost, they can only interrogate C sites of given regions at

moderate resolution. Recently, next-generation sequencing

(NGS) technology has been incorporated into all three categories

of methods for genome-wide methylation profiling. Despite the

fact that NGS-equipped methods have relative advantages over

array-based methods, those methods from the first two categories

are still subject to the same weaknesses they had when coupled

with array-based techniques. More specifically, methylation-sen-

sitive enzyme-based methods equipped with NGS technology

remain restricted to the recognition sites of the particular enzymes

used, and enrichment-based methods equipped with NGS tech-

nology do not overcome the disadvantage of moderate resolution.

On the other hand, bisulfite conversion-based methods coupled

with NGS technology, designated as bisulfite-sequencing meth-

ods, have emerged as the most promising methods, as they gen-

erate whole-genome DNA methylation profiles at single-base

resolution. Among all bisulfite-sequencing methods, MethylC-

Seq and reduced representation bisulfite sequencing (RRBS) are

the two most popularly used methods.
In MethylC-Seq, genomic DNAs are first sonicated into smal-

ler fragments. After going through end-repair and adapter liga-

tion, these fragments are treated with bisulfite. The bisulfite

treatment converts unmethylated cytosines into uracils and*To whom correspondence should be addressed.
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leaves methylated cytosines unchanged. Subsequent PCR ampli-
fication process further replaces uracils with thymines. These
PCR-amplified fragments are then subject to standard sequen-

cing technology to produce short sequencing reads, which are
mapped back to the reference genome. Thus the unmethylated
cytosines are distinguishable from methylated cytosines by exam-

ining sequencing reads (The workflow for MethylC-Seq experi-
ment is given in Supplementary Material Section 1.) RRBS uses
the same mechanism as MethylC-Seq. The major difference be-

tween RRBS and MethylC-Seq occurs in the first step, i.e. the
way genomic DNAs are fragmented. In RRBS, genomic DNAs
are digested with MspI, an enzyme which cuts all CCGG sites.

These two methods have their relative advantages and disadvan-
tages, which make them suitable for different research purposes.
By the way genomic DNAs are digested in RRBS, CpG regions

are substantially enriched in DNA fragments after size selection.
Thus RRBS is more preferable than MethylC-Seq when the re-
search is targeting regions with high density of CpG sites, such as
CpG islands. On the other hand, because of its theoretical cap-

acity of capturing methylation information from each C position
in the whole genome, MethylC-Seq has become the golden stand-
ard for genome-wide DNA methylation analysis. As reported in

Harris et al. (2010), when these two methods are applied to bio-
logical replicates of human embryonic stem cells, MethylC-Seq
covers 95% of all CpGs, whereas RRBS shows a genome-wide

CpG coverage of only 12%.
In the data generated by MethylC-Seq or RRBS, ideally there

are only C reads or T reads for each covered C position of inter-

est, depending on the methylation status. In other words, if a C
position is methylated, then there should be only C reads at that
site in the data; whereas if a C position is unmethylated, then

there should be only T reads. However, owing to various sources
of noise, in the real data generated by these two methods, there
are both C reads and T reads for most of the target C sites. For

instance, the process of bisulfite conversion needs to be carried
out under specific experimental conditions (Smith et al., 2009).
Failure to meet any of those conditions would lead to incomplete

conversion, which further results in C reads at unmethylated C
positions. Moreover, as a typical and inevitable result of apply-
ing NGS technology, there will be sequencing errors in the data,

which means a small proportion of C reads will be miscalled to
be T reads and vice versa. Because there are both C reads and
T reads in the data, it is not straightforward to infer the true

methylation status. The aim is then to make methylation call for
each target C position based on the number of C reads and the
number of T reads it receives, which becomes an interesting stat-

istical problem.
In some studies concerning DNA methylation analysis, re-

searchers use the ratio of C count to the total number of reads

received at a site to quantify the methylation level at that site
(Bock et al., 2010; Gu et al., 2010; Harris et al., 2010). The total
number of reads received at a site is referred to as coverage or

sequencing depth. Although this quantification approach has the
virtue of being simple and straightforward, it does not use proper
inference to deal with the noise in the data, and thus it is not

statistically satisfactory. In other studies, researchers aim to
make binary methylation calls for C positions of interest.
There exist a few such approaches in the literature. In Harris

et al. (2010), the proportion of C count at each CpG site was

calculated and binary methylation call was made for each site
with various choices of cutoff for the proportion. However, those

choices were not statistically justified. A more sophisticated

method was used in Lister et al. (2011), which applied a multiple

testing procedure to identify methylated cytosines. In the

MethylC-Seq experiment conducted by Lister et al. (2011), an

unmethylated lambda DNA was spiked with the target genomic

DNAs before sonication and was used to estimate the error rate

at which a C count occurs at an unmethylated C position. As will

be shown in Section 3 and Supplementary Material Section 5, the
procedure used by Lister et al. (2011) is conservative in detecting

unmethylated cytosines due to the underestimation of error rate

and their choice of null hypothesis.
In this article, we propose to use a classification procedure

