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Abstract—DNA copy number variation (CNV) accounts for a large proportion of

genetic variation. One commonly used approach to detecting CNVs is array-based

comparative genomic hybridization (aCGH). Although many methods have been

proposed to analyze aCGH data, it is not clear how to combine information from

multiple samples to improve CNV detection. In this paper, we propose to use a

matrix to approximate the multisample aCGH data and minimize the total variation

of each sample as well as the nuclear norm of the whole matrix. In this way, we

can make use of the smoothness property of each sample and the correlation

among multiple samples simultaneously in a convex optimization framework. We

also developed an efficient and scalable algorithm to handle large-scale data.

Experiments demonstrate that the proposed method outperforms the state-of-the-

art techniques under a wide range of scenarios and it is capable of processing

large data sets with millions of probes.

Index Terms—CNV, aCGH, total variation, spectral regularization, convex

optimization

Ç

1 INTRODUCTION

GENETIC diseases are caused by a variety of possible alterations
in DNA sequences. Traditionally, it was believed that DNA
sequences between any two unrelated human individuals are
about 99.9 percent identical and the small difference is mainly
attributed to single nucleotides polymorphism (SNP). However,
recent studies revealed another type of genetic alternation named
copy number variation (CNV), which covers more than
12 percent of the human genome [1]. A CNV is defined as a
gain or loss in copies of a DNA segment [2]. CNVs can alter
gene expression in cells and potentially cause genetic diseases.
For instance, it was reported that individuals who carried a
lower copy number of gene CCL3L1 than population average
were significantly more vulnerable to HIV/acquired immunode-
ficiency syndrome (AIDS) [3].

One major approach to detecting CNVs is to use array-based
comparative genomic hybridization (aCGH) [4]. In a typical
aCGH experiment, DNA segments are extracted from test and
reference samples and labeled with two different dyes. The
labeled DNA segments are hybridized to a microarray spotted
with DNA probes. The ratio of fluorescence intensity between
the test DNA and the reference DNA ideally represents the
relative copy number of the test genome compared to the
reference genome. The aCGH data is generally in the form of
log2-ratio. A value greater than zero indicates a gain in the copy
number while a value less than zero indicates a loss.

The main goal of analyzing aCGH data is to recover true CNV
signals from noisy measurements. Due to measurement noise in
aCGH experiments, it is difficult to identify CNVs by simply

thresholding the raw log2-ratios [4]. Traditional methods include
break point detection [5], [6], [7], signal smoothing [8], [9], [10],
hidden Markov models [11], [12], and variational models [13], [14],
among others. Please refer to [15], [16] for a review and
comprehensive comparison.

All above-mentioned methods process aCGH profiles from
individuals separately. Recently, more efforts are focused on
analyzing aCGH data from multiple samples simultaneously. The
additional information from a group of samples proved to be
useful in analysis. For example, some researchers proposed to
use multisample information to normalize the data and remove
the reference bias in aCGH profiles [17], [18], [19]. Some aimed to
detect recurrent CNVs within multiple samples [20], [21], [22],
[23], but these methods rarely considered the CNVs shared by
subgroups. Zhang et al. [24], [25] tried to find simultaneous
change-points using chi-square statistics and correlation analysis
across samples, respectively. Picard et al. [19] extended the
dynamic programming method for single aCGH profile segmen-
tation to the multisample case. Recently, Nowak et al. [26]
proposed a matrix factorization-based model to explore common
CNV patterns among multiple samples. We will discuss this
method in detail and compare it to our method in Section 3.

In this paper, we aim to address the problem of identifying
CNVs from multisample aCGH data. The main contributions are
summarized as follows:

1. We propose a novel framework to denoise multisample
aCGH data, which uses both the smoothness property along
each sample and the correlation among multiple samples.

2. The problem is formulated as convex optimization and an
efficient algorithm is developed to solve the problem
exactly.

3. The model naturally handles missing values that usually
exist in raw aCGH data.

4. The relationship between our model and other closely
related models is discussed.

The MATLAB code of our algorithm is publicly available at
http://bioinformatics.ust.hk/tvsp/tvsp.html.

