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ABSTRACT

Motivation: The functioning of biological networks depends in large

part on their complex underlying structure. When studying their

systemic nature many modeling approaches focus on identifying

simple, but prominent, structural components, as such components

are easier to understand, and, once identified, can be used as

building blocks to succinctly describe the network.

Results: In recent social network studies, exponential random graph

models have been used extensively to model global social network

structure as a function of their ‘local features’. Starting from those

studies, we describe the exponential random graph models and

demonstrate their utility in modeling the architecture of biological

networks as a function of the prominence of local features. We argue

that the flexibility, in terms of the number of available local feature

choices, and scalability, in terms of the network sizes, make this

approach ideal for statistical modeling of biological networks. We

illustrate the modeling on both genetic and metabolic networks and

provide a novel way of classifying biological networks based on the

prevalence of their local features.

Contact: saul@cs.ucdavis.edu

1 INTRODUCTION

The goal of much of systems biology is to understand the
functioning of biological systems which, in large part, depends

on their complex underlying structure. Summarizing a biolo-

gical system into a network representation lets us study the
complex structure via the interactions among its components

and the simple recurring patterns, or features, which they form.
Thus, when studying the systemic nature of biological networks

many modeling approaches focus on simple, but prominent,

structural features, as they are easier to understand than the
global networks and, once identified, can be used as building

blocks to succinctly describe the network.
One class of approaches, statistical network modeling, has

recently gained visibility in the systems biology community,

and a number of methods and models have been proposed
as frameworks for investigating large biological networks

(Barabási and Albert, 1999; Milo et al., 2002; Pržulj et al.,

2004). In those studies, features like node degree distribution

and small connected subgraphs (graphlets), have been demon-

strated to capture well some facets of biological network

structure, but tools that allow us to systematically study these

and other local features, as well as the ways they collaborate to

form the network architecture, are needed.

Outside of biology, statistical network modeling has a long

history in the social and economic networks literature. For

example, the concept of network motifs, small subgraphs that

appear in a graph more often than expected due to chance (Milo

et al., 2002), were studied under the name triad census in 1970

(Holland and Leinhardt, 1970). Because biological networks are

much larger than social networks, application of social network

models has not historically been possible. However, recent

advances both in understanding of the behavior of these models

and in the availability of multiprocessor technology have made

some application to biological networks feasible and should

continue to make further application possible.

Scaling up from recent social network modeling efforts, this

article discusses modeling biological networks using a family of

statistical models called exponential random graph (ERG)

models, also known as p* models. ERG models provide a tool

to further our understanding of the network-scale interactions

in biological systems. We are particularly interested in studying

the way that a network’s global structure (and function) depend

on its local structure. How does one use an understanding of

local notions such as protein–protein interaction, synthetic

lethality or even node degree to understand the more global

notion of the function of a network system? In this article, we

make the following contributions:

� we introduce exponential random graph models for

biological network exploration;

� we discuss the process of modeling biological networks

using ERG models, including the choice of explanatory

variables and fitting methods;

� we illustrate the modeling on genetic networks, metabolic

networks and power-law random networks;

� we provide a novel way of classifying biological networks

based on the prevalence of their local features.

Many models currently used for biological networks are

descriptive, and simply specify a feature of a graph. For

example, power-law networks (sometimes called scale-free) are*To whom correspondence should be addressed.
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described as networks with a node degree distribution governed

by a power law (Barabaási and Albert, 1999). Other biological

network models specify a procedure for creating networks.

Erdös–Rényi random graphs are created by considering each

pair of nodes in a given node set as a potential edge. For each

potential edge, a fair n-sided die is cast, if the die comes up

above a given threshold, the edge is included. Otherwise, it is

not. An exponential random graph model takes a different,

more general, approach.
An ERG model models the probability distribution function

(pdf) for a given class of graphs. Given an observed graph

and a set of explanatory variables on that graph the pdf

is estimated. The pdf provides a concise summary of the class of

graphs to which the observed graph belongs, i.e. the pdf can

be used to calculate the probability that any given graph is

drawn from the same distribution as the observed graph.