based on a mixture of binomial model to make binary calls for

methylation status. As a by-product, the memberships generated

in this procedure can be used for quantifying the methylation

levels. The performance of the proposed procedure can be as-

sessed by correct allocation rates as well as false discovery rate

(FDR) and false non-discovery rate (FNDR). Motivated by the

concern of controlling FDR at any given level, we view our clas-

sification problem from a multiple testing perspective. Then a
component based on local false discovery rate (Lfdr) is incorpo-

rated into the proposed classification procedure to provide an

approach that is capable of controlling FDR at any prespecified

level. On the basis of the Bayes rule, the proposed classification

procedure is optimal in terms of maximizing the overall correct

allocation rate. Simulation results demonstrate that the proposed

classification procedure outperforms the conventional individual

binomial testing procedure and is more accurate in detecting the

true methylation status. Simulation results also show the validity
of the proposed FDR-controlled procedure with various choices

of FDR level. Owing to the fact that most non-CpG sites are

unmethylated, when evaluating our method with real data, we

focus exclusively on CpG sites. However, it is worth pointing

out that our model can be applied to C positions of any context.

The real dataset we use is from Lister et al. (2011), which was

generated from a MethylC-Seq experiment. However, our

method is not restricted to MethylC-Seq data, and it can also
be applied to other bisulfite-sequencing data.

The rest of the article is organized as follows. Section 2 first

gives the details of the mixture of binomial model and describes

the proposed classification procedure, and then it presents sev-
eral performance assessment methods of the proposed proced-

ure. In the last part of Section 2, the FDR-controlled procedure

is introduced. Section 3 reports the simulation results as well as

the results from the real data application.

2 METHODS

2.1 Mixture of binomial model

As discussed in Section 1, MethylC-Seq experiment can roughly cover

95% of all CpGs. Those sites that do not receive any C read and T read

are referred to as uncovered sites and will be excluded from methylation

calling analysis. Suppose we consider M covered sites. These M sites can

be the collection of all covered sites from a specific DNA segment of

interest, a whole chromosome, or even the whole genome. For site i

among these M sites, let Xi denote the total number of reads including

both C and T reads and Yi denote the number of C reads alone. Note
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Yi � Xi. Let Si be the indicator of the unobserved methylation status of

site i, with Si ¼ 0 indicating site i is methylated and Si ¼ 1 indicating site i

is unmethylated. If there is no error in the experiment, then Xi ¼ Yi when

site i is methylated, and Yi ¼ 0 when site i is unmethylated. In other

words, there are only C reads for methylated sites and no C read for

unmethylated sites. However, MethylC-Seq experiments are subject to

both experimental errors and systematic errors. Thus, there are both C

reads and T reads for most sites, or equivalently, Yi5Xi for most methy-

lated sites and Yi40 for most unmethylated sites.

There exist three main causes for experimental errors in MethylC-Seq

experiments. First, incomplete conversion of unmethylated cytosine to

uracil during bisulfite treatment results in C reads at unmethylated sites.

In other words, the failure to convert unmethylated cytosine to uracil

causes Yi40 for unmethylated sites. We assume this non-conversion

rate is eic, i.e. the probability that an unmethylated cytosine fails to convert

to thymine. Second, overtreatment with bisulfite can lead to conversion of

methylated cytosine to thymine (Laird, 2010). Suppose the miscoversion

rate, or equivalently, the probability that a methylated cytosine converts to

thymine is emc. Third, sequencing errors can potentially impact both

methylated sites and unmethylated sites. For methylated sites, cytosines

can be miscalled to be thymines and thus Yi5Xi, and for unmethylated

sites, bisulfite-converted thymines can be mistakenly read out as cytosines

and thus Yi40. Suppose the probability that a T read is miscalled to be a

C read is etc, and the probability that a C read is miscalled to be a T read is

ect. Experimental errors are unavoidable due to the random nature of

sequencing technology and have to be incorporated in the model. On

the other hand, systematic errors in bisulfite data can be identified and

thus eliminated by carefully conducted data processing procedures. For

MethylC-Seq experiment, deamination of methylated cytosine to thymine

during cell development and those single nucleotide polymorphisms that a

cytosine in the reference genome varies to a thymine in the sample DNA

lead to systematic errors. Nevertheless, they can be detected by examining

the nucleotide on the opposite strand of the C sites and thus can be

eliminated from MethylC-Seq data (Laird, 2010). When they are not

removed from the data, let esys denote the systematic error rate. For a

more detailed review of potential sources of noise in bisulfite-sequencing

data, see Krueger et al. (2012).

Let p1 stand for the overall error rate for obtaining C reads at

unmethylated sites caused by incomplete conversion, sequencing error

and systematic errors. Similarly, let 1� p0 denote the overall error rate

for obtaining T reads at methylated sites caused by misconversion,

sequencing error and systematic errors. It is clear that p1 depends on

eic, etc and esys, and p0 depends on emc, ect and esys. The dependence of

p0 and p1 on the various types of individual errors can be greatly simpli-

fied if the following three assumptions are imposed. First, there are no

systematic errors in the data, i.e. esys ¼ 0. Second, the two types of

sequencing errors occur equally likely, which implies etc ¼ ect. Third,

the sample is not overtreated with bisulfite, or equivalently, emc ¼ 0.

