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Goals and Challenges of
Proteomics

Proteomics is defined as the system-wide

characterization of all the proteins in an

organism in terms of their sequence,

localization, abundance, post-translational

modifications, and biomolecular interac-

tions. Modern proteomic investigations

are increasingly quantitative and compre-

hensive [1]. Examples include the relative

quantification of over 4,000 proteins in

haploid and diploid yeast, which identified

the pheromone signaling pathway as

enriched in differential abundance [2];

determination of site- and time-specific

dynamics of more than 6,000 phosphory-

lation sites of HeLa cells stimulated with

epidermal growth factor [3]; and charac-

terization of 232 multiprotein complexes

in Saccharomyces cerevisiae, which proposed

new cellular roles for 344 proteins [4].

Such investigations are now successfully

utilized in functional biology [5,6], geno-

mics [7,8], and biomedical research [9].

Challenges of proteomic studies stem

from the complexity of the proteome and

to its broad dynamic range. For example,

the human genome contains around

20,000 protein coding genes. Their trans-

lation, combined with splicing or proteol-

ysis, yields an estimated 50,000–500,000

proteins, and over 10 million different

protein forms can be derived by somatic

DNA rearrangements and post-transla-

tional modifications [10]. The abundance

of protein species in human plasma spans

more than 10 orders of magnitude [11].

Unlike oligonucleotides, proteins cannot

be amplified, and therefore the objectives

of proteomics are achieved by sensitive

and scalable technologies identifying and

quantifying proteins [12]. The overall

mass spectrometry–based proteomic work-

flow is summarized in Figure 1.

Experimental Design

Quantitative proteomic investigations

are conducted in the context of biological

variation [13], technical variation due to

sample processing and spectral acquisition,

and ambiguities of spectral interpretation.

Statistical experimental design [14,15]

accounts for these sources of variation.

The first goal of experimental design is to

avoid biases [16,17] (i.e., systematic errors

in interpretation) by clearly defining the

populations of interest, matching the

individuals with respect to the confound-

ing factors, randomizing the selection of

matched individuals from the population,

and randomizing sample allocation to the

processing steps. The second goal is to

ensure efficiency (i.e., minimal random

variation and uncertainty for a given cost)

by choosing an appropriate number of

biological and technical replicates, and by

allocating the replicates to experimental

resources in balanced blocks. The steps of

the statistical experimental design are

summarized in Figure 2.

Mass Spectrometry–Based
Measurements

Global Label-Free LC-MS/MS
Workflow

Mass spectrometry is currently the only

technology for protein identification and

quantification that is both high-accuracy

and high-throughput [18–20]. Although

many alternatives exist, shotgun liquid

chromatography coupled with tandem

mass spectrometry (LC-MS/MS; overview

in Figure 3) is most frequently used. Mass

spectrometry is better amenable to char-

acterizing peptides; therefore, LC-MS/

MS starts by enzymatically digesting pro-

teins into a peptide mixture. Next, liquid

chromatography (LC) separates the pep-

tides, and the separated peptides are ionized

and further separated by the mass spec-

trometer according to their mass-to-charge

ratio in a mass spectrum (MS). The mass

spectra obtained from the same sample at

different elution times form an LC-MS run,

and intensities of MS peaks, are related to

peptide abundance. For identification, the

mass spectrometer isolates the biological

material of selected MS peaks, subjects it to

collision energy or another type of frag-

mentation, and separates the resulting

fragments in a secondary (MS/MS) mass

spectrum. The distances between the MS/

MS peaks are used to infer the amino acid

sequence of the parent MS peak. Since

abundant MS1 peaks are more likely to be

selected for fragmentation, relative peptide

quantification can also be achieved by

counting the number of identified MS/

MS spectra.

An LC-MS/MS experiment can identify

and quantify thousands of proteins in

complex mixtures. It requires minimal

manipulation of the sample, and minimal

prior information regarding its composi-

tion. However, the workflow has a number

of deficiencies. Enzymatic digestion in-

creases the complexity of the mixture. For

example, a proteome comprising 5,000

proteins is expected to yield over 250,000

tryptic peptides, and minor cleavage and

fragmentations of abundant proteins can

obscure major events of low-abundant

proteins, complicating the interpretation

[21]. Dynamic range of mass spectrometers

is limited to 3–4 orders of magnitude, and

the direct LC-MS/MS analysis is biased

towards most abundant peptides [22].

