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Abstract

Drug-drug interactions (DDIs) are a common cause of adverse drug events. In this paper, we combined a literature discovery
approach with analysis of a large electronic medical record database method to predict and evaluate novel DDIs. We
predicted an initial set of 13197 potential DDIs based on substrates and inhibitors of cytochrome P450 (CYP) metabolism
enzymes identified from published in vitro pharmacology experiments. Using a clinical repository of over 800,000 patients,
we narrowed this theoretical set of DDIs to 3670 drug pairs actually taken by patients. Finally, we sought to identify novel
combinations that synergistically increased the risk of myopathy. Five pairs were identified with their p-values less than 1E-
06: loratadine and simvastatin (relative risk or RR = 1.69); loratadine and alprazolam (RR = 1.86); loratadine and duloxetine
(RR = 1.94); loratadine and ropinirole (RR = 3.21); and promethazine and tegaserod (RR = 3.00). When taken together, each
drug pair showed a significantly increased risk of myopathy when compared to the expected additive myopathy risk from
taking either of the drugs alone. Based on additional literature data on in vitro drug metabolism and inhibition potency,
loratadine and simvastatin and tegaserod and promethazine were predicted to have a strong DDI through the CYP3A4 and
CYP2D6 enzymes, respectively. This new translational biomedical informatics approach supports not only detection of new
clinically significant DDI signals, but also evaluation of their potential molecular mechanisms.
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Introduction

Drug-drug interactions (DDIs) are a major cause of morbidity

and mortality and lead to increased health care costs [1–3]. DDIs

are responsible for nearly 3% of all hospital admissions [4] and

4.8% of admissions in the elderly [1]. And with new drugs entering

the market at a rapid pace (35 novel drugs approved by the FDA

in 2011), identification of new clinically significant drug interac-

tions is essential. DDIs are also a common cause of medical errors,

representing 3% to 5% of all inpatient medication errors [5].

These numbers may actually underestimate the true public health

burden of drug interactions as they reflect only well-established

DDIs.

Several methodological approaches are currently used to identify

and characterize new DDIs. In vitro pharmacology experiments use

intact cells (e.g. hepatocytes), microsomal protein fractions, or

recombinant systems to investigate drug interaction mechanisms.

The FDA provides comprehensive recommendations for in vitro

study designs, including recommended probe substrates and

inhibitors for various metabolism enzymes and transporters [6].

The drug interaction mechanisms and parameters obtained from

these in vitro experiments can be extrapolated to predict in vivo

changes in drug exposure. For example, a physiologically based

pharmacokinetics model was developed to predict the clinical effect

of mechanism based inhibition of CYP3A by clarithromycin from in

vitro data [7]. However, in vitro experiments alone often cannot

determine whether a given drug interaction will affect drug efficacy

or lead to a clinically significant adverse drug reaction (ADR).

In vivo clinical pharmacology studies utilize either randomized or

cross-over designs to evaluate the effect on an interaction on drug

PLOS Computational Biology | www.ploscompbiol.org 1 August 2012 | Volume 8 | Issue 8 | e1002614



exposure. Drug exposure change serves as a biomarker for the

direct DDI effect, though drug exposure change may or may not

lead to clinically significant change in efficacy or ADRs. The FDA

provides well-documented guidance for conducting in vivo clinical

pharmacology DDI studies [6]. If well-established probe substrates

and inhibitors are used, involvement of specific drug metabolism

or transport pathway can be demonstrated by in vivo clinical

studies. For example, using selective probe substrates of OATPs

(pravastatin) and CYP3A (midazolam) and probe inhibitors of

OATPs (rifampicin) and CYP3A (itraconazole), it was shown that

hepatic uptake via OATPs made the dominant contribution to the

hepatic clearance of atorvastatin in an in vivo clinical PK study [8].

However, due to overlap in substrate selectivity, an in vivo DDI

study alone will often not provide mechanistic insight into the

DDI.

Finally, in populo pharmacoepidemiology studies use a popula-

tion-based approach to investigate the effect of a DDI on drug

efficacy and ADRs. For example, the interactions between

warfarin and several antibiotics were evaluated for increased risk

of gastrointestinal bleeding and hospitalization in a series of case-

control and case-crossover studies using US Medicaid data [9].

Indeed, epidemiological studies using large clinical datasets can

identify potentially interacting drugs within a population, but these

studies alone are insufficient to characterize pharmacologic

mechanisms or patient-level physiologic effects.

The aforementioned in vitro, in vivo, and in populo research

methods are complementary in characterizing new drug-drug

interactions. Yet these methods are all limited by their relatively

small scale. Such studies usually focus on a few drug pairs for one

or a limited number of metabolizing enzymes or transporters a

time. Performing large scale screening for novel drug interactions

requires higher throughput strategies. Literature mining and data

mining have become powerful tools for knowledge discovery in

biomedical informatics, and are particularly useful for hypothesis

generation. A recent notable example in clinical pharmacology is

the successful detection of novel DDIs through mining of the

FDA’s Adverse Event Reporting System [10]. In this study,

pravastatin and paroxetine were found to have a synergistic effect

on increasing blood glucose. This finding was validated in three

large electronic medical record (EMR) databases. While a ground-

breaking success, this approach provides little evidence regarding

the mechanism of the interaction.

In this paper, we present a novel approach using literature

mining for screening of potential DDIs based on mechanistic

properties, followed by EMR-based validation to identify those

interactions that are clinically significant. We focus on clinically and

statistically significant DDIs that increase the risk of myopathy.

Results

Literature Mined CYP Enzyme Substrates and Inhibitors
Our initial drug dictionary consisted of 6937 drugs. Of these,

1492 drugs were validated as FDA approved drugs (Figure 1).

Among these 1492 drugs, our text mining approach identified 232

drugs, as either CYP substrates or inhibitors (Table S1). Recall

rate (i.e. the proportion of true positives identified by the text

mining method among all the true positives) and accuracy (i.e. the

proportion of true positives among the text mined results) were

used to evaluate the text mining performance. The recall rate of

this text mining analysis was 0.97, with the information retrieval

(IR) step being rate-limiting. In the information extraction (IE)

step, the two initial curators agreed on 78% of cases. The third

curator was able to establish DDI relevance and extract

information in the 22% of cases which were in disagreement.