The advantage of this approach is that it is very general

and scalable as the architecture of the graph is represented

by locally determined explanatory variables, and the choice

of explanatory variables is quite flexible and can be

easily amended.

The rest of this article is organized as follows. In Section 2,

we discuss the theory of exponential random graph models and

how to fit them. Section 3 contains the description of the

network data sets that we used to evaluate the ERG modeling.

In Section 4, we discuss the models that we fitted and good-

ness of fit measurement for ERG models. Section 5 covers the

results of our explorations and our experiences with both

maximum pseudo-likelihood estimation (MPLE) and Markov

chain Monte Carlo maximum likelihood estimation (MCMC

MLE). Finally, Section 6 summarizes our conclusions, present-

ing the benefits of exponential random graph models for

biological networks.

2 EXPONENTIAL RANDOM GRAPH MODELS

We wish to model the probability distribution of networks

explained by a given set of explanatory variables (or local

patterns). Any function from the observed graph to the real

numbers can act as an explanatory variable. As with all models,

the variables to be included in an exponential random graph

model are determined by the modeler based on what features

of the graph under study are thought to be pertinent.

An example, non-exhaustive, set of explanatory variables is

given in Table 1.

Let X be a random variable representing the matrix form

of a biological network from a particular class of networks.

To model this class of networks, we need to estimate the

probability distribution function ( PDF ) for X, PðX ¼ xÞ. That

is, if this PDF were known, we would know the probability that

an observed graph, x, is of the type of graph that our random

variable X represents. Unfortunately, the probability distribu-

tion function of X is unknown. Therefore, we cannot directly

calculate PðX ¼ xÞ.
However, we can model PðX ¼ xÞ with a log linear model.

To do so, we need first to identify a vector of explanatory

variables, zðxÞ ¼ ðz1ðxÞ; z2ðxÞ; . . . ; zrðxÞÞ. These explanatory

variables can be any graph statistic (e.g. number of triangle

subgraphs) or any node statistic (e.g. molecular weight of

molecule), but each explanatory variable should be a function

of the observed data. To model the pdf of X, we postulate that

there exists h ¼ ð�1, �2, . . . , �rÞ such that:

logðPðX ¼ xÞÞ / �1z1ðxÞ þ �2z2ðxÞþ; . . . ;þ�rzrðxÞ ð1Þ

/ hTzðxÞ ð2Þ

Exponentiating both sides and adding a normalizing

constant, �ðhÞ, to assure that the probabilities will sum to

one, we get the following model:

PðX ¼ xÞ ¼
eh

T

zðxÞ

�ðhÞ
ð3Þ

This model is the standard log linear probability model that

is used in a wide range of fields from the social sciences to

biology (Infante-Rivard et al., 2006; Kaplan, 2004).

Depending on which two of x, h and zðxÞ are known, the

third can be estimated or solved for. In practice, zðxÞ is a

starting point and we are typically interested in the other two

quantities. For a given h and statistics zðxÞ, one can simulate

networks drawn from the probability distribution PðX ¼ xÞ.

The values h can be thought of as weights for the various

variable values with stronger weights indicating that a variable

more strongly determines the properties of the network

distribution.
On the other hand, having observed a data matrix x and

explanatory variables zðxÞ; one is interested in fitting, or

estimating, the model parameters h to the observed data,

thereby characterizing the network x in terms of the relative

importance of the explanatory variables in determining the

response variable (Anderson et al., 1999).
In this article we are interested in the latter, the model, or

parameter fitting part, i.e. we would like to estimate h, the

vector of model parameters. Standard maximum likelihood

estimation of the parameters are difficult to apply in this case,

because the function for the normalizing constant �ðhÞ is not

known a priori. However, calculating �ðhÞ can be avoided by

approximating the probabilities based on differences in the zðxÞ

statistics. There are two methods commonly used in the

statistics and social networks communities to estimate the

maximum likelihood fit to exponential random graph models,

Markov chain Monte Carlo maximum likelihood estimation

and maximum pseudo-likelihood estimation. They can also be

used for network simulation. We describe them briefly next,

and note their respective strengths and weaknesses and the

types of networks to which they can be applied.

