
Differential expressionçthe next
generation and beyond
Paul L. Auer, Sanvesh Srivastava and R.W. Doerge

Abstract
RNA-sequencing (RNA-seq) technologies have not only pushed the boundaries of science, but also pushed the com-
putational and analytic capacities of many laboratories. With respect to mapping and quantifying transcriptomes,
RNA-seq has certainly established itself as the approach of choice. However, as the complexities of experiments
continue to grow, there is still no standard practice that allows for design, processing, normalization, efficient dimen-
sion reduction and/or statistical analysis.With this in mind, we provide a brief review of some of the key challenges
that are general to all RNA-seq experiments, namely experimental design, statistical analysis and dimensionality
reduction.
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INTRODUCTION
Next-generation sequencing, or high-throughput

deep sequencing (HTDS), is a versatile technology

that is being applied in a variety of ways. Variant

discovery [1], profiling of histone modifications [2],

identification of transcription factor binding sites [3]

and resequencing [4] are among the most popular

applications. It also had a significant impact on mo-

lecular biology [5], the estimation of allele frequen-

cies [6], as well as the identification of induced

mutations [7]. By comparison to these applications,

RNA-sequencing (RNA-seq) may be leading the

pack in popularity because of its ability to character-

ize transcriptomes [8], to assess differential gene ex-

pression [9] and to essentially challenge the

continued use of microarray technology for studying

transcription. No one would argue that microarray

technology certainly served more than a few very

important purposes. It enabled whole genome stu-

dies in a variety of applications and organisms, it

supplied vast amounts of data that continue to chal-

lenge both the biological and bioinformatics

communities, and it brought to bear the importance

that good experimental design and proper statistical

analysis have on good science. Considering the time

and resources dedicated to studying the statistical

design, processing and analysis of microarrays

[10–12], a similar investment needs to be made for

RNA-seq data [13, 14].

Even though HTDS, and all of its applications, is

a major leap forward in the biological sciences the

statistics community has been slow to embrace it

with the same gusto that microarray technology

received [15–17]. This has left the biological com-

munities wondering how to design an RNA-seq ex-

periment, how to deal with the huge RNA-seq data

files, and finally how to statistically test and analyze

the data. We are concerned that next-generation

technologies will, most likely, remain expensive for

a while, and that there may be an inclination to

revert to single sample science that is void of any

ability to estimate biological and/or technical vari-

ation, or to test scientific hypotheses. With this in

mind, we provide a brief review of some of the key
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challenges that are general to all RNA-seq experi-

ments, namely experimental design, statistical analysis

and dimensionality reduction.

UNDERSTANDINGTHEDATA
In practice, any HTDS technology can be used to

provide RNA-seq data. The three most popular,

commercially available platforms are those produced

by Applied Biosystems (SOLiD), 454 Life Sciences

(454-Sequencing) and Illumina (Solexa) (others

include Helicos Biosciences, Pacific Biosciences,

Complete Genomics and Oxford Nanopore). The

Solexa and SOLiD platforms offer enriched depth

of coverage over 454 (18 GB per run, 30 GB per

run and 450 MB per run, respectively) at the cost

of read length (75, 50 and 330 bp, respectively)

[18]. The trade-offs of this balance are entirely ap-

plication dependent and all three have been used to

study the transcriptomes of various organisms. For

simplicity, we base our discussion generally on a

flow cell composed of multiples lanes, each of

which is capable of sequencing independent genom-

ic samples, and thus producing tens of millions of

short sequence reads per lane.