Under these three assumptions, we postulate the relationship between

the overall error rates and individual ones to be p0 ¼ 1� etc ¼ 1� ect
and p1 ¼ eic þ etc. Under the postulated relationship, if we can identify

the overall error rates 1� p0 and p1, the individual error rates etc, ect and

eic can also be identified. When any of the three aforementioned assump-

tions fail to satisfy, further information is needed to identify the various

types of individual errors. Nevertheless, the overall error rates 1� p0 and

p1 can still be estimated and methylation calling can be made by the

procedure we will describe next. Owing to this reason, we shall use p0
and p1 in the rest of the article.

Based on the aforementioned discussion, we propose the following

Binomial models as the conditional distribution of the C count at site i

given the coverage Xi and methylation status Si:

YijðXi ¼ x,Si ¼ 0Þ � Binðx, p0Þ;

YijðXi ¼ x,Si ¼ 1Þ � Binðx, p1Þ:

Here one important premise is that all the M sites of interest share the

same error rates 1� p0 and p1. This assumption is commonly used in the

literature on methylation analysis (Lister et al., 2011 andWu et al., 2011).

Furthermore, suppose the proportion of methylated sites among these

M sites is �, i.e. PðSi ¼ 0Þ ¼ � for any randomly selected site i. Then

conditional on the sequencing depth at one site, the corresponding C

count follows a mixture of two binomial distributions:

YijðXi ¼ xÞ � �Binðx, p0Þ þ ð1� �ÞBinðx, p1Þ: ð1Þ

Even though MethylC-Seq data contain diverse types of errors, they

are still assumed to carry information regarding the underlying methyla-

tion status in the sense that most methylated sites are dominated by C

reads and most unmethylated sites are dominated by T reads. Therefore,

it is reasonable to assume that p1 and p0 should satisfy p1� p0. This

assumption assures the identifiability of p1 and p0 and guarantees the

validity of our procedure.

Suppose the coverages at the sites, i.e. Xi’s, are independent and iden-

tically distributed with the same probability mass function (pmf) f(x). For

convenience, denote the pmf of the conditional distribution of C count of

site i given Xi ¼ x defined in (1) as gðyjxÞ. For fixed i, the pmf of the joint

distribution of ðXi,YiÞ, denoted as hðx, yÞ, is given by hðx, yÞ ¼ gðyjxÞfðxÞ.

Let � ¼ ðp0, p1,�Þ. Noticing that f(x) does not involve �, therefore we

only need to use gðyjxÞ for estimating �.
Let y ¼ ðy1, y2, :::, yMÞ be the observed C counts and

x ¼ ðx1,x2, :::,xMÞ the observed coverages. Then under the assumption

that yi is from a mixture of two binomial distributions given xi, the log-

likelihood function of � can be written as follows.

lð�jx, yÞ ¼
XM
i¼1

ln gðyijxiÞ
� �

¼
XM
i¼1

ln �gi0 þ ð1� �Þgi1
� �

,

where gi0 and gi1 are the pmfs of Binðxi, p0Þ and Binðxi, p1Þ for each i,

respectively. The maximum likelihood estimate (MLE) of � can be ob-

tained by applying the well-established Expectation-maximization (EM)

algorithm. However, our goal here is beyond estimating �. What we want

to achieve is to classify each site i to be either methylated or unmethylated

on the basis of an adequate estimate of �. Recall that for each i, Si is an

indicator of the true methylation status of site i with values equal to 0 or

1. Therefore, our goal is essentially to identify the value of Si for each i.

Let �i0 and �i1 denote the posterior probabilities that Si ¼ 0 and

Si ¼ 1, respectively, given x, y and �. The expressions of �i0 and �i1 are

�i0 ¼ PðSi ¼ 0jyi, xi,�Þ ¼
�gi0ðyiÞ

�gi0ðyiÞ þ ð1� �Þgi1ðyiÞ
;

�i1 ¼ PðSi ¼ 1jyi, xi,�Þ ¼ 1� �i0:

ð2Þ

Here �i0 and �i1 indicate how likely site i is methylated (Si ¼ 0) and

unmethylated (Si ¼ 1), respectively, given the observed data and �.

Note that �irðr ¼ 0, 1Þ will play a role in the EM algorithm for computing

the MLE of �. In addition to facilitating the estimation of �, �ir also plays

a key role in the methylation status calling (MSC) procedure we will

develop later.

Then the EM algorithm for computing the MLE of � can be developed

as follows. We start off with an initial estimate of � and then compute the

initial values of �ir given the initial values of �. After the initial step, � and

�ir are iteratively updated. Conditional on the current values of �ir, we

update � by

p̂0 ¼

PM
i¼1

�̂i0yi

PM
i¼1

�̂i0xi

; p̂1 ¼

PM
i¼1

�̂i1yi

PM
i¼1

�̂i1xi

; �̂ ¼

PM
i¼1

�̂i0

M
: ð3Þ

This new estimate of � is then substituted back into (2) to yield new

values of �ir. These two steps are repeated until certain convergence cri-

terion is met. In our simulation study and real data application, the
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convergence criterion is that the change of the log-likelihood function

between two consecutive steps is below some prespecified value.