2.1 MCMC MLE fitting

Markov chain Monte Carlo maximum likelihood estimation

(MCMC MLE) refers to a family of methods based on

the Newton–Raphson algorithm for maximum likelihood

estimation. Let lðhÞ be the vector of expected values of

the explanatory variables and RðhÞ be the covariance

matrix under a given parameter vector h. Then, the
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standard Newton–Rhapson algorithm with iteration step

ĥ ðnþ1Þ ¼ ĥðnÞ � RðĥðnÞÞ
� ��1

lðĥðnÞÞ � zðxÞ
� �

would normally be

used to find the maximum likelihood estimate of h. However,

this is not feasible for exponential random graph models

because lðhÞ and RðhÞ are not known. MCMC likelihood

estimation gets around this problem by estimating lðhÞ and

RðhÞ. It does so by simulating the distribution of graphs given h

and estimating lðhÞ and RðhÞ based on a sample from the simu-

lated distribution. The simulation is typically achieved through

a standard MCMC process using either Gibbs sampling or the

Metropolis–Hastings algorithm (Snijders, 2002).

There are a number of software packages available to fit

exponential random graph models using MCMC MLE.

These include the statnet package for the R statistical

computing environment (Handcock et al., 2003) and the

SIENA Software (Snijders et al., 2006).

However, ERGM fitting using MCMCMLE methods is only

lately becoming possible, because of both computational

and degeneracy problems. Computationally, networks with

approximately 500 nodes are the largest that can usually be

fitted on current hardware, although sparse thousand node

networks have recently been fitted successfully (Goodreau,

2007). Biological networks typically have thousands (regulatory

networks) if not tens of thousands of nodes (protein–protein

interaction networks) and many of them will soon come within

reach of the current technology, although for multiple model

fitting of such networks parallel machines are recommended.
More fundamentally, though, some connected sets of fitted

parameters correspond to degenerate networks (e.g. graphs

with almost no edges or nearly complete graphs) and the

MCMC MLE methods exhibit convergence problems when

encountering such neighborhoods, yielding networks that do

not resemble the original data. Important recent work by

Snijders et al. (2006) has dealt with this problem of degeneracy

and has suggested practical approaches for avoiding it. In a

nutshell, whenever strong transitive relationships are suspected

in a network, Snijders et al. suggest to use at least one of two

aggregate variables: the geometrically weighted degree and the

geometrically edgewise shared partners (presented in Table 1).

These variables can be used alone, or together with their

simpler counterparts, the node degrees and number of triangles

in the network and have been used successfully to fit even large

networks (Goodreau, 2007).

2.2 Maximum pseudo-likelihood estimation (MPLE)

The logit p* model is a model related to p* (ERGM) in such a

way that the maximum likelihood set of parameters of a logit p*

model is an estimate of the maximum likelihood parameters of

the corresponding p* (ERG) model. The logit p* model has no

normalizing constant, �ðhÞ, thus allowing normal maximum

likelihood estimation to be used to fit the logit p* model.

Estimation of the parameters of a p* network by estimating the

parameters of the corresponding logit p* model is called

maximum pseudo-likelihood estimation. The following descrip-

tion is a synthesis of the descriptions presented in the social

networks literature (Anderson et al., 1999; Wasserman and

Pattison, 1996).

Let xþij refer to the matrix representation of a graph identical

to the observed graph x except that in xij the edge from i to j is

guaranteed to exist; let x�ij refer to the matrix representation of

a graph identical to x except that the edge from i to j is

guaranteed not to exist, and let xcij represent the matrix identical

to that of the observed graph with the exception that there is no

entry at position ði, jÞ in xcij. This single piece of information is

missing from xcij.

A logit is the log odds of a binary random variable. That

is, for some binary random variable, Y, the logit is

log PðY ¼ 1Þ=PðY ¼ 0Þð Þ. The random variable, X, in the p*

model is not binary, but we can get around this limitation if we

consider the set of binary random variables fXijg, where Xij ¼ 1

indicates that there is an edge between nodes i and j. If we

model the conditional distributions, PðXij ¼ 1jxcijÞ, PðX ¼ xÞ

can be calculated by the Hammersly–Clifford theorem

(Wasserman and Pattison, 1996).