The third curator also confirmed 100% accuracy among 20% of

randomly chosen abstracts that the first two curators had agreed

upon. Therefore, the accuracy of our text mining analysis reached

100%.

These drugs’ metabolism and inhibition enzymes were exper-

imentally determined by probe substrates and inhibitors recom-

mended by the FDA Drug-Drug Interaction guidelines. Their

categorizations are reported in Table S1. Out of the 149 CYP

substrates identified, 102 (68%), were substrates of CYP3A4/5.

This was consistent with the literature that about half of the drugs

on the market which undergo metabolism are metabolized by

CYP3A [11]. A total of 59 drugs were found to undergo

metabolism by more than one CYP enzyme. We also identified

123 CYP inhibitors, with CYP3A4/5, CYP2D6, CYP2C9,

CYP1A2, and CYP2C19 having comparable numbers of inhib-

itors, (48, 39, 39, 39, 31 respectively). Fewer inhibitors were

identified for other enzymes. Fifty inhibitors were found to inhibit

more than one enzyme.

Predicted Metabolism Based DDIs and Their Clinical
Pharmacokinetics DDI Validation

Among 232 drugs with known metabolism and/or inhibition

enzyme information (Figure 1), 13,197 drug interaction pairs were

predicted based on their pertinent CYP enzymes (Figure 2).

Among these 13,197 predicted DDIs, 3670 DDI pairs were

prescribed as co-medications in actual patients within the

Common Data Model (CDM) dataset. In other words, these

3670 predicted DDI pairs may have potential real-world clinical

implication.

Among those 3670 predicted DDI pairs from in vitro studies, text

mining identified 196 pairs with published clinical drug-drug

interaction study results. These in vivo studies tested whether a

substrate drug’s exposure (i.e. systemic drug concentration) was

increased when co-administrating with an inhibitor. The recall

rate of this text mining analysis was 0.94. The accuracy of this text

mining analysis reached 100%, after manual IE from two curators

Author Summary

Drug-drug interactions are a common cause of adverse
drug events. In this paper, we developed an automated
search algorithm which can predict new drug interactions
based on published literature. Using a large electronic
medical record database, we then analyzed the correlation
between concurrent use of these potentially interacting
drugs and the incidence of myopathy as an adverse drug
event. Myopathy comprises a range of musculoskeletal
conditions including muscle pain, weakness, and tissue
breakdown (rhabdomyolysis). Our statistical analysis iden-
tified 5 drug interaction pairs: (loratadine, simvastatin),
(loratadine, alprazolam), (loratadine, duloxetine), (lorata-
dine, ropinirole), and (promethazine, tegaserod). When
taken together, each drug pair showed a significantly
increased risk of myopathy when compared to the
expected additive myopathy risk from taking either of
the drugs alone. Further investigation suggests that two
major drug metabolism proteins, CYP2D6 and CYP3A4, are
involved with these five drug pairs’ interactions. Overall,
our method is robust in that it can incorporate all
published literature, all FDA approved drugs, and very
large clinical datasets to generate predictions of clinically
significant interactions. The interactions can then be
further validated in future cell-based experiments and/or
clinical studies.

Literature Based DDI Discovery and EMR Assessment
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and validation from the third. Among these 196 in vivo validated

DDI pairs, 123 of them were found to have significant DDIs

(Figure 2), i.e. drug exposure increased significantly (P,0.05), and

it increased by more than 2 fold. The additional 73 pairs were

considered not to be clinically significant DDI’s.

EMR Data Description and Demographic Variable Effect
on Myopathy

In our CDM dataset, there were medication records on 817,059

patients. Among these patients, 59,572 (7.2%) experienced

myopathy events (Table 1). Two major subcategories of myopathy:

myalgia and myositis/muscle weakness accounted for more than

95% of the cases. There were 53 rhabdomyolysis cases. In the

cohort of individuals suffering a myopathy event, the average age

was 40.2 year (SD = 23 years); 59.1% were female, and the

average medication frequency was 3.8 (SD = 2.5). However,

65.8% of the race data were missing. In our initial data analysis,

we found that females had higher myopathy risk than males (8.6%

vs 5.4%, p,2e-16, Table 2); and each one year increase in age was

associated with 0.15% higher myopathy risk (p,2e-16). These

results were consistent with the literature [12].

Global Test of DDI Effects on Myopathy
The 3670 DDI pairs identified in the CDM database were

tested using the additive model, i.e. whether an inhibitor would

increase the myopathy risk of the substrate compared to the

substrate alone. Both age and sex were justified in the logistic

regression. The p-value threshold was chosen as 0.05/

3670 = 0.0000136 after Bonferroni justification, with OR greater

than 1. There were 124 and 287 significant DDI pairs for

CYP2D6 and CYP3A4/5 enzymes, respectively (Figure 3 and

Table S2). The other enzymes had fewer significant DDI pairs.

Pathway enrichment analysis suggested similar results, i.e.

CYP2D6 and CYP3A4/5 enzymes had more significant DDI

pairs than the other enzymes, p = 8E-8 and 4E-2 respectively.

Although this DDI analysis was confounded by the other co-

medication variables, it was indeed a global description of DDI

effects from various CYP enzymes. This global analysis provided

Figure 1. Drug names and drug interaction pairs filtering and mapping flow chart.
doi:10.1371/journal.pcbi.1002614.g001

Literature Based DDI Discovery and EMR Assessment
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us a picture of the metabolism enzymes that were most important

in understanding the increased myopathy risk associated with

DDIs.