Raw data from a single lane of a flow cell contain

sequencing reads of fixed length (e.g. 50 bases),

accompanied by quality scores for each base. These

reads must be assembled de novo or aligned to a ref-

erence database (e.g. the known transcriptome or the

reference genome). Aligning or assembling many

millions of short sequence reads presents new and

difficult challenges, namely computational efficiency,

resolving mapping ambiguities, map bias and inac-

curacies in both the sequence reads, as well as the

reference database [19, 20]. With respect to the

aligned reads, they occupy a distinct data file for

each lane, typically requiring at least 10 GB of com-

puter disk space per file. Depending on the applica-

tion and/or question asked (e.g. alternative splicing,

coding region discovery, etc.), the size of the data

files can be greatly reduced to provide only data

required for the statistical analysis. For example, a

typical Solexa flow cell with eight lanes can provide

more than 80 GB of raw data that can be bioinfor-

matically reduced to a much more manageable file of

approximately 10–30 MB.

RNA-seq data may be used to investigate many

different phenomena, such as alternative splicing

[21], isoform expression [22] and allele specific ex-

pression [23]. However, for this discussion and for

clarity, we will rely on the context of a gene expres-

sion study exploring differential expression between

two treatment groups. If we consider two samples, A

and B, biological replicates of each sample are

needed to both acknowledge the biological variation

and to assess the statistically validity of the compari-

son. For example, each sample is processed inde-

pendently such that each gene’s expression is

measured by sequencing transcripts and counting

the number of reads that map back to each gene.

Obviously, these are count data that should be con-

sidered as discrete random variables; again very dif-

ferent from the continuous data that microarray

technology supplies.

Once the data have been tabulated, normalization

is required. Because lane-specific coverage, substitu-

tion errors and the resulting alignment are all known

issues [9, 19, 24], any of the previous analogies that

we have made to microarrays end here. The standard

normalizing techniques for microarray data do not

apply. For example, quantile normalization, which

effectively forces the quantiles of the empirical dis-

tribution to be identical across samples, renders the

upper and lower ends of the distributions indistin-

guishable across samples, thus robbing RNA-seq data

of one of its most advantageous features, dynamic

range. To date, everyone acknowledges the issue

and need for normalization, but there are few stand-

ard normalizing techniques [25, 26]. The most popu-

lar approach (RPKM, [8]) effectively normalizes the

gene counts in each sample by gene length and the

total number of mapped reads in that sample, but this

unfortunately ignores underlying data patterns.

Therefore, it seems that estimating depth of coverage

at the exon or gene level provides the most effective

means to normalizing across samples.

Since the normalized RNA-seq data are based on

counts, one immediately considers the Poisson dis-

tribution when describing the population of counts

or when formulating any sort of model. It turns out

that when the data have no variability (i.e. no repli-

cation) or are distributed similarly (i.e. technical rep-

licates), then indeed the data are Poisson distributed

[9]. Unfortunately, these two scenarios (i.e. no rep-

lication and/or technical replicates) provide no

information about the biological question at hand

(i.e. differential expression). In fact, biological vari-

ability in count data is not accurately described by a

Poisson distribution [27–29]. Further, if one ignores

that variation between biological samples exists (i.e.

the sampling error), typically it results in an increased
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false positive rate. Even though the amount of tech-

nical variation from RNA-seq experiments is low

[9, 30, 31], it is important to remember that bio-

logical variation provides the information for testing

scientific questions.

EXPERIMENTALDESIGN
Designing an experiment that minimizes error, maxi-

mizes information and answers the question at hand

requires three important principles that can be cred-

ited to R.A. Fisher, randomization, replication and

blocking [13, 32]. When dealing with RNA-seq data,

randomizing samples across the lanes on the flow cell

in a completely randomized fashion effectively aver-

ages out any effect that lanes might have on the gene

counts. In a similar fashion, randomizing treatments

across lanes assures that potential lane effects are not

confounded with the treatment effects. Meaning, one

can separate lane effects from the effect of interest,

namely the treatment. If more than one machine is

used, or more than one flow cell on the same ma-

chine, blocking will account for the variation asso-

ciated to these differences. Table 1 illustrates a single

flow cell with eight lanes used to compare two treat-

ments (A and B) each with four biological replicates.

An analysis of these data proceeds in a similar manner

as a microarray experiment with the same design.