A discussion of the convergence properties of EM algorithms can be

found in Wu (1983). The derivation of (3) is given in Supplementary

Material Section 3. Let �̂ be the MLE of � obtained from the EM algo-

rithm and �̂ir the estimate of �ir by plugging �̂ into (2). We shall call �̂ir
memberships hereafter.

2.2 Classification-based MSC procedure

After the EM algorithm in the last subsection converges, we obtain the

estimates �̂ as well as the memberships �̂ir. The memberships can be

further used to determine the methylation status of each site. We propose

to use the following rule to make MSC. For i ¼ 1, 2, :::,M, site i is called

to be methylated if �̂i04�̂i1; otherwise, it is called to be unmethylated. We

shall refer to this classification procedure as the MSC procedure. Based

on the Bayes rule, the MSC procedure is optimal in terms of maximizing

overall correct allocation rate (McLachlan and Peel, 2000).

As mentioned in Section 1, sometimes researchers are interested in

quantifying the methylation levels due to the heterogeneity of cell types

or contamination during cell preparation. When the experiment is con-

ducted on a mixture of different types of cells, it is valuable to directly use

the membership �̂i0 to quantify the methylation level of each C position.

In this case, the interpretation of the overall error rates 1� p0 and p1 is

slightly different. More specifically, not only do they stand for the various

types of noises caused by the bisulfite-sequencing experiment, they also

represent the extent of cell type contamination. Because we are using a

MethylC-Seq data of H9 human embryonic stem cells in our real data

application, we will focus on the binary MSC in our article.

2.3 Performance assessment of the MSC procedure

We use individual and overall correct allocation rates to assess the per-

formance of our proposed MSC procedure. Let Group 0 and Group 1

consist of all methylated sites and all unmethylated sites, respectively. Let

M0 and M1 be the total number of methylated and unmethylated sites in

the sample, respectively. Let Mij be the number of sites that are from

Group i and allocated to Group j by the MSC procedure, for i ¼ 0, 1, and

j ¼ 0, 1. Let the total number of sites that are classified to Group 0 be U

and let the total number of sites that are classified to Group 1 be V. The

four possible outcomes from the proposed MSC procedure are listed in

Table 1 with their corresponding frequencies.

The correct allocation rate for methylated sites (i.e. Group 0), denoted

as P0, is defined as the proportion of sites that are methylated and cor-

rectly allocated to Group 0 among methylated sites; similarly, the correct

allocation rate for unmethylated sites (i.e. Group 1), denoted as P1, is

defined as the proportion of sites that are unmethylated and correctly

allocated to Group 1 among unmethylated sites. The overall correct al-

location rate, denoted as P, is defined as the proportion of correctly

classified sites for both groups. Given Table 1, the correct allocation

rates can be computed by P0 ¼
M00

M0
, P1 ¼

M11

M1
and P ¼ M00þM11

M0þM1
. The

quantities on the right side of these equations are unknown. Following

Basford and McLachlan (1985), they can be estimated by M̂0 ¼M�̂,

M̂1 ¼Mð1� �̂Þ, M̂00 ¼ �̂k0Ið�̂k04�̂k1Þ and M̂11 ¼ �̂k1Ið�̂k0 � �̂k1Þ,

where I(A) is an indicator of event A, such that I(A) equals 1 if A is

true and equals 0 otherwise. Thus P0, P1 and P can be estimated as

follows.

P̂0 ¼
1

M�̂

XM
k¼1

�̂k0Ið�̂k04�̂k1Þ
n o

;

P̂1 ¼
1

Mð1� �̂Þ

XM
k¼1

�̂k1Ið�̂k0 � �̂k1Þ
n o

;

P̂ ¼
1

M

XM
k¼1

�̂k0Ið�̂k04�̂k1Þ þ �̂k1Ið�̂k0 � �̂k1Þ
n o

:

As stated in Basford andMcLachlan (1985), P̂0 � P0, P̂1 � P1 and P̂� P

converge to 0 in probability when M goes to infinity. Therefore, P̂, P̂0

and P̂1 can be used to assess the performance of the MSC procedure.

Basford and McLachlan (1985) also proposed two versions of bootstrap-

based methods to reduce the bias in estimating these correct allocation

rates with P̂, P̂0 and P̂1. However, we will not elaborate on the bias

correction methods here. The reason is that, based on the simulation

results reported in Supplementary Material Section S4, the bias of the

estimated correct allocation rates for our model is hardly noticeable; see

Supplementary Material Section S4 for more detail.

As mentioned in Section 1, Lister et al. (2011) used a multiple testing

procedure to make binary methylation status calls. In their experiment,

an unmethylated lambda DNA was spiked with the sample DNAs before

bisulfite treatment. Because lambda DNA is known to be unmethylated,

the proportion of resulting C reads at those C sites located within lambda

DNA can be used to estimate non-conversion rate plus the sequencing

error that T reads are miscalled to be C reads (p1 in our case). We denote

the resulting estimate as p̂Lis1 . Then the following hypothesis was tested for

each C site in the whole genome simultaneously to detect methylated sites

with FDR level 0.01.