2 METHOD

2.1 Problem Statement

Let D 2 IRm�n represent an aCGH data set obtained from multiple
samples, where m is the number of probes/genes and n is the
number of samples. Each entry ði; jÞ records the log2-ratio at probe
i of sample j and the value of ði; jÞ is denoted by Dij. The jth
column Dj corresponds to an aCGH profile from sample j. We
propose to use the following model to describe a given data set

D ¼ Bþ �: ð1Þ

B 2 IRm�n denotes true CNV signals and � 2 IRm�n is measurement
noise. Our goal is to recover B from D.

2.2 Formulation

To make the decomposition in (1) possible, we need some
knowledge about the properties of B. Our analysis is based on
two assumptions:

. For each sample, the copy numbers at contiguous
chromosome positions should be identical except for
abrupt changes between different segments, i.e., the signal
should be piecewise constant.

. For a set of related samples, the CNV signals are likely to
share similar patterns or linearly correlated with each other.

The first assumption is generally required in most methods for
aCGH data analysis [15], while the second assumption is the basic
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motivation for researchers to analyze aCGH data from multiple

samples simultaneously.
Based on the above two assumptions, we propose to estimate B

by minimizing the following energy1

min
B

1

2
kD�Bk2

F þ �kBk� þ �
Xn
j¼1

kBjkTV : ð2Þ

Here, we regularizeBwith the nuclear norm to encode the message
that CNV signals from multiple samples should be correlated with

each other as much as possible. Recently, the nuclear norm
minimization has proven to be an effective method to reconstruct

a low-rank matrix [28]. As mentioned in [29], the nuclear norm is

not only a convex surrogate of the rank operator but also a good
regularization method, which usually achieves better prediction

accuracy for model building. The last term in (2) minimizes the
total variation of each sample, which encourages each column of B

to be piecewise constant.
There usually exist missing values in real aCGH data sets.

Suppose � is the set of observed entries. To handle missing values,

we modify the formulation in (2) to be

min
B

1

2
kP�ðD�BÞk2

F þ �kBk� þ �
Xn
j¼1

Bj

�� ��
TV
; ð3Þ

where P�ð�Þ represents the projection to the linear space of

matrices whose nonzero entries are restricted in �

P�ðXÞði; jÞ ¼
Xij; if ði; jÞ 2 �;
0; if ði; jÞ 62 �:

�
ð4Þ

The first term in (3) means that only the observed entries inside �

is used for model fitting. By this formulation, we can recover the

signal and complete the missing values at the same time.
Both (2) and (3) are convex programming. In Section 2.3, we

provide efficient algorithms to solve them with guaranteed

optimal solutions.

2.3 Algorithms

To solve (3), we first try to solve (2), which is a special case of (3),

with � being all entries in the matrix.
The optimization in (2) is convex [30], which can be solved

using modern convex optimization software like CVX and SeDumi
if the problem size is small. However, these generic methods are

not scalable to solve large problems. Here, we provide an efficient

algorithm to solve (2) exactly based on singular value thresholding
(SVT) [31] and the Alternating Direction Method of Multipliers

(ADMMs) [32].
First, we introduce a variable Z with the same size of B to

separate the nonsmooth terms in (2)

min
B;Z

1

2
kD� Bk2

F þ �kBk� þ �
Xn
j¼1

kZjkTV ;

s:t: B ¼ Z:
ð5Þ

Obviously, the problems in (5) and (2) have the same solution.
We follow the standard procedure of ADMM to solve (5). The

augmented Lagrangian of (5) reads

LðB;Z; Y Þ ¼ 1

2
kD� Bk2

F þ �kBk� þ �
Xn
j¼1

kZjkTV

þ hY ;B� Zi þ �
2
kB� Zk2

F ;

ð6Þ

where Y is the dual variable, h�; �imeans the inner product and � is
a positive number controlling the step length of updating
variables. Then, the following steps are iterated until convergence

Bkþ1 ¼ arg min
B
LðB;Zk; Y kÞ; ð7Þ

Zkþ1 ¼ arg min
Z
LðBkþ1; Z; Y kÞ; ð8Þ

Y kþ1 ¼ Y k þ �ðBkþ1 � Zkþ1Þ: ð9Þ

It can be proved that the sequence of Bk generated by the above
iterations will converge to the global optimal solution of (5) [32].