Technical variation can further undermine

the identification and the quantification

steps. A variety of extensions to this basic

workflow have therefore been proposed.
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Overcoming Between-Run Variation:
Label-Based Quantification

The LC-MS/MS workflow is enhanced

by labeling samples from different condi-

tions metabolically (e.g., with SILAC [23],

where stable isotopes are included in the

growth medium of an organism), or chem-

ically (e.g., with iTRAQ [24] or TMT [25],

where reacting chemical labels are applied

during sample processing). Samples with

different labels are combined and analyzed

by a mass spectrometer within a single LC-

MS run. Peaks from the samples are sub-

sequently recognized by label-induced mass

shifts in MS (SILAC) or MS/MS (iTRAQ,

TMT) spectra, and used for relative quan-

tification. Labeling enables within-run com-

parisons of protein abundance, and im-

proves the precision of quantification.

Experimental design can further gain effi-

ciency through optimal allocation of samples

to the labels, e.g., in reciprocal or reference

designs [26] or by using labeled synthetic

peptides as references. However, labeling

requires extra sample manipulation and

increases the complexity of the sample.

Overcoming Limits of Dynamic
Range: Targeted Workflows

The complexity of a biological mixture

can be overcome by fractionation [27];

however, this severely undermines the

throughput. A valuable alternative is

selected reaction monitoring (SRM) (also

referred to as multiple reaction monitor-

ing, MRM), a targeted workflow where

the mass spectrometer isolates a set of pre-

defined peptides and their fragments

during mass analysis [28–31]. The result-

ing peptide-fragment pairs (called transi-

tions) are used for quantification. Since the

isolation is highly specific, SRM enables

the most sensitive mass spectrometry–

based quantification currently available.

For example, proteins expressed with

fewer than 50 copies/cell were quantified

in total yeast lysates [32]. As shown in

Figure 3, SRM can be conducted in

conjunction with both label-free and

label-based workflows. The drawback of

targeted workflows is that they only

quantify a priori known proteins, require

optimized experimental protocols, and

limit the number of measurements per

run to a few hundreds. Further techno-

logical developments [33] and optimal

experimental designs [34] will help allevi-

ate these drawbacks.

Computation and Statistics
Identification of Peptides and
Proteins

The computational and statistical anal-

yses of the acquired spectra are illustrated

in Figure 4. With the shotgun LC-MS/MS

workflow, the first step is to identify

Figure 1. Quantitative mass spectrometry–based proteomic workflow. The workflow requires a tight integration of biological and
experimental (red) and computational and statistical (yellow) analysis steps.
doi:10.1371/journal.pcbi.1002277.g001

Figure 2. Experimental design. Statistical experimental design consists of (a) defining the populations of interest, (b) randomly selecting biological
replicates from the population and (optionally) matching confounding factors, (c) randomly allocating biological samples to spectral acquisition and
(optionally) grouping the samples in balanced blocks for joint profiling, and (d) (optionally) acquiring technical replicate measurements on the biological
samples. Replication, randomization, and blocking are necessary to avoid biases and maximize the efficiency of the experiment.
doi:10.1371/journal.pcbi.1002277.g002
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sequences of amino acids that correspond

to the MS/MS spectra. This has received

much attention from both algorithmic and

statistical viewpoints [35–37]. A predom-

inant approach is the database search,

which compares each observed spectrum

to the theoretical spectra predicted from a

genomic sequence database (or to the

previously identified experimental spectra

in a library [38]), and reports the best-

scoring peptide-spectrum match (PSM).

Emerging alternatives are de novo identifi-

cations and hybrid searches [39,40].

Due to the stochastic nature of the MS/

MS spectra [41], and to deficiencies of

scoring functions and databases, the best-

scoring PSMs are not necessarily correct.

