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ABSTRACT

Summary: Software programs that conduct genome-wide association

studies and genomic prediction and selection need to use methodol-

ogies that maximize statistical power, provide high prediction accur-

acy and run in a computationally efficient manner. We developed an R

package called Genome Association and Prediction Integrated Tool

(GAPIT) that implements advanced statistical methods including the

compressed mixed linear model (CMLM) and CMLM-based genomic

prediction and selection. The GAPIT package can handle large data-

sets in excess of 10 000 individuals and 1 million single-nucleotide

polymorphisms with minimal computational time, while providing

user-friendly access and concise tables and graphs to interpret

results.

Availability: http://www.maizegenetics.net/GAPIT.
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1 INTRODUCTION

Advances in high-throughput single-nucleotide polymorphism

(SNP) genotyping are enabling powerful genome-wide associ-

ation studies (GWAS), thereby enhancing the ability to identify

causal mutations that underlie human diseases and agriculturally

important traits. The resulting SNPs are also valuable for gen-

omic prediction and selection (GS), which provides criteria for

disease risk management in humans and expedited selection in

animal and plant breeding (Heffner et al., 2009; Meuwissen et al.,

2001). Before the full potential of GWAS and GS are realized,

inflated false-positive rates, extensive computational require-

ments and suboptimal prediction accuracies need to be

addressed.
Newly developed GWAS statistical methods based on the

mixed linear model (MLM) hold great promise to overcome

these challenges. They are flexible because they incorporate

fixed and random effects. To address the spurious associ-

ations that arise from population structure, covariates from

either STRUCTURE (Pritchard et al., 2000) or principal com-

ponents (PCs) can be included as fixed effects. The cryptic rela-

tionships between individuals are accounted for through

a kinship matrix in the unified MLM (Yu et al., 2006).

The more computationally efficient and powerful compressed

MLM (CMLM) (Zhang et al., 2010) uses a group kinship

matrix calculated from clustered individuals.
Because the typical number of genotypic data points is exceed-

ing hundreds of millions, solving MLMs using the traditional

restricted maximum likelihood approach is computationally

intensive. Therefore, the efficient mixed model association

(EMMA) algorithm (Kang et al., 2008) was developed to

reduce this computational burden by reparameterizing the

MLM likelihood functions. EMMA eXpedited (EMMAX)

(Kang et al., 2010) and population parameters previously deter-

mined (P3D) (Zhang et al., 2010) were independently developed

to further reduce computing time by eliminating the need to

re-estimate variance components at each marker.
Most GS methods make predictions with the sum of the effects

from all available SNPs or Genomic Best Linear Unbiased

Prediction (gBLUP) based on a kinship matrix derived from

these SNPs. The former approach offers higher prediction

accuracies for simpler traits, while the latter approach is more

accurate for complex traits (Daetwyler et al., 2010). Our work
implements an improved gBLUP method that increases accur-

acy, especially for simple traits.

Most software packages were developed for a particular

GWAS or GS approach. For example, packages were written

exclusively for the EMMA and EMMAX algorithms. Other soft-
ware such as the Trait Analysis by aSSociation, Evolution and

Linkage (TASSEL) (Bradbury et al., 2007) and PLINK (Purcell

et al., 2007) make multiple GWAS approaches available in one

package. We continue these software development efforts

by creating Genome Association and Prediction Integrated

Tool (GAPIT), which integrates the most powerful, accurate

and computationally efficient GWAS and GS methods into a

single R package.