Next, we give the solution to each step in ADMM iterations.
The B-step in (7) can be written as

min
B

1

2
kD�Bk2

F þ �kBk� þ hY k; B� Zki þ �
2
kB� Zkk2

F

¼ min
B

1þ �
2
k
Dþ � Zk � 1

� Y
k

� �
1þ � � Bk2

F þ �kBk�;
ð10Þ

which has the following closed-form solution [31]

Bkþ1 ¼ S �
1þ�

Dþ �ðZk � 1
� Y

kÞ
1þ �

 !
; ð11Þ

where S�ð�Þ means the SVT operator

S�ðXÞ ¼ U��V
T ; ð12Þ

�� ¼ diag½ðd1 � �Þþ; . . . ; ðdr � �Þþ�, U�V T is the SVD of X, � ¼
diag½d1; . . . ; dr� and tþ ¼ maxðt; 0Þ.

The Z-step in (8) can be written as

min
Z

�
Xn
j¼1

krZjk1 þ hY k; Bkþ1 � Zi þ �
2
kBkþ1 � Zk2

F

¼ min
Z

�

2
kBkþ1 þ 1

�
Y k � Zk2

F þ �
Xn
j¼1

kZjkTV :
ð13Þ

Obviously, this minimization can be operated for each column
separately

Zkþ1
j ¼ arg min

x

�

2
kBkþ1

j þ 1

�
Y k
j � xk2

2 þ �kxkTV : ð14Þ

The minimization in (14) is the fused lasso signal approximation
(FLSA) problem, which can be solved efficiently [33] using existing
algorithms.

The overall algorithm to solve (2) is summarized in Algorithm 1.
The optimality of the solution can be guaranteed [32]. Please refer
to [32] for detailed description on selection of coefficient � and the
criterion of convergence.

Algorithm 1. The algorithm to solve (2)

1. Input: D

2. Initialize: B̂ ¼ 0, Z ¼ 0 and Y ¼ 0

3. repeat

4. B̂ arg minB̂
1
2 k

Dþ�ðZk�1
�Y

kÞ
1þ� � B̂k2

F þ �
1þ� kB̂k�

5. for j ¼ 1 to n do

6. Zj  arg minx
1
2 kB̂j þ 1

� Yj � xk2
2 þ

�
� kxkTV

7. end for

8. Y  Y þ �ðB̂� ZÞ
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1. The following norms are used throughout this paper: For any vector

x 2 IRn, the ‘2-norm is defined as kxk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x
2
i

p
, the ‘1-norm is defined

as kxk1 ¼
Pn

i¼1 jxij, and the total variation [27] is defined as kxkTV ¼Pn
i¼2 jxi � xi�1j, which measures the smoothness of x. For any matrix

X 2 IRm�n, the Frobenius norm is defined as kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn
j¼1 X

2
ij

q
, and

the nuclear norm is defined as kXk� ¼
Pr

i¼1 �i, where �1; . . . ; �r are the

singular values of X and r is the rank of X.



9. until convergence

10. Output: B̂.

Next, we give the algorithm to solve the extended model in (3).
First, we define ���ðDÞ to be the solution of (2) with given D and
fixed � and �. To solve (3), we first rewrite it as

min
B

1

2
kP�ðDÞ þ P�? ðBÞ �Bk2

F þ �kBk� þ �
Xn
j¼1

kBjkTV ; ð15Þ

where �? is the complementary set of �. Comparing (15) with
(2), we propose to solve the extended model by iteratively
updating B using

Bkþ1 ¼ ���ðP�ðDÞ þ P�? ðBkÞÞ: ð16Þ

Theorem 1. The sequence Bk generated by (16) converges to a limit B1

that solves the problem in (3).

The proof of Theorem 1 is given in the supplementary
document, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TCBB.
2012.166, and the algorithm to solve (3) is summarized in
Algorithm 2.

Algorithm 2. The algorithm to solve (3)

1. Input: D, the set of observed entries �

2. Initialize: B̂ ¼ 0

3. repeat

4. B̂ ���ðP�ðDÞ þ P�? ðB̂ÞÞ
5. until convergence

6. Output: B̂.

2.4 Parameter Tuning

We have two parameters in our model: � controls the nuclear norm
of B̂ and � controls the total variation of each B̂j. Here, we propose
to choose the parameters by formulating the problem as a matrix
completion problem [29] and use the prediction error to guide the
parameter selection.