Statistical characterization of the identifi-

cations is necessary, and is now required

by most journals [42]. This problem is

frequently formalized as controlling the

false discovery rate (FDR) in the list of

reported PSMs [43,44]. Representative

methods for controlling FDR are two-

group models, which view the reported

PSMs as a mixture of correct and incorrect

identifications [45], and methods utilizing

decoy databases [46]. Typically, only

around 30% of MS/MS spectra are

confidently identified, and developing

improved methods is an active area of

research.

The task of identification extends to

inferring peptides and proteins in the

sample from the identified MS/MS spec-

tra. This is challenging due to the ‘‘many-

to-many’’ mapping of peptides to proteins,

and of MS/MS spectra to peptides.

Inference must enable parsimonious re-

sults, while maintaining the sensitivity and

characterizing the confidence in the iden-

tifications. The problem of protein infer-

ence is not entirely solved. For example,

arguments exist in favor [47] and against

[48] reporting single-peptide protein iden-

tifications, and in favor [49] and against

[50] the exclusive use of protease-specific

peptides.

A typical experiment generates hun-

dreds of thousands of MS/MS spectra,

and open-source and commercial pipelines

such as the Trans-Proteomic Pipeline [51]

streamline spectral handling and interpre-

tation through common infrastructure.

Quantification of Spectral Features
The next step in quantitative label-free

LC-MS/MS experiments is to locate and

quantify MS peaks, annotate them with

peptide and sequence identities, and

Figure 3. Mass spectrometry–based measurements. (a) Sample processing. Label-free quantification requires minimal sample manipulation,
and acquires spectra from each sample in a separate mass spectrometry run. Label-based quantification varies in the timing and type of the labeling
steps, but always simultaneously profiles two or more biological samples within a run. (b) Global label-free workflows achieve relative quantification
by comparing counts of MS/MS spectra, or intensities of MS peaks between runs. Global label-based workflows compare intensities of reporter MS/
MS fragments (iTRAQ) or MS peaks (SILAC, synthetic peptides). (c) Targeted workflows are an alternative to global quantification. They are most
sensitive, but require an a priori knowledge of the proteins of interest, and of the technological characteristics of their peptides. Label-free targeted
experiments compare intensities of transitions between runs, and label-based experiments within a run.
doi:10.1371/journal.pcbi.1002277.g003
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establish the correspondence of peaks

between runs [52]. Label-based workflows

with MS quantification (e.g., SILAC)

search for pairs of peaks with known mass

shifts that correspond to a same peptide.

Workflows with MS/MS quantification

(e.g., iTRAQ) locate and quantify reporter

MS/MS fragments. All these tasks can be

made difficult by irregular, overlapped,

and missing peaks, chromatographic var-

iations between runs, and incomplete and

incorrect identifications. As a result, only a

subset of the identified proteins is typically

quantified [53]. A variety of signal pro-

cessing software tools are reviewed in [54],

and the representative ones are OpenMS

[55] for label-based quantification and

MaxQuant [56] for quantification with

SILAC.

Targeted SRM experiments sidestep the

need for identifying and aligning peaks,

and signal processing focuses on peak

detection, quantification, and annotation.

However, difficulties can arise with over-

lapped or suppressed signals or incorrectly

calibrated transitions, and computational

methods can help filter out poor quality

transitions [57,58]. Pipelines such as

Skyline [59,60] and ATAQS [61] stream-

line these tasks.

Frequently, sample handling induces

differences in the quantitative signals

between runs, and global between-run

normalization is necessary to distinguish

true biological changes from these arti-

facts. Two common approaches to global

normalization are sample-based and con-

trol-based. Sample-based normalization,

e.g., quantile normalization or normaliza-

tion based on the total ion current, makes

the best use of the data, but assumes that

the majority of features do not change in

abundance [62]. Control-based normali-

zation in preferred in experiments with

few measurements or many biological

changes.

Finding Differentially Abundant
Proteins

Typical statistical goals of quantitative

proteomics are protein quantification, i.e.,

estimation of protein concentration in a

sample on a relative or absolute scale, and

class comparison, i.e., determination of

proteins that change in average abun-

dance between conditions. To achieve

this, it is often necessary to summarize

the quantitative information across all the

features that pertain to a protein. One

such approach is spectral counting [63],

which is based on the insight that in global

LC-MS/MS peaks from abundant pro-

teins are more frequently selected for

fragmentation, and uses the number of

identified MS/MS spectra as a proxy for

the abundance. The approach involves

minimal signal processing; however, it

requires specialized statistical modeling, is

limited to finding large changes among

abundant proteins, and is most successful

with mixtures of low complexity, e.g., for

determination of protein complexes [64].