Hi0 : p ¼ p̂Lis1 vs Hia : p4p̂Lis1 :

Unlike the procedure used by Lister et al. (2011), our procedure does not

need to borrow information from the unmethylated lambda DNA, in-

stead, it can directly estimate p1 as well as p0 from the data.

The classification of two groups can also be viewed as a multiple

testing problem once one of the groups is specified as the null (Storey,

2003). For our proposed MSC procedure, if we designate one group (e.g.

methylated group) to be the null, then the FDR and FNDR can also be

defined. Although the MSC procedure is optimal based on the Bayes rule,

it is not ascertained that it has control over FDR, which is the most

widely used criterion in multiple testing context. In the next subsection,

we will view our classification approach from a multiple testing perspec-

tive. We will first show how to estimate the resulting FDR and FNDR

for the MSC procedure. Then motivated by the concern that an FDR

level other than the estimated FDR may be needed, we will develop an

FDR-controlled MSC procedure.

2.4 MSC procedure with FDR control

We consider the following multiple testing problem after obtaining the

estimated parameter �̂ from Section 2.1:

Hi0 : p ¼ p̂0 vs Hia : p ¼ p̂1,

where i ¼ 1, 2, :::,M. Because �̂i1 ¼ 1� �̂i0 for any i, only �̂i0 are used as

the test statistic and they are referred to as null memberships hereafter. It

is clear that the proposed classification rule is equivalent to the testing

rule that rejects Hi0 if �̂i0 � 0:5. The four possible outcomes from the

Table 1. Possible outcomes from the MSC procedure and the FMSC

procedure

Group Classified as

methylated

(fails to reject H0)

Classified as

unmethylated

(reject H0)

Total

Group 0 M00 M01 M0

Group 1 M10 M11 M1

Total U V M
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MSC procedure given in Table 1 can be viewed as the four possible

outcomes from the multiple testing perspective. And the frequencies for

the outcomes from the aforementioned multiple testing rule are exactly

the same as those for the outcomes from the MSC procedure.

By the definitions of FDR and FNDR, we have FDR ¼ E M01

V

� �
and

FNDR ¼ E M10

U

� �
. For the MSC procedure, U ¼ # �̂k04�̂k1

n o
and

V ¼ # �̂k0 � �̂k1

n o
. Furthermore, based on the discussion in Section 2.3,

we have M̂01 ¼ M̂0 � M̂00 ¼
PM

k¼1 �̂k0Ið�̂k0 � �̂k1Þ and M̂10 ¼ M̂1�

M̂11 ¼
PM

k¼1 �̂k1Ið�̂k04�̂k1Þ. Therefore, FDR and FNDR for the MSC

procedure can be estimated as follows.

dFDR ¼
M̂01

V
¼

PM
k¼1

�̂k0Ið�̂k0 � �̂k1Þ

PM
k¼1

Ið�̂k0 � �̂k1Þ

; ð4Þ

dFNDR ¼
M̂10

U
¼

PM
k¼1

�̂k1Ið�̂k04�̂k1Þ

PM
k¼1

Ið�̂k04�̂k1Þ

: ð5Þ

Although FDR and FNDR can be estimated for the MSC procedure, this

procedure cannot control FDR at an arbitrary level. In practice, it can be

a concern, especially when the estimated FDR exceeds an acceptable

level. Therefore, it is desirable to incorporate a FDR-controlling compo-

nent into the MSC procedure. We shall investigate such a method next.

For the MSC procedure, the cutoff in the decision rule for rejecting the

null hypothesis is 0.5. One way to control FDR is to adjust this cutoff

according to the desirable FDR level. Suppose the prespecified FDR level

is �. Then the goal here is to find a suitable cutoff c for null memberships

such that the decision rule that rejects H0 if

�̂i0 � c, i ¼ 1, 2, :::,M: ð6Þ

will have an FDR below �.
We follow an adaptive procedure developed by Sun and Cai (2007) to

achieve the goal. In their original paper, Sun and Cai aimed to find a

multiple testing procedure that is more efficient than the conventional

P-value-based procedures. They first developed an Lfdr-based procedure

for marginal FDR control and showed it is optimal in the sense that it

controls marginal FDR at level � with the smallest marginal FNDR.

Then they proposed a data-dependent adaptive procedure based on esti-

mated Lfdr and proved that it asymptotically attains the performance

of the optimal procedure. It was also demonstrated with numerical

results that their adaptive procedure outperforms the conventional

P-value-based procedures when marginal FDR is controlled at the

same level. For our problem, recall that for site i, gi0 and gi1 are the

pmfs of Binðxi, p0Þ and Binðxi, p1Þ, respectively. The Lfdr of site i is

given by

Lfdri ¼ PðSi ¼ 0jyi, xi,�Þ ¼
�gi0ðyiÞ

�gi0ðyiÞ þ ð1� �Þgi1ðyiÞ
:

Therefore, the null membership �̂i0 of site i is also an estimate of Lfdr.

With this estimated Lfdr of each site, the adaptive procedure proposed by

Sun and Cai (2007) can be incorporated into the MSC procedure.