Let �0 be the observed entries in matrix D. We further
divide �0 into a training set �1 and a testing set �2. �1 [ �2 ¼
�0 and j�1j=j�0j ¼ 50%.2 First, we use entries in �1 to fit the
model by solving

min
B

1

2
kP�1

ðD� BÞk2
F þ �kBk� þ �

Xn
j¼1

kBjkTV ; ð17Þ

and denote the solution by B̂ð�; �Þ. Then, we evaluate the
prediction error over the testing set �2

Errð�; �Þ ¼ 1

2
kP�2

ðD� B̂ð�; �ÞÞkF : ð18Þ

The problem in (17) is solved multiple times for a grid of ð�; �Þ
values. Finally, we choose ð�̂; �̂Þ that gives the minimum
prediction error as the final parameters, and we run Algorithm 1
again with full observation in �0.

In implementation, since the 2D searching of parameters is
computationally expensive, we first search for �̂ by fixing � ¼ 0
and then search for �̂ by fixing � ¼ �̂. We let � ¼ c��max and
� ¼ c��max, where �max and �max are fixed upper bounds for �
and �, respectively. c� and c� are coefficients selected from
f0:1; 0:2; . . . ; 1g. In all experiments, we choose �max ¼ 0:2

ffiffiffiffiffi
m
p

�̂ and
�max ¼ 2�̂ empirically. �̂ is the standard deviation of noise in the
data set, which can be estimated robustly by the median absolute
deviation [34].

Please refer to the online supplemental document for the
experiments on stability and effectiveness of our parameter
selection method.

2.5 Estimation of FDR

After processing the aCGH data, we use a threshold T to
determine whether ði; jÞ is an abberation or not by comparing
jB̂ijj with T . The false discovery rate (FDR) [35] is usually used for
statistical assessment of detection accuracy, which is defined as

FDRðT Þ ¼ jN T j
jAT j

; ð19Þ

whereAT ¼ fði; jÞ : jBijj > Tg is the set of declared abberations and

N T is the set of false abberations. To estimate the FDR for a given T ,

jN T j needs to be calculated, which is unknown in real experiments.

However, it can be roughly approximated by the number of

abberations picked from the null data. Since there is no reference

data in practice, the null data is usually generated by permutation

[10], [26]. More specifically, during the kth permutation, we

randomly permute the probe locations for each sample and form

a null data set D
ðkÞ

. Then, we apply our algorithm on D
ðkÞ

and

produce an approximated matrix B
ðkÞ

. Hence, N ðkÞT ¼ fði; jÞ :

jBðkÞij j > Tg gives an estimate to the number of false detections. To

reduce bias, we run K times of permutation, and the FDR for

threshold T is estimated by

dFDRðT Þ ¼
1
K

PK
k¼1 jN

ðkÞ
T j

jAT j
: ð20Þ

3 RELATION TO OTHER METHODS

In this section, we discuss the relationship between our method
and two closely related methods for aCGH data analysis.

The first method is fused lasso for signal approximation (FLSA)
[10]. Briefly, they process each sample separately. If Dj represents
the aCGH profile of sample j, FLSA tries to find a sparse and
piecewise-constant vector Bj to approximate Dj by solving

min
Bj

kDj �Bjk2
2 þ �1kBjk1 þ �2kBjkTV : ð21Þ

Comparing (21) and (2), we can find that our model differs from
FLSA by replacing the ‘1-norm of individual columns with the
nuclear norm of the whole matrix. The nuclear norm regularization
prefers that the detected CNVs are shared by as many samples as
possible. The utilization of information among multiple samples
can improve the accuracy of detection.

Another closely related method is named the Fused Lasso
Latent Feature Model (FLLat) proposed by Nowak et al. [26]. In
this model, each aCGH profile is modeled as a linear combination
of some latent features D ¼ UV þ �, where D 2 IRm�n is the input
data set, U 2 IRm�J is the feature matrix with each column
representing a latent feature, V 2 IRJ�n is the weight matrix, �
denotes noise and J is the predefined number of features. U and V

are estimated by solving

min
U;V
kD� UV k2

F þ �1

XJ
j¼1

kUjk1 þ �2

XJ
j¼1

kUjkTV ;

s:t: kVjk2 � 1:

ð22Þ

Essentially, the underlying assumptions of our method and
FLLat are identical. On the one hand, we can notice that
rankðUV Þ ¼ J , which means that FLLat will output a low-rank
matrix if J is relatively small. On the other hand, the smoothness
constraint on latent features is equivalent to the smoothness
constraint on each profile, which is just a linear combination of
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2. For a set �, j�j means the number of elements in �.



the features. However, there are differences between our method

and FLLat:

1. Convex versus nonconvex. The formulation in (2) is convex.
Hence, a global optimal solution can be guaranteed. While
the formulation of FLLat can be solved efficiently, its
solution depends on initialization and may get stuck at
local optimum.