Auer and Doerge [13] detail the implications of

proper experimental design for both unreplicated

and replicated experiments. For replicated experi-

ment, they rely on well-known statistical designs

that partition the sources of variation and suggest

statistical models for testing hypotheses for differen-

tial expression. Through randomization, replication

and blocking it is possible to design an experiment

that allows more refined questions to be asked of the

data. Given technical and biological replicates, ap-

propriately allocated to lanes and sequencing runs,

one can simultaneously test for differential expression

and lane effects. A suitable experimental design for

this purpose is called a D-optimal split plot design

[33]. D-optimal refers to the design that minimizes

the generalized variance [34]. Blocking by sequen-

cing run removes the possibility of confounding lane

effects with any effects introduced by differences in

sequencing runs. In keeping with the first example

(Table 1), if we assume four biological and four tech-

nical replicates, the D-optimal design for which lane

and sequencing run are not confounded is illustrated

in Table 2.

Of course, this is a hypothetical example meant

to demonstrate how a researcher can optimize

the information extracted from an experiment. In

reality, the choice of biological and technical repli-

cates is governed by time, resources, research goals

and variability in the population of interest. The

microarray literature is rich with suggestions on

how to choose between biological and technical rep-

licates [15, 35] and for the most part these sugges-

tions hold true for RNA-seq experiments. Keep in

mind, however, that although technical variation has

been studied extensively in microarrays, by compari-

son there are relatively few investigations of technical

variation for next-generation sequencing technolo-

gies [9, 30, 31].

Table 2: D-optimal split plot design [33] that minimizes the generalized variance

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8

Run 1 a1 b1 b1 a1 b1 a1 b1 a1
Run 2 a2 b2 a2 a2 b2 b2 b2 a2
Run 3 b3 a3 b3 a3 a3 b3 a3 b3
Run 4 a4 b4 b4 b4 a4 a4 a4 b4

Within each run there are two treatments (A and B) eachwith four technical replicates (ai andbi; I¼1, 2, 3, 4).Four biological replicates correspond
to the four runs.

Table 1: Biological samples have been randomly assigned to lanes

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8

a1 b4 b2 a2 b3 a4 b1 a3

There are two treatment groups A and B, with four biological replicates each a1, . . . ,b4.
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THE CURSEOF DIMENSIONALITY
One very certain outcome of HDTS technologies,

independent of application, is that the dimensionality

of the data is unwieldy. Since more and more of the

genome is being explored at the base pair level,

asking questions using a relatively small number of

(biological) samples is becoming a real challenge.

This challenge is also known as the curse of dimen-

sionality. Small samples provide only so much infor-

mation from which to ask questions. In the statistical

community, the issue of having more independent

or predictor variables (e.g. genetic markers, SNPs,

gene counts, etc.) measured on relatively few samples

is known as the ‘large p, small n’ problem; the data

are called high-dimensional data. Basically, there are

too many parameters to estimate, with not enough

information to do it. Since the biological samples

provide the information that describes the behavior

of the total population, the more samples one ob-

serves, the better one can describe a biological phe-

nomenon such as transcript abundance or differences

in transcript abundance. Theoretically, with a large

enough number of samples (i.e. upwards of tens of

thousands) one could employ genome-wide predict-

ors to accurately estimate differential expression.

In the absence of many biological samples, one

option is to rely on proper experimental design,

proper modeling of the data to partition variation

and test biological phenomena, and to incorporate

the available biological information in the models.

Oshlack et al. [36] and Salzman et al. [14] provide

an excellent review of the current statistical methods

for analyzing RNA-seq data. Efron [37] provides

a thorough overview of the underlying theoretical

motivation and practical guidelines for analyzing

high-dimensional data, like RNA-seq data. All

these approaches reduce the dimensionality of the

data by identifying a small fraction of genes suitable

for further exploration.

MACHINE LEARNING
High-dimensional data are not limited to genomics.