Because Fdr(z) is the average of Lfdr(Z) for Z � z (Efron, 2007), the

FDR of the decision rule (6) can be estimated by

dFDRðcÞ ¼

PM
i¼1 �̂i0Ið�̂i0 � cÞPM
i¼1 Ið�̂i0 � cÞ

; ð7Þ

dFNDRðcÞ ¼

PM
i¼1 ð1� �̂i0ÞIð�̂i04cÞPM

i¼1 Ið�̂i04cÞ
: ð8Þ

When c ¼ 0:5, which is the cutoff used by the MSC procedure, the re-

sulting FDR and FNDR can be estimated by dFDRð0:5Þ ¼PM
i¼1 �̂i0Ið�̂i0 � 0:5Þ

.PM
i¼1 Ið�̂i0 � 0:5Þ and dFNDRð0:5Þ ¼

PM
i¼1 ð1� �̂i0Þ

Ið�̂i040:5Þ
.PM

i¼1 Ið�̂i040:5Þ. These two estimates are exactly the same

as dFDR and dFNDR given in (4) and (5) because �̂i1 þ �̂i0 ¼ 1. Therefore,dFDRðcÞ and dFNDRðcÞ given in (7) and (8) are extensions of dFDR anddFNDR to the general decision rule (6). Simulation results given in

Supplementary Material Section 6 provide compelling evidence that the

estimators in (7) and (8) are accurate in estimating the true FDR and

FNDR.

Suppose the desirable FDR level is �. We apply the method developed

by Sun and Cai (2007) to choose the cutoff c so that the resulting clas-

sification procedure will have its FDR controlled at �. The procedure is

described as follows.

(1) Sort the null memberships in ascending order as �̂i10, �̂i20, . . . ,�̂iM0.

(2) Find l ¼ maxfj :
Pj

k¼1 �̂ik0=j � �g.

(3) Then let c ¼ �̂il0 and all Hij0 with j � l are rejected.

(4) Site ij is called to be methylated if j � l; otherwise, it is called to be

unmethylated.

We shall refer to this procedure as the FDR-controlled MSC procedure

at level �, or in short, the FDR-controlled MSC (FMSC) procedure at

level �. Based on (7), the resulting FDR for the FMSC procedure can be

estimated by dFDR ¼
Pl

k¼1 �̂ik0=l.

As mentioned in Section 2.3, Lister et al. (2011) used Hi0 : p ¼ p̂1 as

the null hypothesis, i.e. the null hypothesis assumes that site i is unmethy-

lated. In contrast, the null hypothesis we use here is Hi0 : p ¼ p̂0, or

equivalently, it assumes that site i is methylated. Considering the fact

that methylation is more prevalent in the sense that460% of all CpG

sites are expected to be methylated, it is more appropriate to assume the

site is methylated in the null hypothesis instead of the other way around.

Assuming the site is unmethylated in the null hypothesis leads to the

consequence that a significantly higher proportion of the claimed

unmethylated sites are methylated. Therefore, in terms of detecting

unmethylated sites, our choice of null hypothesis produces more accurate

results than the choice by Lister et al. (2011). See Supplementary Material

Section S5 for more detail.

Sun and Cai (2007) showed that under several assumptions, the Lfdr-

based adaptive method asymptotically attains the performance of the

optimal method that controls marginal FDR at level � with the smallest

marginal FNDR. Despite the discreteness and heterogeneity of the tests

used for MSC, our simulation study in Section 3.1 shows the incorpor-

ation of this adaptive procedure into the MSC procedure leads to satis-

factory results. Therefore, we believe the FMSC procedure is adequate in

making methylation status calls when controlling FDR at a given level is

of interest. When the interest is to control FNDR at a given level, an

adaptive procedure similar to FMSC can be developed.

3 RESULTS

3.1 Simulation results

In this subsection, simulation results illustrating the behavior of

our proposed procedures are presented. To carry out simulation
study, we first use MethylC-Seq data of all CpG sites on

Chromosome 1 of H9 human embryonic stem cells from Lister

et al. (2011) to fit a coverage distribution f̂ (Supplementary
Material Section 2). Then we apply the mixture of binomial

model to the same data to obtain �̂ ¼ ðp̂0, p̂1, �̂Þ
(Supplementary Material Section 7). The total number of CpG
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sites in the simulation study is M¼ 1000. The general scheme of

our simulation study is described as follows. Step 1: draw a

random sample of M observations from f̂ and use them as the

coverage forM CpG sites. Let the simulated coverage of theseM

sites be Z ¼ ðz1, z2, :::, zMÞ. For each of the M sites, generate its

methylation status independently from Bernoullið�̂Þ. Simulate C

count for each site according to its methylation status and cover-

age. If the status for site i is methylated, the corresponding C

count is generated from Bin(zi,p̂0); otherwise, it is generated from

Bin(zi,p̂1). Denote the generated C counts as R ¼ ðr1, r2, :::, rMÞ.