Synergistic DDI Effects on Myopathy
In order to remove the effect of myopathy risk of the inhibitor

itself, a synergistic DDI test was conducted to determine whether

substrate and inhibitor together have higher risk than the combined

additive risk when the substrate or inhibitor is taken alone. Both age

and sex were justified as covariates. DDI pairs were removed if

either one of the drugs was prescribed to treat symptoms of

myopathy. We set the significance threshold as p = 0.0000136, as

justified the multiple primary hypotheses on 3670 predicted DDI

pairs. Table 3 presents the five significant synergistic DDI pairs:

(loratadine, simvastatin), (loratadine, alprazolam), (loratadine,

duloxetine), (loratadine, ropinirole), and (promethazine, tegaserod).

Their relative risks were (1.69, 1.86, 1.94, 3.21, 3.00) respectively,

the p-values were (2.03E-07, 2.44E-08, 5.60E-07, 2.60E-07, 2.60E-

07, 8.22E-07) respectively, and their associated enzymes were

primarily CYP3A4/5 and CYP2D6.

Additional analyses of myopathy were performed for these five

DDI pairs. In the first myopathy analysis, the total number of

medications ordered during the drug exposure window was added

as a covariate in the logistic regression. This variable was used as a

surrogate marker for the comorbidities of a patient. The average

number of medications used by individuals during the drug

exposure window was 3.6 with SD = 2.4. Table 4 presents the five

DDI effects on myopathy after adjusting for the total number of

medications. Compared to table 3, all the single drug myopathy

risks and drug combination risks were reduced after justifying for

the number of co-medications. The DDI evidence became even

more significant (p-values less than 3e-12), and risk ratios became

even bigger, between 2.72 and 7.00. The medication frequency

itself was also associated with increased myopthay risk. The

addition of one co-medication was associated with an increased

myopathy risk between 0.6% and 0.9% in testing the 5 DDI pairs.

All p-values are less than 2e-16.

In the second myopathy analysis, only the first myopathy events

were considered, because co-medications administered after the

first myopathy event but before the follow-up myopathy events

were potential confounders. In other words, it was difficult to

justify whether the co-medication drug exposure resulted from the

myopathy or caused myopathy. Table S3 presents the data

analysis for the DDI pairs: (loratadine, simvastatin), (loratadine,

alprazolam), (loratadine, ropinirole), (loratadine, duloxetine), and

(promethazine, tegaserod). Their relative risks are (1.34, 1.38,

1.38, 1.81, 1.70) respectively, the p-values are (3.20E-03, 2.1E-05,

9.4E-04, 3.1E-03, 2.3E-03) respectively. This analysis based on

first myopathy event with these five selected DDI pairs confirmed

the trend of our previous synergistic DDI analysis.

Figure 2. The van-diagram of predicted DDIs, DDIs with EMR data, and DDIs tested in vivo. The predicted DDIs were from the literature
mining. DDIs with EMR data mean DDIs with non-zero frequency among the co-medication data in the EMR. in vivo DDIs mean that DDIs were shown
changing substrate concentration significantly (p,0.05 or fold-change.2); and in vivo non DDIs mean that DDIs were not shown changing substrate
concentration significantly.
doi:10.1371/journal.pcbi.1002614.g002

Literature Based DDI Discovery and EMR Assessment
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Discussion

DDI Text Mining and DDI Prediction
Unlike DDI signal detection from AERS by Dr. Altman’s group

[10], we enriched our EMR signal detection by focusing on CYP-

mediated DDIs that were mined and predicted from PubMed

abstracts. There are multiple recent publications on drug

interaction text mining. Two automatic literature mining systems

were developed to predict drug interactions based on their

associated metabolism enzymes [13,14]. An evidential approach

was developed to differentiate in vitro and in vivo DDI studies,

curate drug metabolism and inhibition enzymes, and predict DDIs

based on their pertinent enzymes [15]. Our text mining approach

took advantage of these two methods, i.e. metabolism based DDI

prediction; and emphasized the text mining performance more

stringently. The IR step of our method is an automatic algorithm,

which has high recall rate (0.97); while the IE step is a manual

curation step, with high precision (100%). In addition, we

implemented CYP enzyme probe substrates and inhibitors from

the FDA guidance into the literature mining method. This strategy

supplies information on the potential mechanism for the predicted

DDIs. Our current text mining method focuses on pharmacoki-

netic-based drug interaction literature, i.e. reported substrate drug

exposure changed by drug interaction. Text mining which focuses

on pharmacodynamics (PD) DDI literature has been recently

discussed [16,17]. PD DDI literature reports the drug efficacy or

side-effect changes, but it usually does not report drug exposure

change.

Lack of Clinical Validation of In Vitro DDIs
Among the 13197 predicted DDIs from in vitro PK study

literature mining, 3670 of them may have clinical relevance, i.e.

they were taken as co-medications by at least some of the 2.2

million patients in our clinical dataset. However, only 196 of them

(5.3%) have been tested in clinical pharmacokinetic DDI trials.

Among these 196 clinically tested DDIs, 123 of them (62.7%)

showed significant substrate drug exposure increase when co-

administrated with the inhibitor. This striking finding calls for

further evaluation of those predicted DDIs that have not been

Table 1. Demographic tables.

Variables Characteristics

Myopathy Myopathy Concept ID Myopathy Concept Name Frequency

Yes 59,572 (7.2%) 446370 Antilipemic and antiarteriosclerotic
drugs causing adverse effects in
therapeutic use

206

No 769,333 (92.8%) 4262118 Other myopathies 7

80800 Polymyositis 372

73001 Myositis 53

84675 Myalgia and myositis 48877

4217978 Myalgia and myositis, unspecified 185

439142 Myoglobinuria 52

4147768 Myopathy, unspecified 1

4345578 Rhabdomyolysis 52

4248141 Rhabdomyolysis 1

79908 Muscle weakness 12720

4218609 Muscle weakness (generalized) 22

Age (year) 40.2+/223.0 (11,846 missing)

Sex Female 489,669 (59.1%)

Male 327,390 (39.5%)

missing 11,846 (1.4%)

Medication Frequency 3.8+/22.5

Race White 185,675 22.4%

Black 65,484 7.9%

Asian 1,741 0.2%

Hispanic 30,670 3.7%

Native American 61 0.0073%

Missing 545,277 65.8%

Note: some of the myopathy Concept ID categories overlapped.
doi:10.1371/journal.pcbi.1002614.t001

Table 2. Demographic variable effect on myopathy.