Now, note the following:

PðXij ¼ 1jxcijÞ ¼
PðX ¼ xþij Þ

PðX ¼ xþij Þ þ PðX ¼ x�ij Þ
ð4Þ

Using this probability, we can write the expression for the

odds ratio of the graph with the edge linking i and j to the graph

without this edge.

PðXij ¼ 1jxcijÞ

PðXij ¼ 0jxcijÞ
¼

PðX ¼ xþij Þ

PðX ¼ x�ij Þ
ð5Þ

Table 1. This table shows example explanatory variables. As can be

seen from the wide variety of variables, ERG models are flexible

Variable Description

k-Star The number of nodes in the network

with exactly k adjacent edges with

unconnected end points.

Triangle The number of 3-cycles in the network.

k-Cycle The number of k-cycles in the network.

k-Degree The number of nodes in the graph with

degree k.

k-Edgewise shared

partners

The number of edges in the network that

have exactly k shared partners.

Geometrically

weighted degree

The weighted sum of the counts of

each degree, weighted by the geometric

sequence, ð1� e��Þ
i where

� is a decay parameter.

Geometrically

edgewise shared

partners

The weighted sum of the number of edges

in the network that have exactly i shared

partners weighted by the geometric sequence,

ð1� e��Þ
i where � is a

decay parameter.

Maximum geodesic The length of the longest of the shortest paths

between each pair of nodes.

Edge count The number of edges in the graph.

Node count The number of nodes in the graph.

Isolates The number of nodes in the network

with no neighbors.
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Next, substituting Equation(3), we get the following:

PðXij ¼ 1jxcijÞ

PðXij ¼ 0jxcijÞ
¼

eh
Tzðxþ

ij
Þ

eh
Tzðx�

ij
Þ

ð6Þ

¼ eh
T ½zðxþ

ij
Þ�zðx�ij Þ� ð7Þ

Next, take the log of both sides to get the log odds ratio (logit)

for the edge (i, j), which we will call !ij:

!ij ¼ log
PðXij ¼ 1jxcijÞ

PðXij ¼ 0jxcijÞ

" #
ð8Þ

¼ hT½zðxþij Þ � zðx�ij Þ� ð9Þ

Defining dði, jÞ ¼ ½zðxþij Þ � zðx�ij Þ�, gives a succinct statement of

logit p*:

!ij ¼ hTdði, jÞ ð10Þ

Thus, the logit for each pair of nodes (i, j) is the product of the

model parameters and the vector of network statistics that

arises when variable Xij changes from 1 to 0. This last vector,

dði, jÞ is called the difference statistics vector.
Fitting using MPLE is computationally a much simpler task

than MCMC MLE as it reduces to solving a logistic regression.

In practice, 1000 node sparse networks can fit fairly quickly on

modern hardware. However, although both MCMC MLE and

MPLE are an approximative methods for estimating the model

parameters, there are indications that in practice MPLE may

do worse than MCMC MLE (Geyer and Thompson, 1992).

This is especially the case for networks which have strong

dyadic dependence (i.e. edges are dependent on other edges

given the rest of the graph). Note that the MPLE estimate

corresponds to the exact solution when no dyadic dependences

exist in the graph. In practice, MPLE may be a good

approximation when the dyadic dependence is weak.

3 DATA

Our goal in this article is to illustrate the fitting of different

biological networks using ERG models and to note the

differences between the best fitted models and parameters for

each of several networks. Thereby, we can learn which variables

characterize which classes of networks and possibly identify

groups of networks with very similar fits and, hence, similar

architectures. To that end, we evaluated exponential random

graph modeling using biological networks of different origin,

size and types. First, we studied two transcriptional regulation

networks. The first is an updated Escherichia coli network

(Shen Orr et al., 2002) based on the well-known network

available from RegulonDB (Salgado et al., 2001). In this

network, each node represents an operon, and an edge from

one operon to another indicates that the first operon encodes

the transcription factor that regulates the second. This network

contains 418 nodes and 578 edges. The second transcriptional

regulation that we studied is the network of TF-DNA binding

for yeast (Lee et al., 2002), containing 106 transcription factors

and 6270 genes and 1842 edges. We used three nested versions

of this network created with different edge inclusion thresholds

corresponding to binding P-values of 0.01, 0.001 and 0.0001.