Alternative approaches are based on

summarizing signals from quantified spec-

tral peaks. With other technologies such as

gene expression microarrays, similar sum-

marization is performed by some form of

averaging, e.g., with Robust Multiarray

Averaging (RMA) [65]. Unfortunately,

averaging fails to produce accurate results

in mass spectrometry–based proteomics.

Length, charge, and other chemical prop-

erties of peptides greatly affect the quality

of the signals, and averaging obscures

these difference in information content.

A more successful summarization re-

quires probabilistic modeling, which rep-

resents all features of a protein and

characterizes their variation. A diverse

range of such models has been proposed,

and there is no single generally accepted

procedure. The models differ in using raw

or log-transformed intensities, comparing

groups in terms of ratios or differences,

and using general-purpose [66] or special-

ized [67] classes of statistical models.

Important aspects are accurate represen-

tation of the experimental design and of

within-run groupings of peaks in label-

based workflows, treatment of missing

data (e.g., using specialized [68] or gener-

al-purpose [69,70] techniques), incorpo-

rating confidence in feature identifications

[71], expanding the scope of conclusions

to the underlying populations or restricting

Figure 4. Computation and statistics. Analysis of the acquired spectra includes (a, b) signal processing, (c, d) significance analysis, and (e–h)
downstream analysis. Methods in (a–d) must reflect the technological properties of the workflows. Methods in (e–h) are technology-independent and
are similar to the analysis of gene expression microarrays, but their use is affected by uncertainty in protein identities and the incomplete sampling of
the proteome.
doi:10.1371/journal.pcbi.1002277.g004
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it to the selected samples [66], and

controlling the FDR in the list of differen-

tially abundant proteins. In some cases,

e.g., in samples enriched in post-transla-

tional modifications, changes in peak

intensities can be due to both differential

abundance and differential modifications.

Comparisons at the feature level are then

more appropriate; however, they should

be adjusted for the overall changes in

protein abundance [72].

Given the diversity of experimental

designs and analysis steps, all these tasks

can rarely be performed in a fully

automated fashion, and consultations with

statisticians are highly recommended.

Downstream Analysis
The high-throughput nature of proteo-

mic data is similar to that of gene

expression microarrays, and many down-

stream analysis methods can also be

applied in proteomics [73]. In particular,

all analyses benefit from data visualization

[74]. Unsupervised class discovery helps find

functionally related proteins, or biological

samples homogeneous with respect to the

quantitative protein profiles. Supervised

class prediction, e.g., prediction of the disease

status of a patient based on his or her

protein abundance [75], and its thorough

validation [76], are the required steps for

discovery of biomarkers of disease.

Enrichment analysis tests whether pre-

specified sets of proteins, e.g., those

sharing a function, change in abundance

more systematically than as expected by

chance. This is referred to as pathway

analysis when the protein set forms a

pathway. The analysis investigates hypoth-

eses that are more directly relevant to the

biological function, and can help detect

small but consistent changes in abundance

within the set. Many enrichment analysis

methods exist and are systematically

reviewed in [77,78], and representative

examples are the hypergeometric (equiva-

lently, Fisher’s exact) test and Gene Set

Enrichment Analysis (GSEA) [79]. A

particular challenge in proteomics is to

map the protein identitifiers to gene-

centric knowledge bases. The tools for this

task are reviewed in [80], and a represen-

tative one is DAVID [81].

A frequently asked question is the

correlation between the expression of pro-

tein-coding genes and the abundances of

the corresponding proteins [82–84]. Many

studies reported that in bacteria and uni-

cellular eukaryotes, proteins and mRNA

exhibit moderate correlation in a steady

state (Pearson correlation of the order of

0.4), but it improves to the order of 0.6–0.7

for proteins that are directly affected by a

relevant condition or a stress [2]. An even

lower correlation has been historically

reported for multi-cellular eukaryotes; how-

ever, technological improvements now also

point to a steady state correlation in human

samples of the order of 0.4 [85].