Variables Effect

Sex Male 0.054 (0.00045)

Female 0.086 (0.00067)

OR 1.64+/20.0039 p-value,2e-16

Age (year) 1.0015+/20.000012 p-value,2e-16

doi:10.1371/journal.pcbi.1002614.t002

Literature Based DDI Discovery and EMR Assessment
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subjected to rigorous study. As a matter of fact, all five DDI pairs

which showed an increased myopathy risk in our pharmaco-

epidemiology study lack clinical pharmacokinetic studies.

Mechanistic Interpretation of Significant DDIs
The FDA labels of all 7 of the drugs which comprise the five

significant DDI pairs report myopathy related side effects (Table

S4). This evidence confirms the myopathy risk for each individual

drug. In order to understand the mechanisms of each interaction,

we further explored literature regarding those agents. In Figure 4

and Table S5, we integrated information on the metabolism and

inhibition enzymes of those 7 drugs from a full-text based

literature review of reported in vitro studies of the drugs. Table 5

presented the DDI potency prediction for the five DDI pairs.

Loratadine (substrate) and simvastatin (inhibitor) were predicted to

have a strong DDI through the CYP3A4/5 enzyme. Tegaserod

(substrate and inhibitor) and promethazine (substrate and inhib-

itor) were predicted to have strong DDI through the CYP2D6

enzyme. Their interactions are mixed inhibition and auto-

inhibition. The other four drug pairs were predicted to have

moderate DDIs: loratadine (inhibitor) and omeprazole (substrate)

interact through both the CYP2C19 and CYP3A4/5 enzymes;

loratadine (inhibitor) and alprazolam (substrate) interact through

CYP3A4/5; loratadine (substrate) and duloxetine (inhibitor)

interact through the CYP2D6 enzyme; and loratadine (inhibitor)

and ropinirole (substrate) interaction is through CYP3A4/5.

The Consistency of the Mechanism Interpretation of Two
DDI Data Analysis Strategies

Two DDI data analysis strategies were implemented to identify

drug-drug interactions associated with an increased risk for

myopathy. The first approach employed an additive model coupled

with a CYP metabolism pathway enrichment analysis. This strategy

stems from the newly formed discovery nature of bioinformatics

research, i.e. to search for commonality among many hypothesis

tests. The second strategy employed a synergistic model coupled

with extensive confounder justification. This strategy follows the

more stringent pharmaco-epidemiology considerations, which

heavily controls for false positives. Unlike the additive model, the

synergistic model can justify the myopathic risk effect from an

inhibitor in the presence of other potential confounders. Therefore,

the additive model would potentially identify more false positive

DDIs. However, the additive model is more powerful than the

synergistic model in identifying the true positive DDIs. Many more

Figure 3. DDI enrichment plots among 9 CYP enzymes. Both x- and y-axis represent different drug names from a DDI pair. A red-dot highlights
a DDI pair showing a strong association with myopathy risk (p,0.0000136, odds ratio.1).
doi:10.1371/journal.pcbi.1002614.g003

Table 3. DDI-Myopathy analysis adjusted for age and sex.

drug 1 drug 2 enzymes Risk1 Risk2 Risk12 Risk Ratio p-value sample size (m1/n1, m2/n2, m12/n12)

Loratadine Simvastatin CYP3A4 0.022 0.033 0.093 1.69 2.03E-07 (1264/44245, 4197/102345, 137/1223)

Loratadine Alprazolam CYP3A4 0.022 0.029 0.095 1.86 2.44E-08 (1257/43341, 2251/52341, 176/1448)

Loratadine Duloxetine CYP2D6 0.020 0.047 0.130 1.94 5.60E-07 (1220/43552, 1385/23470, 90/631)

loratadine ropinirole CYP2D6 0.020 0.018 0.122 3.21 2.60E-07 (1218/43491, 164/6531, 17/123)

promethazine tegaserod CYP2D6 0.011 0.020 0.093 3.00 8.22E-07 (1332/78334, 109/3745, 23/224)

Note: Risk1 and risk2 are myopathy risks for drug 1 and drug 2 respectively. The risk-ratio is calculated as risk12/(risk1+risk2). The p-value is calculated from a
multivariate logistic regression, in which age and sex were included. (n1, n2, n12) are sample sizes for drug exposure groups of drug 1 alone, drug 2 alone, and both
drugs, respectively; and (m1, m2, m12) are myopathy frequencies for drug exposure groups of drug 1 alone, drug 2 alone, and both drugs, respectively.
doi:10.1371/journal.pcbi.1002614.t003

Literature Based DDI Discovery and EMR Assessment

PLOS Computational Biology | www.ploscompbiol.org 6 August 2012 | Volume 8 | Issue 8 | e1002614



DDIs were identified by the additive model based DDI analysis than

by the synergistic strategy. Because pathway enrichment analysis

allows more flexibility toward false positive DDIs, the additive

model identified CYP3A4/5 and CYP2D6 enzymes as they have

the enriched DDI pairs. Although the synergistic model DDI

analysis only inferred five significant DDI pairs, upon additional

literature review, it was found that these pairs also showed

mechanistic involvement of CYP2D6 and CYP3A4/5 enzymes.

The consistency of the mechanistic interpretations of the two

separate DDI analysis strategies delivers an encouraging message:

the bioinformatics approach and the pharamco-epidemiology

approach are complementary and mutually supportive.

Synergistic DDI Test and DDI Mechanism Based
Interpretation

Our synergistic DDI test is a very stringent approach, compared

to the additive approach used by the other investigators [9,18,19].