Second, we considered a collection of metabolic networks for
43 organisms introduced in an earlier work (Jeong et al., 2000),

coming from the WIT database. This database contains

metabolic pathways that were predicted using the sequenced
genomes of the several organisms. The nodes in these networks

are enzymes, substrates and intermediate complexes, and the

edges indicate an interaction. Of the 43 organisms, 6 are archea,
5 eukaryotes and 32 bacteria. The sizes of the networks vary

from 595 nodes and 1354 edges to 2982 nodes and 7300 edges.

This group of biological networks are particularly important to
our task at hand of classifying networks based on structural

similarity between them because of two reasons: (1) all 43

networks are fairly similar to each other as they all contain
basic metabolic pathways which are fairly conserved along

the evolutionary tree. Thus, we expect that the same choice

of variables would provide good fits for all of them;
and (2) because these networks summarize relationships

between proteins and metabolites and vice-versa, they are

bipartite graphs. Hence, they have no trivial transitive relation-
ships and are likely to have low dyadic dependence, which

makes them well suited for the MPL estimation method.
Finally, we generated two random power-law networks. We

did so using the preferential attachment model (Barabási and

Albert, 1999). This model grows a network from one edge,
adding new nodes one at a time, attaching each to an existing

node with probability proportional to the degree of that node.

Both networks generated had 1000 nodes and approximately
3900 edges. In total, we used 49 large networks and treated all

of them as undirected graphs.

4 METHODS

We fitted a number of different models to the different networks

described above and investigated the relative importance of many

different explanatory variables in these networks. In addition, we

studied the relative merits of the two available methods to estimate the

fit of an exponential random graph model.

4.1 Fitting ERGMs with MCMC MLE and MPLE

The variables, zðxÞ, used in an ERGmodel can be any function from the

observed graph x to the real numbers. However, as can be seen from

Equation (10), the variables actually used are dði, jÞ, the vector of

difference statistics. These difference statistics are the differences

between the value of z when (i, j) is forced to be present in the graph

and the value of z when (i, j) is forced to be absent.

To fit the ERG models with both MCMC MLE AND MPLE

methods, we used the statnet package (Handcock et al., 2003) for the

R statistical computing environment. We fit several models to networks

of different types and sizes using both MCMC MLE and MPLE.

Although we were able to fit many of our networks using both methods,

we also found that for a sizable fraction of the biological networks in

our study it was computationally intractable to fit models using MCMC

MLE. Based on the networks that we were able to fit (a selection of

which is given in Section 5), it seems that MPL fitting is often an

appropriate substitute for MCMC MLE in fitting biological networks,

possibly because of their low dyadic dependence.

4.2 Explanatory variables

We illustrate the process of choosing the explanatory variables on the

E.coli regulatory network from RegulonDB. The software statnet

Exploring biological network structure
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supports a number of explanatory variables for undirected networks.

These include Edges, k-Star, k-Degree, k-Cycle, k-ESP, GWDegree,

GWESP and Isolates. For detailed descriptions of each of these

variables, see Table 1. The GWDegree and GWESP variables are used

to address the degeneracy issues mentioned before in Section 2.1.

To determine the variables to use in our model, we used an iterative

exploratory technique of progressively increasing the model complexity.

First, we fitted single variable models consisting of each of the possible

variables. Then, using the Akaike Information Criterion (AIC), the

goodness of fit (gof) technique outlined below and the built-in goodness

of fit method in statnet, we selected several pairs of variables to form

models. We repeated this technique for models with 3 – 8 variables. Our

results are discussed below.

4.3 Goodness of fit

Evaluating the importance of an explanatory variable or group of

variables to the fit of an ERG model can be achieved by fitting the

model both with and without the variables in question and comparing

the goodness of fit of the two models.