They also occur in every avenue of the world

(finance, communication, retail, etc.), and as a

result this area of study has seen an influx of statistical

research. Specific to genomics, microarray technolo-

gies were the first to introduce high-dimensional

data, which resulted in significant advances in

the theory of multiple hypotheses testing [38–40],

variable selection [41] and false discovery rates

(FDRs) for multiple testing [42–44]. Issues for

analysis of data from HDTS technologies are simi-

lar to those found in microarray analysis, but they

are much greater because of the complexity of

the data and because the applications are more

sophisticated.

Machine learning is a relatively new interdiscip-

linary area that rests at the intersection of computer

science and statistics. It has grown from computer

engineering applications that use algorithms to

learn trends and to look for patterns in data, with

an emphasis on the computational efficiency. The

ideal application to genomics combines the compu-

tational efficiency of machine learning methods with

the widely used statistical procedures for discovering

patterns in large amounts of data; specifically for situ-

ations in which classical statistical approaches would

be intractable.

Very recently, Srivastava and Doerge [45] pro-

posed a flexible approach, similar to clustering, for

identifying latent patterns in high-dimensional count

data. When applied to count data from HDTS tech-

nologies, the approach identifies subsets of genes

with similar expression patterns and that explain a

large portion of variability. The fundamental concept

behind their modeling strategy is that a small fraction

of genes, organized into groups, are responsible

for a significant amount of biological variation.

Specifically, their model is a three-level hierarchical

Bayesian model that discovers the underlying bio-

logical functions, or latent variables, by modeling

the Poisson data and sample-specific functional prob-

abilities as a mixture distribution, respectively. This

modeling approach is referred to as latent process

decomposition (LPD) and has been implemented

in an R/Bioconductor package called themes. Due

to the biological motivation behind the model,

LPD provides interpretable parameter estimates that

other clustering-based approaches cannot. LPD gains

its power and flexibility from the underlying

Bayesian modeling strategy that makes it modular

and extensible, and very different from existing clas-

sification and prediction methods. The approach de-

veloped by Srivastava and Doerge [45] is easily

extendable to many other applications.

DISCUSSION
It is very clear that RNA-seq technologies have

pushed the boundaries of science, as well as the com-

putational limits of many laboratories. To date,
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there is no standard practice that allows for design,

processing, normalization, efficient dimension reduc-

tion and statistical analysis. Specific to mapping and

quantifying transcriptomes, RNA-seq has certainly

established itself as the state of the art tool. Early

indications suggest that results from RNA-seq ex-

periments are highly reproducible and the range of

scientific questions that can be addressed by harness-

ing the full potential of this technology is just now

being explored.

Where we go from here is highly dependent

on the steps that the scientific community takes.

Unfortunately, statisticians have not been as engaged

with RNA-seq data as compared to the explosion of

research generated by those involved in microarray

experiments. RNA-seq raw data files are disorga-

nized and too large to handle on a personal com-

puter. Alignment and assembly require server-sized

processors, and there are no standard bioinformatics

pipelines for summarizing the raw data into orga-

nized matrices. Combined with the fact that

RNA-seq is still relatively new, it is easy to see

why the statistics community has been slow to

catch on. However, this situation will not persist.

As noted by Wang et al. [46], ‘As the cost of sequen-

cing continues to fall, RNA-seq is expected to re-

place microarrays in many applications.’ With this

rise in popularity, our hope is that statisticians will

start to take a closer look at the quantitative aspects

of this new tool.

Key Points

� Next-generation sequencing data experiments are complex and
require proper experimental design.

� There are unresolved statistical issues that deal with normaliza-
tion, biological replication and dimensionality reduction.

� Machine learning techniques have great potential in genomic ap-
plications for the purpose of reducing the dimensionality.

� The amount of next-generation sequencing data, and its dimen-
sionality, will continue to increase, so the statistical issues asso-
ciatedwith these data require qualified statisticians’ attention.
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