Step 2: apply the mixture of binomial model to R and Z, obtain
~� ¼ ð ~p0, ~p1, ~�Þ, compute the memberships and make methylation

status call for each site using the MSC procedure. Step 3: for

i ¼ 1, 2, :::,M, compute the P-value, denoted as qi, for testing

Hi0 : p ¼ ~p0 vs Hia : p ¼ ~p1 using exact binomial test, which

is, qi ¼
Pri

k¼0

zi
k

� �
ð ~p0Þ

k
ð1� ~p0Þ

zi�k. After obtaining the

P-values, we apply the FDR-controlling procedure proposed

by Benjamini and Hochberg (1995) at level � ¼ 0:1 to make

methylation status calls. We shall refer this procedure to as the

individual binomial testing (IBT) procedure. Step 4: use the

FMSC procedure described in Section 2.4 to control FDR at

three levels � ¼ ð0:1, 0:05, 0:01Þ separately. In the simulation

study, for each site, five methylation status calls are made

based on three different methods, which are the MSC procedure,

the IBT procedure at level 0.1 and the FMSC procedure with

three different choices of FDR level. By comparing these calls to

the true methylation status, performances of these three proced-

ures can be compared in terms of FDR and FNDR.
The comparison results based on n¼ 100 repeated simulations

are displayed in Figure 1. Several observations can be made from

the two plots in Figure 1. First, the median FDRs for MSC and

FMSC at level 0.1 is around 0.1, and the corresponding median

FNDRs are around 0.018 and 0.020, respectively. It shows that

the MSC procedure produces similar FDR and FNDR results as

the FMSC procedure at level 0.1. Second, the FDRs for the

FMSC procedures at all three levels are well controlled. Third,

the FNDR for the FMSC procedure at level 0.1 is notably smal-

ler than the FNDR for the IBT procedure at level 0.1. It is

caused by the fact that the IBT procedure at level 0.1 overcon-

trols FDR in the sense that the median FDR is only �0.05. As a

result, the FNDR for IBT is compromised. It suggests that the

FMSC procedure is more powerful than the IBT procedure when

their FDRs are controlled at the same level.
In the simulation study, we also applied other FDR-control-

ling procedures to qis. They include the q-value method (Storey

and Tibshirani, 2003) and procedures proposed by Storey (2002),

Gilbert (2005) and Heyse (2011). The results are insensitive to the

type of procedure used. Hence only the results from the FDR-

controlling procedure proposed by Benjamini and Hochberg

(1995) are shown here. Owing to the concern that the simulation

results rely on f̂ and �̂, we also apply the proposed methods to a

real MethylC-Seq data of H1 human embryonic stem cells from

Lister et al. (2009) and use the estimates from this dataset to

perform the simulation study. The relevant results are given in

Supplementary Material Section 11.

3.2 Real data application

The MSC and FMSC procedures are applied to a real MethylC-

Seq data of H9 human embryonic stem cells from Lister et al.

(2011). Three FDR levels, 0.1, 0.05 and 0.01, are considered for

FMSC. We first apply the procedures genome wide. The result-

ing estimate for � ¼ ðp0, p1,�Þ is �̂ ¼ ð0:9102, 0:1088, 0:8920Þ.
The MSC procedure is also applied to the same MethylC-Seq

data chromosome wise. The results are given in Supplementary

Material Section 7. In the genome-wide evaluation with MSC,

42 987496 of 48 795 269 CpG sites are called to be methylated.

For the chromosome-wise evaluation, a total of 43097 321 CpG

sites are declared to be methylated. The difference is �109 thou-

sands, which account for50.3% of all covered CpG sites. The

detailed comparison results are given in Supplementary Material

Section 8. This high concordance suggests the consistency of the

MSC procedure.

Correct allocation rates, estimated FDR and estimated FNDR

for genome-wide analysis by MSC and FMSC at three FDR

levels are also calculated. The results are given in

Supplementary Table S5. For MSC, the correct allocation rates

for the overall population and the methylated group are 0.9771

and 0.9810, respectively, whereas the rate for the unmethylated

group is 0.9450. As for FDR and FNDR, the estimates for MSC

are 0.1426 and 0.0067, respectively. For FMSC, as the FDR level

decreases, the correct allocation rate for the overall population

decreases slightly and the rate for the methylated group increases

slightly, whereas the correct allocation rate for the unmethylated

group is influenced more dramatically. It decreases from 0.9450 to

0.6395 as the FDR level decreases from 0.1 to 0.01. For FMSC at

any of the three FDR levels, the resulting FDR is well controlled.

And as expected, the estimated FNDR increases as the FDR level

decreases. Based on these results, the performances of MSC and

FMSC are acceptable. As mentioned in Section 3.1, the MSC and

FMSC procedures are also applied to a real MethylC-Seq data of

H1 human embryonic stem cells from Lister et al. (2009). The

results are given in Supplementary Material Sections S12–S15.
Next, the whole-genome results from the MSC procedure

are compared with those from the procedure used by

Lister et al. (2011). The comparison results are shown in

Table 2. Table 2 shows that these two procedures agree with

each other on the methylation status calls of 47 619 954 CpG

sites, which account for 497% of all covered CpG sites. For

the sites that these two procedures make different methylation

Fig. 1. (a) The box plots display FDRs for IBT at level 0.1, the MSC

procedure and the FMSC procedure with FDR level 0.1, 0.05 and 0.01

from left to right. (b) The box plots display FNDRs for these methods in

the same order
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status calls, they disagree in two directions. There are only 40

CpG sites that our MSC procedure declares to be methylated but

the procedure used by Lister et al. (2011) declares to be

unmethylated, and we refer to this type of disagreement as the

first direction. There are roughly 1.17 million CpG sites that are

called to be unmethylated by the MSC procedure but called to be

methylated by the procedure used by Lister et al. (2011), and we

refer to this type of disagreement as the second direction.
Because there are only 40 CpG sites in the first direction but

1.17 million sites in the second direction, we will focus on the

second direction in the subsequent analysis. A typical example in

the second direction is that for a site with coverage 60 and C

count 6, MSC declares it to be unmethylated, whereas the pro-

cedure used by Lister et al. (2011) declares it to be methylated.