2. Nuclear norm versus rank operator. Comparison between the
nuclear norm used in our model and the rank operator used
in FLLat is analogous to comparison of the ‘1-norm versus
the ‘0-norm used in regression problems [28]. To see this,
let B̂ be the matrix to be estimated and w ¼ ½�1; . . . ; �r�T be

the vector of singular values of B̂. Then, in this paper, kB̂k�
or wk k1 is minimized, while in FLLat rankðB̂Þ or wk k0 is
fixed to be J . For regression problems, it has been stated that
the ‘1-norm achieves better consistency of feature selection
[36]. Similarly, for matrix learning, the nuclear norm
regularization usually performs more stably [29], while
the hard constraint on the matrix rank used in FLLat may be
too aggressive in selecting the singular vectors (i.e., latent
features in FLLat).

4 RESULTS

4.1 Synthesized Data

Synthesized data is generated to test the proposed method. For
each data set, 50 samples of aCGH profiles with a length of
500 probes are generated. The intensity at probe i of sample j is
given by Dij ¼ Bij þ �ij, where Bij is true signal intensity and �ij is
noise. We set Bij ¼ 1 if ði; jÞ is located in an abberation segment
and Bij ¼ 0 otherwise. �ij 2 Nð0; �Þ and the signal-to-noise ratio
(SNR) is defined as 1=�. Two types of abberation segments are
added. The first type is unshared segment that is independently
added to each sample at random locations. The second type is
shared segment that presents at the same location for multiple
samples. The shared percentage is defined as the ratio between the
number of shared abberation segments and the total number of
abberation segments. The length of segments L is selected from
f10; 20; 30; 40; 50g. For each L, 50 segments are added to 50 samples.
If the shared percentage is p, we randomly choose p� n samples to
add a segment with length L to each of them at the same probe
location. Then, we add a segment with the same length to each of
the other ð1� pÞ � n samples at random probe locations. Fig. 1
gives illustrative examples. With the shared percentage increasing,
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Fig. 1. Examples of synthesized data. Top: data without noise; Middle: data with
noise (SNR ¼ 2); Bottom: signals recovered by Algorithm 1. The columns from left
to right correspond to various shared percentages.

Fig. 2. Performance comparison of our method (abbr. TV-Sp), FLSA [10], FLLat [26], MSCBS [24], and cghseg [19] (a) The ROC curves of different methods on
synthesized data sets with various shared percentages and SNRs. The y-axis and x-axis of each plot represent the true positive rate and the false positive rate,
respectively. (b) The AUC versus the shared percentage. The bar length means the standard deviation.



the common patterns becomes more and more visible. The results
produced by Algorithm 1 are given in the last row. Compared to
the raw input in the middle row, random noise is suppressed
while the CNV signal is maintained.

The pattern of shared abberations could be more complex than
what has been synthesized in our simulation. For example, six
possible scenarios of recurrent regions are described in the work
by Rueda and Diaz-Uriarte [37]. Our simulation only covers the
first two. In practice, our method can be applied to all scenarios
since the patterns in these scenarios all admit our assumptions: The
abberation region covers a set of contiguous probes and affects a
group or a subgroup of samples, regardless of the type of the
abberation and whether a region overlaps another or not.

4.2 Performance Comparison

We compare our method with FLSA [10], FLLat [26], MSCBS
[24], and cghseg [19] on synthesized data sets. The R packages of
all methods are downloaded and the default parameter settings
are applied. Fig. 2a plots the receiver operating characteristic
(ROC) curves under different cases. A ROC curve deviating more
from the diagonal line generally indicates better performance. To
better display, we also plot the area under curve (AUC), as
shown in Fig. 2b.