We recognize that our synergistic DDI test may exclude some true

DDIs. It assumes that all myopathy is the result of drug

administration, and patients who don’t take the DDI drugs won’t

have myopathy. However, there is a background rate of myopathy

in patients that is not due to either of the two drugs in a specific

DDI. If the patients who don’t take drugs have a baseline risk of

myopathy, the relative risk estimated through our synergistic DDI

test will be smaller than the true relative risk. In our follow-up

sensitivity analysis, medication frequency was justified in the DDI

analysis. This factor would also account for a portion of baseline

myopathy risk. Another potential approach to estimate the

baseline myopathy risk is to identify a control patient group that

matches the demographics, co-morbidity, and co-medication

distributions of the group exposed to the DDIs. This approach

deserves further investigation.

Like many pharmaco-epidemiology studies using observational

data, our analysis of the DDI effect on myopathy has several

Table 4. DDI-Myopathy analysis adjusted for age and sex and co-medications.

drug 1 drug 2 Enzymes Risk1 Risk2 Risk12 Risk Ratio p-value

Loratadine Simvastatin CYP3A4 0.0085 0.0016 0.027 2.72 2.95E-12

Loratadine Alprazolam CYP3A4 0.0086 0.0041 0.045 3.58 ,2.00E-16

Loratadine Duloxetine CYP2D6 0.0084 0.019 0.080 2.89 ,2.00E-16

loratadine ropinirole CYP2D6 0.0083 0.0028 0.078 7.00 ,2.00E-16

promethazine tegaserod CYP2D6 0.0040 0.013 0.089 5.10 ,2.00E-16

Note: Risk1 and risk2 are myopathy risks for drug 1 and drug 2 respectively. The risk-ratio is calculated as risk12/(risk1+risk2). The p-value is calculated from a
multivariate logistic regression, in which age, sex, and co-medications were included.
doi:10.1371/journal.pcbi.1002614.t004

Figure 4. Metabolism enzymes and inhibition potencies of seven drugs. The metabolism enzymes of a drug are characterized with major,
partial, or not. The inhibition potencies of a drug are characterized with strong (Ki,10 uM), moderate (10,Ki,100 uM), and weak (Ki.100 uM).
doi:10.1371/journal.pcbi.1002614.g004

Literature Based DDI Discovery and EMR Assessment
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limitations. Creating an accurate phenotypic definition using

billing codes may be unreliable, with both false-positives and false-

negatives likely to occur. Our dataset also lacked clinical notes

from which more detailed symptom data could be extracted.

Further research including validation with manual chart review is

necessary to establish optimal phenotypic definitions for myopa-

thy, as well as more granular definitions for myotoxicity and

rhabdomyolysis. Further research including validation with

manual chart review is necessary to establish optimal phenotypic

definitions for myopathy, as well as more granular definitions for

myotoxicity and rhabdomyolysis using a combination of ICD9

codes, lab tests, and clinical notes.

Another limitation of our analysis is that it is subject to several

potential population bias introduced by the EMR database itself.

Our retrospective observational data do not allow for controlling

many potential covariates that a traditional prospective study

offers. In particular, the race data is not complete in our database.

It is also equally challenging to design a prospective study to

validate our results from a pharmaco-epidemiology study. Clinical

pharmacokinetic studies or further in vitro metabolism/inhibition

studies of the selected DDI pairs found to increase myopathy may

provide further validation of an interaction between the drugs. We

are also looking forward to validating our results in another large

EMR database.

Our text mining and DDI prediction is CYP metabolism

enzyme based. Therefore, our interpretation of the five significant

drug interactions focuses only on CYP drug-drug interaction

mechanisms. However, this does not preclude the involvement of

other DDI mechanisms, such as drug transporter interactions or

pharmacodynamic interactions. In a recent GWAS study,

expression of the OATP1B1 transporter was shown to predict

myopathy risk associated with simvastatin [20]. Therefore, it is

possible that loratadine interacts with simvastatin through this or

other transporter mechanisms. Studies are currently underway to

further characterize the mechanisms of the five identified DDIs.

Why Recognized Statin DDIs May Not Be Identified by
this Approach

The concomitant use of CYP3A metabolized statins (atorvastatin,

lovastatin and simvastatin) with strong CYP3A inhibitiors (e.g.

ketoconazole and itraconazole) reportedly increases risk of statin-

induced myopathy. In addition, case reports of increased myopathy

in transplant recipients being treated with tacrolimus or cyclospor-

ine [21] argue for the avoidance of this combination. The

interaction between statins and fibrates, specifically gemfibrozil,

leading to increased risk of myopathy is well recognized [22].

Gemfibrozil is a substrate of CYP3A but not a potent inhibitor.

Thus, it is likely that this interaction occurs through pharmacody-

namic, not pharmacokinetic, based interactions. Although these

interactions are widely reported, we found no increased risk of

myopathy with concomitant use of ketoconazole, itraconazole,

tacrolimus, or gemfibrozil within the CDM database. Their related

myopathy risks of these DDIs are reported in Table 6. This finding

is likely due to the limitation of our data analysis, in which we define

concomitant drug administration by prescription orders that occur

within a predefined timeframe. As these drug interactions are well-

known, it is likely that although the two drugs may have been

ordered within the predetermined time window, the individual may

have discontinued one medication before starting the second. For

some drugs that are used short-term, e.g. ketoconazole, it will be

difficult to identify true concomitant use from prescription records.

As a matter of fact, among these statin DDI pairs in Table 6, less

than 110 patients took both drugs within the pre-defined one month

interval in each pair. This limited our power to detect significant

Table 5. Predicted DDI potency and CYP enzymes among five DDI pairs.

Drug 1 Drug 2 Enzymes Metabolism Routes Inhibition potency DDI Prediction

Loratadine Simvastatin CYP3A major strong Strong

Loratadine Alprazolam CYP3A minor moderate Moderate

Loratadine Duloxetine CYP2D6 major moderate Moderate

Loratadine Ropinirole CYP2D6 major moderate Moderate

promethazine tegaserod CYP2D6 minor strong Strong

doi:10.1371/journal.pcbi.1002614.t005

Table 6. Myopathy relative risk of some statin related drug interaction pairs.