Several other typical cases are shown in Supplementary Table S6.

As mentioned in the last paragraph, the null hypothesis for Lister

et al. (2011) is that the site is unmethylated; therefore, P-value

is computed as p� value ¼
Pxi

k¼yi

xi
k

� �
ðp̂Lis1 Þ

k
ð1� p̂Lis1 Þ

xi�k.

Because Lister et al. (2011) used an extremely small p̂Lis1 , which

is50.01, the resulting P-value relies heavily on the C count in the

sense that it decays to zero exponentially with increasing C

count, regardless of coverage xi and �̂. Therefore, the C count

threshold for declaring one site to be methylated based on the

multiple testing procedure used by Lister et al. (2011) is generally

low, even for sites with high coverage. However, for the MSC

procedure, the null membership primarily depends on the pro-

portion of C count at one site instead of C count alone. The

cutoff for the proportion is around a half for all sites, which is

intuitively more reasonable. Thus, the difference in the cutoff

values for these two procedures becomes more evident when

coverage increases. This difference is essentially caused by the

underestimation of p1 in the procedure used by Lister et al.

(2011), and it demonstrates that the procedure used by Lister

et al. (2011) lacks power in terms of detecting unmethylated

sites, especially for sites with moderate to high coverage.

Therefore, we believe the MSC procedure makes more accurate

methylation status calls for this type of disagreement.

As a final evaluation, the methylation calls for those sites that

MSC and the procedure used by Lister et al. (2011) disagree on are

compared with the results obtained from Infinium Human

Methylation 450K BeadChip. The Human Methylation 450K

data used here are first analyzed by Merling et al. (2013). For

those roughly 1.17 million sites that MSC and the procedure

used by Lister et al. (2011) disagree on, 27637 sites are covered

by Human Methylation 450K BeadChip. We use 0.5 as the cutoff

value to dichotomize the beta values in HumanMethylation 450K

BeadChip data to make binary methylation calls, and compare the

calls to those obtained from MSC and the procedure used by

Lister et al. (2011). The comparison result is given in Table 3.

Table 3 shows that for nearly two-thirds of the 27637 target

sites, the methylation calls made by MSC are consistent with the

calls made by Human Methylation 450K BeadChip. This suggests

the calls made by the MSC procedure are more likely to be correct

than those obtained by the procedure used by Lister et al. (2011).

4 CONCLUSION

In this article, we develop a classification-based procedure and

an adaptive FDR-controlled procedure to make binary DNA

methylation status calls for bisulfite-based data. Based on our

simulation study and real data evaluation, we believe the pro-

posed classification procedure is the procedure of choice if an

FDR level between 0.05 and 0.15 is satisfactory. Thus for analyz-

ing bisulfite-based data, it is recommended to apply the classifi-

cation procedure and estimate the resulting FDR first. If an

FDR level other than the estimated FDR is of concern, the

adaptive procedure at the desired FDR level can be used. Both

the classification-based procedure and the adaptive FDR-

controlled procedure are implemented in R and are available

free online at http://www.stat.purdue.edu/*cheng70/code.html.
This work also points to several future research directions.

First, in this work, the proposed procedures are applied either

genome wide or chromosome wise. A more sophisticated choice

of regions needs to be further explored, as it is assumed that all

the CpG sites in the same region share the same error rates.

Second, for adjacent CpG sites, their methylation statuses can

be correlated. Hidden Markov models can be used to accommo-

date this type of correlation and may potentially lead to more

accurate methylation status calls (Choi et al., 2009; Qin et al.,

2010). Third, Bowtie was used to align the read sequences by

Lister et al. (2011). This may lead to a bias toward the reference

allele. How to correct this bias is worth exploring. Possible

solutions include the methods proposed by Wu et al. (2010)

and Yuan et al. (2013). Finally, the ultimate goal of methylation

analysis is to detect differentially methylated sites or regions.

How to accomplish this goal with our proposed model will be

investigated in the future.

Funding: NSF-DMS-1000443.

Conflict of Interest: none declared

Table 2. Comparison of whole-genome results from the MSC procedure

and those from the procedure used by Lister et al. (2011) for all covered

CpG sites

Lister Our method

Methylated

sites

Unmethylated

sites

Total

Methylated sites 42 987 456 1175275 44 162731

Unmethylated sites 40 4632498 4632538

Total 42987 496 5807773 48 795269

Table 3. Third platform validation of the methylation calls for those sites

that MSC and the procedure used by Lister et al. (2011) disagree on

Procedure Number of sites

that agree with the

third platform

Number of sites

that disagree with the

third platform

MSC 18090 9547

Lister’s 9547 18090
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