2 IMPLEMENTATION

The GAPIT program accepts several combinations of genotypic

data, phenotypic data, externally obtained kinship matrices, and*To whom correspondence should be addressed.
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covariates such as population structure and age. Multiple traits

can be stored in a single phenotypic dataset, which allows se-

quential analysis of each trait. The genotypic data may be stored

in HapMap or numerical formats. If genotypic data are absent,

then phenotypic data and a kinship matrix are required to

perform GS.
By default, GAPIT uses the CMLM approach with P3D/

EMMAX for GWAS. GS is performed using the same optimiza-

tion settings as GWAS (Supplementary Sections I and II and

Fig. S1). There is an option to perform GS only by specifying

‘SNP.test¼FALSE’. Seven algorithms are available to cluster

individuals into groups. GAPIT can also perform the MLM

and GLM approaches by adjusting the ‘group.to’ and ‘group.-

from’ input parameters. When the kinship matrix is not pro-

vided, it will be calculated with the methods of VanRaden

(VanRaden, 2008), Loiselle (Loiselle et al., 1995) or EMMA

(Kang et al., 2008). GAPIT can also perform principal compo-

nent analysis of the genotypic data to control for population

structure (Zhao et al., 2007).

GAPIT has several strategies for analyzing large SNP datasets.

One is to import genotypic data stored in multiple smaller files.

If these files still exceed memory limits, the ‘file.fragment’ par-

ameter can be used to sequentially load fragments within each

file. If there is not enough memory to use all SNPs to calculate

the kinship matrix and PCs, then the ‘SNP.fraction’ input par-

ameter will select a random sample of the SNPs for these calcu-

lations (Yu et al., 2009).

The results from GAPIT are accessed as both objects within

the R workspace and as external files. The R objects, which

include GWAS and GS results, may be used for follow-up

analyses in R. The external files include publication-ready sum-

maries of GWAS and GS results. GWAS results are summarized

by Manhattan plots, quantile–quantile plots and a table.

Similarly, GS results are presented in a heat map and a table.

Graphs of the heritability estimates and the likelihood func-

tion at various compression levels are included. A subset of

the graphs and tables produced by GAPIT are presented in

Figure 1.

3 PERFORMANCE TESTS

EMMA and TASSEL were compared with GAPIT. These two

packages were selected because both use the EMMA algorithm,

while TASSEL also implements the CMLM approach with P3D.

When the same approach was used, identical results were ob-

tained (Supplementary Figs S2 and S3). The computing time of

all three packages increases linearly with the number of SNPs

(Supplementary Fig. S4). However, the average computing time

per SNP in GAPIT is 7-fold and 180-fold faster than TASSEL

and EMMA, respectively (Supplementary Fig. S4). It took 69.5 h

to analyze a dataset with 11 000 individuals and 500 000 SNPs,

which extrapolates to 7195 SNPs/CPU hours or less than 6 days

to analyze 1 million SNPs.

4 CONCLUSIONS

This R package uses state-of-the-art mixed model methods to

conduct GWAS and GS. GAPIT analyzes large datasets with

minimum computational time and produces comprehensive re-

sults including R objects and high-quality graphs.

Fig. 1. Gallery of GAPIT output. (a) Plot of the first two principal com-

ponents (PC1 and PC2). (b) Plot of twice the negative log likelihood

(-2LL, smaller is better) at various number of groups. (c) Graph showing

the optimum cluster algorithm, method to calculate group kinship, group

number, -2LL, and the proportion of genetic variance (group heritability)

and residual variance. (d) Distribution of best linear unbiased predictors

(BLUPs) and their prediction error variance (PEV) (e) Genomic predic-

tion and selection output summary. The individual id (taxa), group,

RefInf which indicates whether the individual is in the reference group

(1) or not (2), the group ID number, the BLUP and the PEV of the

BLUP. (f) Manhattan plot. �log P-values are plotted against physical

map position of SNPs. Chromosomes are alternatingly colored.

(g) Quantile–quantile (QQ) plot determines how GWAS results compare

to the expected results under the null hypothesis of no association.

(h) Output table of GWAS results. The SNP id, chromosome, bp pos-

ition, P-value, minor allele frequency (maf), sample size (nobs), R2 of the

model without the SNP, R2 of the model with the SNP and adjusted

P-value following a false discovery rate-controlling procedure

(Benjamini and Hochberg, 1995).
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