By goodness of fit, we simply mean how well the model fits. To

estimate how well a model fits, statnet has a function that simulates a

sample of networks using the fitted model and, then, compares the

values of several explanatory variables in the original network to the

values of the same variables in the sampled networks. For the purposes

of our study, we created an additional method to estimate the goodness

of a fit. We compared the overlap, in terms of edges, between the

observed network and our own sample of networks simulated using the

fitted model.

In particular, to evaluate the importance of each explanatory

variable, we fitted several nested models as discussed in Section 5.2.

We used the fitted models to sample 30 networks (using statnet’s

function simulate.ergm). Then, for every pair of nodes in the original

graph, we counted the number of times that pair of nodes was adjacent

in our sample of 30 graphs. Using these observed adjacency frequencies,

we estimated probability of an edge (pi,j) between each pair of nodes i

and j (i.e. we normalized the observed frequencies).

We, then, created 99 nested networks, one for each

p 2 f0:99, 0:98, . . . , 0:01g. In each network, we allowed edge (i, j) iff

pi, j > p. Then, interpreting each pair of nodes in each network as a

prediction as to the presence or absence of an edge in the original

biological network, we calculated the false positive rate and the false

negative rate of these predictions. We plotted these 99 pairs of false

positive and false negative rates as a receiver operating characteristic

(ROC) curve (Fig. 1).

5 RESULTS AND DISCUSSION

Using an 80-processor cluster, we performed the iterative model

fitting procedure described above, fitting every model to the

RegulonDB E.coli network using MCMC MLE. The fits of a

few sample models of various complexity are shown in Table 2.
We used the RegulonDB network for the iterative fitting

procedure because it was one of the smallest that we considered

and fitting our large, biological networks with MCMC MLE

was very difficult.
Comparing the rows of Table 2 pairwise can be illustrative.

For example, by comparing M1 and M4, one can see the effect

of removing the k-Deg variables from the full model. This

removal strongly changes the other fitted parameter values.

Fig. 1. We used the fitted parameters to sample several networks and

then using the sampled networks as an edge predictor of the original

network, and we calculated a false positive rate and a false negative

rate. This plot shows the false positive rate versus the false negative rate

(an ROC plot). The models that included gwdegree and 2star or edges

all performed well.

Table 2. The parameter values for several sample models fitted to the RegulonDB E.coli network (using MCMC MLE and MPLE)

Fitted with MCMC MLE Fitted with MPLE

2-Deg 3-Deg 4-Deg 5-Deg 2-Star Edges GWDeg AIC 2-Deg 3-Deg 4-Deg 5-Deg 2-Star Edges GWDeg AIC

M1 �1.71 �2.22 �2.42 �3.05 0.011 10.6 �3.78 4976 �1.44 �2.08 �2.33 �3.03 0.011 10.5 �3.77 5010

M2 �1.49 �2.18 �2.48 �3.15 0.038 – �1.08 4981 �1.51 �2.18 �2.44 �3.15 0.038 – �1.07 5020

M3 �1.63 �2.53 �2.98 �3.53 – – �0.928 5262 �1.63 �2.41 �2.72 �3.53 – – �0.911 5300

M4 – – – – �0.079 48.6 �13.8 5410 – – – – �0.079 48.6 �13.8 5450

M5 – – – – – 19.2 �6.32 5482 – – – – – 19.2 �6.32 5520

M6 – – – – 0.047 – �1.47 5581 – – – – 0.047 – �1.45 5620

M7 – – – – – – �1.35 6078 – – – – – – �1.33 6120
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The increased weighting of GWDegree can account for the

removal of the k-Deg variables because GWDegree is a

summary statistic for all of the k-Deg variables. Next, compare

M2 and M3; this represents the removal of the 2-Star variable

from the model. In this case, the other model parameter values

do not significantly change, indicating the independence of 2-

Star from all the other parameters.