Drug 1 Drug

Atorvastatin Lovastatin Pravastatin Simvastatin

Gemfibrozil 0.53 (0.22, 1.27); (4113/156140,
614/26961, 6/194)

0.39 (0.16, 1.02); (437/16612,
662/28349, 5/256)

0.38 (0.10, 1.34); (597/20974,
663/28324, 5/278)

0.43 (0.10, 1.76); (10057/445885,
570/24234, 2/100)

Itraconazole 0.95 (0.30, 2.96) (4164/157745,
53/2764, 3/69)

0.07 (0.00, 102.7); (442/16833,
56/2825, 0/2)

0.05 (0.00, 24.9); (510/21220,
56/2817, 0/7)

0.26 (0.03, 1.92); (10154/449828,
54/2659, 1/89)

Ketoconazole 0.93 (0.66, 1.32) (4130/157280,
424/28661, 32/835)

1.22 (0.46, 3.24); (436/16778,
452/29352, 4/79)

1.63 (0.78, 3.40); (499/21147,
441/29328, 7/111)

0.70 (0.40, 1.21); (10115/448703,
407/27583, 13/499)

Tacrolimus 2.25 (0.99, 3.89) (4156/157704,
40/3832, 11/133)

0.23 (0.09, 22.2); (442/16828,
51/3958, 0/9)

0.06 (0.00, 29.6); (510/21225,
51/3957, 0/7)

0.29 (0.09, 1.05); (10154/449790,
48/3689, 3/286)

Note: The p-values of the synergistic drug interaction tests among these drug pairs are larger than 0.05. In each cell, the reported numbers represent relative risk (95%
CI) and (m1/n1, m2/n2, m12/n12), where (n1, n2, n12) are sample sizes for drug exposure groups of drug 1 alone, drug 2 alone, and both drugs, respectively; and (m1,
m2, m12) are myopathy frequencies for drug exposure groups of drug 1 alone, drug 2 alone, and both drugs, respectively.
doi:10.1371/journal.pcbi.1002614.t006
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DDIs to less than 15%, if we anticipate a 1.5-fold RR of DDI

myopathy. Provided that medication data in our CDM is relatively

new, between 2004 and 2009, it is likely that clinicians were aware

of potential interactions and thus suggested patients avoid co-

administration of these interacting drugs.

A Combination of Literature Based Discovery and
Electronic Medical Record Assessment Is a Powerful
Translational Bioinformatics Approach in Predicting
Metabolism Based DDIs and Evaluating Their Clinical
Significance

As described in the introduction, an in vitro, an in vivo, or an in

populo pharmacologic study alone cannot cover the whole spectrum

of mechanistic and clinically significant DDI research. These

studies usually focus on a few drug pairs for one or a limited

number of metabolizing enzymes or transporters at a time. In this

paper, we combined a literature discovery approach and a large

EMR database validation method for novel DDI prediction and

clinical significance assessment. The scale of our research covered

all FDA approved drugs. The literature based discovery approach

predicted new DDIs and their associated CYP-mediated metab-

olism enzymes. The clinical significance of these interactions was

then assessed in large database of electronic medical records. This

translational bioinformatics approach successfully identified five

DDI pairs associated with increased myopathy risk. Compared to

traditional in vitro, in vivo, and in populo DDI studies, our proposed

translational bioinformatics approach covers a broader spectrum

and identifies risk on a larger scale. It certainly motivates more in

vitro studies to investigate alternative DDI mechanisms and more

clinical pharmacokinetics study to investigate the clinical signifi-

cance of these DDIs.

Methods

INPC CDM Data Description
The Indiana Network for Patient Care (INPC) is a heath

information exchange data repository containing medical records

on over 11 million patients throughout the state of Indiana. The

Common Data Model (CDM) is a derivation of the INPC

containing coded prescription medications, diagnosis, and obser-

vation data on 2.2 million patients between 2004 and 2009. The

CDM contains over 60 million drug dispensing events, 140 million

patient diagnoses, and 360 million clinical observations such as

laboratory values. These data have been anonymized and

architected specifically for research on adverse drug reactions

through collaboration with the Observational Medical Outcomes

Partnership project [23].

Ethics Statement
This CDM model is a de-identified eletronic medical record

database. All the research work has IRB approval.

Candidate Drug Name Preparation for Text Mining
Our drug dictionary consists of 6,837 drugs names that include

all brand/generic/drug group names. They were primarily

derived from DrugBank [24]. We then excluded non-approved

and experimental drugs, and focused only on FDA approved

therapeutic agents, which left 1492 unique drug generic names for

the mining purpose (Figure 1).

Mapping between Candidate Drug Names and INPC
CDM Medication Data

The INPC CDM data set has 54490 unique drug ‘‘Concept

IDs’’. A Concept ID in the CDM typically maps to an RxNorm

clinical drug (e.g., simvastatin 20 mg) or ingredient (simvastatin).

Some Concept IDs may contain multiple drug components (e.g.,

lisinopril/hydrochlorothiazide). Our drug dictionary was mapped

to CDM Concept ID’s using regular expression matching and

manual review. In total, 1293 unique drugs identified from

DrugBank were mapped successfully, while 199 drugs could not be

matched. The unmatched drugs were categorized as follows:

banned drugs, illicit drugs, organic compounds, herbicide/

insecticides, functional group derivatives, herbal extract, Drug-

Bank drugs not covered by CDM, and literature only drug names.

In our CDM dataset, 817059 patients had medication records

available.

In Vitro CYP Enzyme Substrate and Inhibitor Text Mining
and DDI Prediction

Literature mining was conducted on 10 CYP enzymes:

(CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19,

CYP2D6, CYP2E1, CYP3A4/CYP3A5) (Figure 5). Please note

that these CYPs cover all the major ones, but not all of the CYPs.

A probe substrate of enzyme E is defined as being selectively

metabolized by enzyme E; while a probe inhibitor of enzyme E

selectively inhibits enzyme E’s metabolism activity. CYP probe

drugs and inhibitors for the DDI text mining approach were

selected as those drugs well-established as probes or inhibitors by

DDI researchers and defined in the FDA guidance [6]. The in

vitro CYP enzyme substrate and inhibitor text mining and the

DDI prediction was divided into the following steps.