The moderate correlation of transcript

and protein abundance indicates a major

role of post-translational regulation in the

activity of the cell. Therefore, the best

functional insight can be obtained by

combining measurements across technol-

ogies, and searching for broader groups of

genes, proteins, and metabolites forming

regulatory relationships [86,87]. Such

integrative studies are increasingly appear-

ing [88,89]. They remain challenging,

however, due to the complexity of the

underlying processes, incomplete sampling

of the proteome, uncertainty in protein

identities and difficulties of resolving

multiple proteomic, genomic, and techno-

logical identifiers across platforms. New

specialized methods and algorithms are

needed to address these challenges.

Outlook

Despite the challenges, mass spectrom-

etry–based proteomics continues to bring

high promise for basic science and clinical

research [90]. Several studies recently

demonstrated that with appropriate care

and training, it is now possible to accu-

rately and reproducibly identify and quan-

tify proteins across laboratories and instru-

ment platforms [91–93]. In shotgun

proteomics, most repeatable peptide iden-

tifications corresponded to enzyme-specif-

ic cleavage sites, intense MS peaks, and

proteins that generated many distinct

peptides. Targeted quantification could

reproducibly detect low mg/ml protein

concentrations in unfractionated plasma.

To date, only 65% of all predicted

human proteins have been reliably ob-

served by mass spectrometry [90]. There-

fore, future experimental developments

will focus on improving the sensitivity,

reproducibility, and comprehensiveness of

protein identifications, and the sensitivity

and accuracy of quantification. All studies

consistently emphasize the key role of

computation [94]. Future computational

efforts will involve the development of

proteome-centric knowledge bases such as

neXtProt (http://www.nextprot.org/), re-

positories of experimental data, and the

development of methods for optimal

experimental design and data interpreta-

tion. Venues such as RECOMB Satellite

Conference on Computational Proteomics

[95] aim at closing the communication

gap between biologists, chemists, and

statisticians, and enable integrative and

collaborative research.
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25. Thompson A, Schäfer J, Kuhn K, Kienle S,

Schwarz J, et al. (2003) Tandem mass tags: a

novel quantification strategy for comparative

analysis of complex protein mixtures by MS/

MS. Anal Chem 75: 1895–1904.

26. Geiger T, Wisniewski JR, Cox J, Zanivan S,

Kruger M, et al. (2011) Use of stable isotope

labeling by amino acids in cell culture as a spike-

in standard in quantitative proteomics. Nat

Protoc 6: 147–157.

27. Rifai N, Gillette MA, Carr SA (2006) Protein

biomarker discovery and validation: the long and

uncertain path to clinical utility. Nat Biotechnol

24: 971–983.

28. Yocum AK, Chinnaiyan AM (2009) Current

affairs in quantitative targeted proteomics: Mul-

tiple reaction monitoring-mass spectrometry.

Brief Funct Genomic Proteomic 8: 145–157.

29. Kitteringham NR, Jenkins RE, Lane CS,

Elliott VL, Park BK (2009) Multiple reaction

monitoring for quantitative biomarker analysis in

proteomics and metabolomics. J Chromatogr B

877: 1229–1239.

30. Pan S, Aebersold R, Chen R, Rush J,

Goodlett DR, et al. (2009) Mass spectrometry

based targeted protein quantification: methods

and applications. J Proteome Res 8: 787–797.

31. Lange V, Picotti P, Domon B, Aebersold R (2008)

Selected reaction monitoring for quantitative

proteomics: a tutorial. Mol Sys Biol 4: 1–14.

32. Picotti P, Bodenmiller B, Mueller LN, Domon B,

Aebersold R (2009) Full dynamic range proteome

analysis of S. cerevisiae by targeted proteomics.

Cell 138: 795–806.

33. Picotti P, Rinner O, Stallmach R, Dautel F,

Farrah T, et al. (2010) High-throughput genera-

tion of selected reaction-monitoring assays for

proteins and proteomes. Nat Methods 7: 43–6.