After we had explored several models using the RegulonDB

network, we attempted to fit a few of them to other, larger

networks using MCMC MLE. A few larger networks that we

were able to fit can be seen in Table 3, where only the best

fitting models are reported.
Comparing the rows in Table 3, shows that the parameter

choice will need to vary from network to network. For

example, the value for Triangles varies wildly across all of the

networks. In fact, the two networks with large, anomalous

values for the Triangles variable are both not likely to contain

many triangles because of their structure. This example shows

the importance of picking the correct parameters when

attempting to fit a network.
Although some authors have reported that fitting large

networks with MCMC MLE can lead to diverging parameter

estimates (Goodreau, 2007), we found this not to be the case

with our biological networks. For every network and model

that we attempted to fit, the parameter estimates either

converged or appeared to be converging to finite values.
Additionally, as mentioned above, the GWDegree variable

was included in most of our models because it has been shown

in earlier work to reduce degeneracy in the model fits. However,

including this variable tended to slow computation and may

have prevented fitting from finishing for some models on larger

networks.

5.1 Comparison of MCMC MLE and MPLE

We were able to fit several of the large biological networks in

our data set using MCMC MLE, but we were not able to fit all

of them. At this time, MCMC MLE is probably not feasible for

many large networks such as seen in bioinformatics. Each

iteration in the MLE algorithm requires the simulation of a

sample population of networks using MCMC, but this process

is quite time and space intensive for large networks. Simply

because large networks have more edges, the mixing time

for Gibbs sampling is longer. So, each network in the

population takes much longer to simulate, and each iteration

in the MLE requires from hundreds to thousands of networks
be simulated.

Although MCMC MLE provides superior fits over max-
imum pseudo-likelihood estimation, we would like to know if

we can use MPLE as a substitute fitting method for networks
where MCMC MLE fails. To answer this question, we
compared the model fits to the RegulonDB network, where

we were able to fit using both MCMC MLE and MPLE.
MCMC MLE and MPLE fits can be compared in Table 2.

The results show that for these models, the parameter values

are quite similar. Further, for all of the models and networks
given in Table 3, the parameter values are also similar for the

MCMC MLE and MPLE fits. Unfortunately, we were unable
to include the MPLE parameter values here due to space con-
straints. In addition, previous researchers have shown that

MCMC MLE is superior to MPLE when there is strong dyadic
dependence, but there is not necessarily strong dyadic

dependence in biological networks. For example, in the WIT
networks, there are no triangle graphlets. So, in cases where
strong dyadic dependence is not suspected, MPLE fitting can

serve as a computationally feasible substitute for MCMC MLE
fitting.

5.2 Goodness of fits

After fitting the nested sequence of models, we performed the

goodness of fit test described in Section4.3. The results can be
seen in Figure 1. We found that with biological networks, we
achieved acceptable fits as long as we included the network

statistic GWDegree. This is in line with similar results in social
networks and biology. The degree distribution of the network

appears to be a contributing factor in the overall structure.
However, as can be seen in Figure 1, the various k-Degree
variables are not, in themselves, enough to give the best fit.

5.3 Classifying Networks via Their Topological Profiles

Associating network topology to biological function is a major

goal in systems biology. Recently, researchers have reported
success characterizing networks by using network motif profiles
to classify various evolved and designed networks (Milo et al.,

2004). Others have similarly used local network topology to
infer the likeliest mechanisms of the networks’ evolution or

design (Middendorf et al., 2005).
To demonstrate the utility of ERGMs for biological network

modeling, we sought to classify all 49 networks in our data set

using each network’s fitted parameters as its profile. We chose

Table 3. The results of fitting three models on several larger networks

Name Nodes Edges Triangles 2-Star 4-Cycle GWDegree GWESP AIC

Scale free 1 1000 3933 0.026 0.027 �0.022 �1.97 – 43979

Scale free 2 1000 3875 0.082 0.026 �0.031 �1.95 – 43813

Sacharomyces cerevisiae

(ChIP-chip)

6270a 1842 136 �1.13 1.14 – �60.8 189702

Aeropyrum pernix (WIT) 595 1354 �14.7 �0.005 0.120 �1.68 – 12179

aThis network has 106 transcription factors and 6270 genes.
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to use the model model ¼ 4Deg þ 5Deg þ 2Star þ GWDegree

for each of the networks and fitted the model using maximum

pseudo-likelihood estimation. As mentioned before, using

MPLE instead of MCMC MLE here was acceptable because

the WIT networks were found to have low transitivity and

likely low dyadic dependence.
We calculated the Euclidean distance matrix between the

parameter profiles of all the networks and used it to cluster the

set of networks using complete-linkage hierarchical clustering.