Metabolism enzyme based substrate/inhibitor

classification. A drug’s ability to be metabolized or inhibited

by a specific CYP enzyme is categorized by its published enzyme-

based in vitro experiments. If drug A was shown to have reduced

metabolism by enzyme E with enzyme E’s probe inhibitors in an in

vitro experiment, drug A is enzyme E’s substrate. If drug B was

shown to inhibit enzyme E’s metabolic activity toward enzyme E’s

probe substrates in an in vitro experiment, drug B is enzyme E’s

inhibitor.

Information Retrieval (IR). Information Retrieval (IR) step

is a two-step rule based approach. In step one, a template

(comprising key terms) was constructed to retrieve PubMed

abstracts. The template included required terms: targeted drug

name, targeted enzyme name, enzyme specific probe substrates or

inhibitors, experiment key terms (i.e. cell systems and equipment

set-up), and experiment type (experiment design and parameters);

and it included prohibited terms, mostly related to cancer studies.

In step two, a natural language processing (NLP) based filter was

developed to check the expression patterns in each sentence and

decide whether an abstract has DDI-relevant sentences.

In describing the IR process, we will reference the following

symbols: O1 denotes inhibitor/inhibit; O2 denotes substrate,

probe, metabolized by, or catalyze; O3 denotes inducer/induce;

INT denotes interaction, interference, affect, and impact; D

denotes drug; and E denotes enzyme. Using these symbols, the

patterns are defined as [DEO] : D ,D, D…. ,not. E O :

‘‘drug is (not) enzyme’s substrate’’; [DOE] : D ,not. O E : ‘‘drug

inhibits enzyme’’, ‘‘drug is an inhibitor of enzyme’’; [EOD] : E

,not. O1 ,O3. by D : ‘‘enzyme is induced by drug’’; [IDD1] :

,not. INT between D and D : ‘‘there is not interaction between

drug A and B’’; [IDD2] : ,not, no. INT D on D : ‘‘no impact of

drug A on B’’; [DID] : D ,not, no. INT D : ‘‘drug A does not

interact with drug B’’; Note : also add [OED, ODE, EDO]. Using

these expression patterns, a search algorithm was developed to

scan each sentence of an abstract, scan for the existence of these

patterns, and output the sentence and any DDI patterns/

instances.

Literature Based DDI Discovery and EMR Assessment
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Information Extraction (IE). The Information Extraction

(IE) step was conducted manually using following key criteria: 1)

only consider human liver hepatocytes/microsomes or recombi-

nantly expressed CYP enzyme systems; 2) only consider FDA

probe substrates and inhibitors to determine a drug’s metabolism

or inhibition potential among the 10 CYP enzymes; 3) only

consider drug synonyms covered by our dictionary. In total three

curators worked together to perform this manual IE step. First,

two curators independently went through all the abstracts from the

IR step. The non-overlapped abstracts and a random subset of

20% of the overlapped abstracts were then independently

validated by the third curator. This curation plus validation step

ensures a high degree of precision in the information extraction

process.

Recall rate estimation for the IR steps. All of the abstracts

identified from the IR step (true positives) were combined with a

random subset of PubMed abstracts (n = 10,000) (false positives),

where the overlapped ones were true positives. The recall rate was

calculated as the percentage of true positive abstracts been selected

by the IR algorithm.

DDI prediction. Enzyme E’s substrates and inhibitors that

were mined from the literature were paired to establish the

predicted enzyme E DDIs. At this point, the DDI prediction is

based only on the text mining results.

DDI potency prediction. Each drug’s metabolism enzyme

information was further reviewed in the full text papers and the

extent of metabolism by each enzyme was categorized as one of

three groups: major, minor, or not involved. The inhibition

enzyme information for each drug was also categorized as one of

three groups: strong, moderate, or not involved); and they are

based on numerical values of Ki: ,10 uM, 10–100 uM, or

.100 uM, respectively. A DDI is concluded as a strong DDI

pertinent to enzyme E, if enzyme E is the major metabolism route

for at least one drug of the drug pair, and if the other drug shows

strong inhibition potency of enzyme E.

In Vivo DDI Text Mining
In vivo DDI text mining was conducted on those predicted DDI

pairs from in vitro DDI text mining (Figure s1). It is broken down

the following steps.

In vivo DDI definition. If drug A was shown to have

increased systemic exposure by the co-administration of drug B,

then A and B have pharmacokinetics drug interaction. The

increased systemic drug exposure is usually measured by the area

under the drug concentration curve ratio (AUCR), half-life ratio,

Cmax ratio, metabolic ratio, or steady state drug concentration

ratio.

Information Retrieval (IR). The IR step was again a rule-

based approach. A template (key terms) was constructed to retrieve

PubMed abstracts. The template included required terms: targeted

drug names, clinical trial design, route of drug administration, and

PK parameters. The prohibited terms included animal names and

in vitro terms.

Information Extraction (IE). The IE step was again

conducted manually as follows: We checked p-values for an

increased AUC, Cmax, half-life, or steady state concentration in a

drug interaction study. If p,0.05, a DDI was concluded. If there

Figure 5. in vitro PK study literature mining flow-chart for CYP substrates and inhibitors, and their DDI predictions.
doi:10.1371/journal.pcbi.1002614.g005
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was no p-value reported, we evaluated the change in pharmaco-

kinetic parameter (Cmax, AUCR, half-life, etc). If the fold-change

of the parameter of interest was larger than 2.0, a DDI was

concluded. Studies in pregnant women and newborns were

excluded. We only considered drug synonyms covered by our

dictionary. Three curators worked together in this manual IE step.

Two curators independently went through all the abstracts from

the IR step. A random subset of 20% of the overlapped abstracts

and those which were not agreed upon by the initial two curators,

were independently validated by the third curator.