34. Bertsch A, Jung S, Zerck A, Pfeifer N, Nahnsen S,

et al. (2010) Optimal de novo design of MRM

experiments for rapid assay development in

targeted proteomics. J Proteome Res 9: 2696–

2704.

35. Granholm V, Käll L (2011) Quality assessments

of peptide?spectrum matches in shotgun proteo-

mics. Proteomics 11: 1086–1093.

36. Nesvizhskii AI (2010) A survey of computational

methods and error rate estimation procedures for

peptide and protein identification in shotgun

proteomics. J Proteomics 73: 2092–2123.

37. Nesvizhskii AI, Vitek O, Aebersold R (2007)

Analysis and validation of proteomic data gener-

ated by tandem mass spectrometry. Nat Methods

4: 787–797.

38. Lam H, Aebersold R (2011) Building and

searching tandem mass (MS/MS) spectral librar-

ies for peptide identification in proteomics.

Methods 54: 424–431.

39. Jeong K, Kim S, Bandeira N, Pevzner PA (2011)

Gapped spectral dictionaries and their applica-

tions for database searches of tandem mass

spectra. Mol Cell Proteomics 10: M110.002220.

40. Dasari S, Chambers M, Slebos R, Zimmerman L,

Ham A, et al. (2010) TagRecon: high-throughput

mutation identification through sequence tagging.

J Proteome Res 9: 1716–1726.

41. Venable JD, Yates JR (2004) Impact of ion trap

tandem mass spectra variability on the identifica-

tion of peptides. Anal Chem 76: 928–2937.

42. Carr S, Aebersold R, Baldwin M, Burlingame A,

Clauser K, et al. (2004) The need for guidelines in

publication of peptide and protein identification

data. Mol Cell Proteomics 3: 531.

43. Käll L, Storey J, MacCoss M, Noble W (2008)

Assigning significance to peptides identified by

tandem mass spectrometry using decoy databases.

J Proteome Res 7: 29–34.

44. H C, I NA (2008) False discovery rates and

related statistical concepts in mass spectrometry-

based proteomics. J Proteome Res 7: 47–50.

45. Keller A, Nesvizhskii AI, Kolker E, Aebersold R

(2002) Empirical statistical model to estimate the

accuracy of peptide identifications made by MS/

MS and database search. Anal Chem 74:

5383–5392.

46. Moore R, Young M, Lee T (2002) Qscore: an

algorithm for evaluating SEQUEST database

search results. J Am Soc Mass Spectrom 13:

378–386.

47. Gupta N, Pevzner PA (2009) False discovery rates

of protein identifications: a strike against the two-

peptide rule. J Proteome Res 8: 4173–4181.

48. Reiter L, Claassen M, Schrimpf S, Jovanovic M,

Schmidt A, et al. (2009) Protein identification

false discovery rates for very large proteomics

data sets generated by tandem mass spectrometry.

Mol Cell Proteomics 8: 2405.

49. Olsen JV, Ong SE, Mann M (2004) Trypsin

cleaves exclusively C-terminal to arginine and

lysine residues. Mol Cell Proteomics 3: 608–614.

50. Gupta N, Hixson KK, Culley DE, Smith RD,

Pevzner PA (2010) Analyzing protease specificity

and detecting in vivo proteolytic events using

tandem mass spectrometry. Proteomics 10:

2833–2844.

51. Deutsch EW, Mendoza L, Shteynberg D,

Farrah T, Lam H, et al. (2010) A guided tour

of the Trans-Proteomic Pipeline. Proteomics 10:

1150–1159.

52. America AHP, Cordewener JHG (2008) Com-

parative LC-MS: a landscape of peaks and

valleys. Proteomics 8: 731–749.

53. Schulze WX, Usadel B (2010) Quantitation in

mass-spectrometry-based proteomics. Annu Rev

Plant Biol 61: 491–516.

54. Mueller LN, Brusniak MY, Mani DR,

Aebersold R (2008) An assessment of software

solutions for the analysis of mass spectrometry

based quantitative proteomics data. J Proteome

Res 7: 51–61.

55. Sturm M, Bertsch A, Gröpl C, Hildebrandt A,
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