Our model consistently outperforms FLSA, especially for
large shared percentages. This demonstrates that utilization of
multisample information via the nuclear norm regularization
can increase the power of detecting common abberations among
multiple samples. FLLat performs extremely well when the
shared percentage is high, since the data structure almost meets
its underlying model. However, when the shared percentage
gets lower, the performance of FLLat drops dramatically. This is

due to the fact that the hard constraint on the matrix rank used
in FLLat is not flexible enough when the low-rank assumption
is not rigorously satisfied, which was discussed in Section 3.
Also, the variance of AUC for FLLat is relatively large due to
its nonconvex formulation. Instead, the nuclear norm regular-
ization and the convex formulation of our method performs
consistently well under various cases. Compared with other two
alternative methods MSCBS and cghseg, our method also shows
better performance.

4.3 FDR Estimation

To verify the reliability of FDR estimation introduced in Section 2.5,
we compare the estimated FDR with its true value on synthesized
data sets. As shown in Fig. 3, the FDR is overestimated when the
value is large, while it is approximated well when the value is
small. Generally, the FDR should be controlled under 0.2, where
our estimation is fairly accurate.

4.4 Application on Breast Cancer Data

We apply our method on two independent breast cancer data sets.
The first one is from Pollack et al. [38], which consists of aCGH
profiles over 6,691 mapped human genes for 44 locally advanced
primary breast tumors. The other one is from Chin et al. [39],
which includes aCGH profiles over 2,149 DNA clones for
141 primary breast tumors.

The results for chromosome 17 are presented in Fig. 4. The
recovered matrices are displayed using the heat map and the bar
plot at the bottom shows the number of gains summed over all
samples for each probe with a threshold equal to 1. The high-
amplification regions discovered from the two data sets, i.e.,
probes 178-184 from Pollack et al. and probes 38-39 from Chin
et al., coincide with each other regarding their locations on the
chromosome. Several genes that have been verified to be
functionally important to breast cancer are located within this
region [39], such as the transcription regulation protein PPARBP,
the receptor tyrosine kinase ERBB2 and the adaptor protein GRB7.
Fig. 4c shows the log2-ratio of a selected sample from Pollack et al.
before and after processing. Compared with FLLat, our method
gives a more smooth profile while keeping more candidate signals
unsuppressed, e.g., the amplifications around probe 321, which
were also reported by [38] with high-elevated mRNA levels.

Further downstream analysis can be carried out on our results,
e.g., identifying disease-related CNVs by existing tools such as
CanPredict [40] or using gene expression data [41].

4.5 Computational Time

The time cost of our algorithm is mainly from the singular value
decomposition (SVD) and FLSA computed in each iteration. For a
matrix X 2 IRm�n, the complexity of SVD is Oðmn2Þ if n� m. For a
vector x 2 IRm, the complexity of current FLSA algorithms is OðmÞ
empirically [33]. Overall, the complexity of our algorithm is
Oðmn2Þ for limited iterations. Fig. 5 shows the real CPU time of our
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Fig. 3. The comparison between the estimated false discovery rate and the true
FDR on synthesized data sets.

Fig. 4. (a) The results of applying our method to the data set from Pollack et al. [38]. From top to bottom are the 2D images of recovered signals and the number of
detected gains along the chromosome. (b) The results on the data set from Chin et al. [39]. (c) The 1D profile of a selected sample of the data set from Pollack et al. Our
result is shown in the top panel. The FLLat result is shown in the bottom panel.



algorithm to solve synthesized problems with different numbers of

probes. Here, parameter � and � are fixed. The algorithm is run on

a desktop PC with a 3.4-GHz Intel i7 CPU and 8-GB RAM. As we

can see, the computational time increases almost linearly over the

number of probes. In aCGH experiments, the number of probes is

always much larger than the number of samples, and our

algorithm shows great scalability to process large data sets,

e.g., the data from the next generation of microarrays. Specifically,

the computational time is 516 s for ðm;nÞ ¼ ð106; 50Þ, while those of

FLLat and FLSA are 1,932 and 39 s, respectively.

5 CONCLUSION

In this paper, we propose a convex formulation for analyzing

multisample aCGH data. There are two major advantages to

formulate the problem as convex optimization. First, the global

optimal solution is guaranteed, which makes the method perform

stable in various problems. Second, a very efficient and scalable

algorithm can be developed based on modern convex optimization

techniques. Moreover, we explain the relationship between our

model and two closely related models. The experiments demon-

strate that our method is competitive to the state-of-the-art

approaches and more robust under various cases.
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Fig. 5. Time cost versus number of probes on synthesized data sets. The number
of samples is 50.
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