Recall rate estimation for the IR step. All of the abstracts

identified with from the IE step (true positives) were combined

with a random subset of PubMed list (n = 10,000) (false positives),

where the overlapped ones were true positives. The subset was

subjected to our proposed IR step, and the recall rate was

calculated as the percentage of true positive abstracts selected by

the IR algorithm.

Myopathy Definition. Our health outcome of the interest

(HOI) for this task is myopathy, which has a number of potential clinical

manifestations [22]. This phenotype is mapped to the CDM

condition concept ids (Table S6), as the primary myopathy phenotype

in our data analysis. In our CDM dataset, 74584 patients had at least

one myopathy symptom between 2004 and 2009.

Pharmacoepidemiology Study Design of Drug
Interactions and Myopathy

Retrospective cohort study. Among patients having a

myopathy event, the drug-condition relationship is anchored by

the date of myopathy. Any drug exposure occurring within a one

month window before the diagnosis of myopathy is considered a

positive exposure. If a substrate falls within this window but no

inhibitor is present, the event is categorized as ‘‘substrate alone’’

exposure; if both a substrate and an inhibitor fall within this

window, it is categorized as ‘‘substrate+inhibitor’’ exposure

(Figure 6). If a patient does not have a diagnosis of myopathy,

the drug exposure period is anchored by the substrate. If there is

an overlap between a substrate and an inhibitor within one month

(i.e. they are less than one month apart), it will be categorized as

the joint exposure; otherwise only substrate exposure is defined

(Figure 6). Therefore, the retrospective cohort DDI study is

defined by three drug exposure cohorts: substrate alone, inhibitor

alone, and substrate/inhibitor combination. In these three cohorts,

cases are patients experienced myopathy, and controls are patients

who did not.

Exclusion Criteria: patients whose first myopathy event were

within the first 6 months of the database were excluded, as we

cannot rule out additional myopathy events prior to the starting

date of database (01/01/2004).

Figure 6. Pharmaco-epidemiology design for myopathy cases and controls in the electronic medical records.
doi:10.1371/journal.pcbi.1002614.g006

Figure 7. Drug interaction effect models on the myopathy risk. (A) Additive DDI Model; and (B) Synergistic DDI Model.
doi:10.1371/journal.pcbi.1002614.g007
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Statistical models of the DDI effect on

myopathy. Because of well-defined cases and controls in this

cohort study, a logistic regression model was used to analyze the

data. Two logistic regression analyses were performed to test each

DDI effect on myopathy. The first is an additive model (Figure 7

A), which tests whether inhibitor plus substrate will lead to an

increased myopathic risk comparing to substrate alone. The

second statistical model, i.e. synergistic DDI model (Figure 7 B),

tests whether the additive myopathic risk from either substrate or

inhibitor alone is lower than their combined myopathic risks. In

analyzing the DDI synergistic effect, a logistic regression modeled

three drug exposure groups: substrate alone, inhibitor alone, and

both drugs. The model output their myopathy risk estimates,

Risk1, Risk2, and Risk12, respectively. An additional R program

was written to calculate their relative risk = Risk12/(Risk1+Risk2),

and this statistic was used to test the synergistic effect (i.e., the risk

of myopathy for those taking both medications compared with

taking each medication individually).

The additive model cannot differentiate whether the increased

myopathic risk is inherent to the inhibitor or if it is the effect of a

drug interaction leading to increased substrate drug exposure. The

synergistic model can identify a greater than expected additive risk

of myopathy from the two drugs, indicating a drug-drug

interaction. On the other hand, the synergistic model is less

powerful in identifying the true DDI than the additive model.
Hypothesis testing, hypothesis generation and false

positive control. Our primary goal was to identify clinical

DDIs resulting in increased risk of myopathy based on the CYP-

mediated DDI’s identified form literature abstract data. Our

hypothesis was that individuals treated with the combination of

interacting drugs would have increased risk of myopathy

compared to individuals treated with either drug alone (additive

model). These hypotheses were tested in the EMR data set, and

Bonferroni justification was implemented for the family wise type I

error. DDI was also tested among any drug combination effect on

myopathy, and these tests serve as the hypothesis generation,

instead of the hypothesis testing. In addition, statistical enrichment

analysis is performed to identify over-represented CYP enzymes

comparing to the rest of the enzymes [25].

Confounder Considerations
Demographic variables, age and sex, were justified in the DDI

association analyses. The total number of different medications

ordered during the one month drug exposure window was used as

a covariate in the logistic regression. It serves as a surrogate of the

patients’ overall health status, and justifies for myopathy effects

from medications other than the hypothesized DDI drug pair. It is

recognized that an individual patient can experience multiple

myopathy events. Our drug-condition model considered two

situations: all myopathy events and the first myopathy event. The

advantage of selecting the first myopathy event is that it is not

confounded with other medications taken between the first and the

follow-up myopathy events. However, limiting the data to first

myopathy even reduces the sample size, and thus the power to

identify a DDI. DDI pairs, in which at least one drug was

prescribed to treat symptoms of myopathy (e.g. narcotic and non-

steroidal analgesics), were excluded from the DDI tests. However,

the patients prescribed these drugs are kept in the data analysis.

Supporting Information

Figure S1 In vitro DDI literature mining flow chart.

(TIF)

Table S1 CYP pathway based categorizations of text mined

drug from published in vitro studies.
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Table S2 CYP pathway enrichment analysis of DDI associations

of the myopathy risk.

(TIF)

Table S3 Significant synergistic DDI effects on the myopathy

risk. Only the first drug exposure/myopathy event was counted for

each subject. Risk1 and risk2 are myopathy risks for drug 1 and

drug 2 respectively. The risk-ratio is calculated as risk12/

(risk1+risk2). The p-value is calculated from a multivariate logistic

regression, in which age and sex were included.
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Table S4 Myopathy related adverse drug reactions from FDA

labels.

(TIF)

Table S5 Literature review on drug metabolism and inhibition

of the seven drugs. We included both in vitro and in vivo DDI

studies.
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Table S6 Myopathy Concept IDs in the Common Data Model.
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