The symmetric heatmap of the distance matrix is given in

Figure 2, with the cluster dendrogram attached on top. The

apparently strong cluster structure within it indicates that

ERGM parameter profiles can be used as a means to classify

these networks.
Looking at the whole heatmap, the clusters segregated

strikingly well the networks by biological type or experimental

origin. Namely, the two scale-free random nets were clearly

separated from all the other networks. Similarly, the E.coli gene

network clustered together with the three TF-DNA gene

networks from ChIP-chip studies, while all four together were

well isolated from the other clusters. Of note here is that the

gene networks exhibit different architecture from the two scale-

free networks. In addition all 43 WIT metabolic networks

clustered closer together than to either the scale-free or gene

regulation networks.

Next, it is very interesting to examine the clusters of only the

43 metabolic networks. Here, we give some very general

taxonomic and functional observations which were derived by

consulting bacterial resources on the Internet, in particular

EBI’s Karyn’s Genomes website.1 In the following, we use the

two letter abbreviations for the 43 organisms from Figure 2,
given on the X axis. First, of note is the fact that the five
eukaryotic genomes AT, EN, OS, SC and CE clustered near

each other, because of their very similar parameter profiles as
evidenced by the dendrogram, while the six archea organisms
were spread around in different clusters. Second, one of the

clusters was comprised almost exclusively (13 out of 16
organisms) of non-motile organisms (the cluster at the lower
right corner of the heatmap), while another cluster (fourth from

the top along the diagonal) all but one of the organisms (DR)
were motile. Finally, the fifth cluster from the top consists of
only eukaryotes and anaerobic bacteria.

Although appealing, it is impossible to speculate further on
the reasons for, or the meaning behind the functional features
or phenotypes of organisms clustered together without a more

detailed associative study of the parameter profiles and
organisms features.
These results make it plausible that ERGMparameter profiles

can be used for structural classification of different biological
networks. They also raise the possibility that functional features

of organisms that have a systemic level network manifestation
aremore likely to come up as class differentiators in such studies.
Hence, classification using parameter profiles derived from

ERGM models can be potentially used to identify system level
functional features in biological networks.

6 CONCLUSION

In this article we have introduced exponential random graph

models, a family of network models that have previously
been used to study social networks, and we have demonstrated
their utility in modeling biological networks. In addition,

we have argued that fitting exponential random graph
models to biological networks can best be achieved using
pseudo-likelihood maximization. We demonstrated that topo-

logical profiles derived from biological networks by fitting
ERG models can be used to classify organisms in clearly
separate biological and functional groups.

There are a number of reasons that exponential random graph
models should be considered for use in biology. First, the
statistics underlying ERG models are more principled than seen

in the previous network modeling efforts in biology. Previous
efforts in biology have relied on comparing networks to
simulated random networks (which depend heavily on the

random model) or investigating a single network feature such as
degree distribution (Albert and Barabási, 2000; Barabási and

Albert, 1999; Milo et al., 2002, 2003; Yeger-Lotem et al., 2004).
Second, exponential random graph models allow for much more
flexibility than current biological network models. As seen in

Table 1, the explanatory variables can be almost anything
including subgraph counts, shortest path lengths, clusteredness
and simple graph statistics. This flexibility allows researchers to

ask and answer specific questions. For example, researchers have
suggested that PPI networks are arranged in a hierarchy of
modules (Han et al., 2004). The hierarchy is usually identified

using one or more properties of the nodes in the network. Logit
p* models provide an independent method to investigate this
phenomenon. A further reason that exponential random graph

models should be considered for biological networks is that they
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Fig. 2. Heatmap of the Euclidean distance matrix of the networks’

profiles.

1http://www.ebi.ac.uk/2can/genomes/genomes.html
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provide an excellent framework for the comparison of networks.
Finally, exponential random graph models provide a method to
control for lower order effects by including them in the model.
That is, if there is a suspected bias in the parameter of interest

due to some lower level variable, the researcher can test and
correct for this bias by including a parameter for the lower level
variable in the model.
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