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Abstract

There has been increasing interest in rare variants and their association
with disease, and several rare variant–disease associations have already
been detected. The usual association tests for common variants are un-
derpowered for detecting variants of lower frequency, so alternative ap-
proaches are required. In addition to reviewing the association analysis
methods for rare variants, we discuss the limitations of genome-wide
association studies in identifying rare variants and the problems that
arise in the imputation of rare variants.
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INTRODUCTION

There is growing interest in the role of rare
variants in multifactorial disease etiology and
increasing evidence that rare variants are asso-
ciated with complex traits. The frequency of
any single rare or low-frequency variant is low
(<5%), but collectively the number of rare vari-
ants makes them quite common. According to
the multiple rare variant (MRV) hypothesis,
there are many large effect rare variants in the
population and each case of a common inherited
disease is due to the summation of the effects
of a few of these moderate to high penetrance
MRVs (2). On the contrary, the common dis-
ease common variant (CDCV) hypothesis as-
serts that the genetic risk of a common complex
disease is mostly because of a small number of
high-frequency variants with moderately small
effects (25), so there must be many to explain
the observed genetic variance.

Hundreds of genome-wide association
(GWA) studies have been carried out with the
focus of identifying common disease variants
that are associated with complex diseases. Typ-
ically, only variants with minor allele frequency
(MAF) greater than 1%–5% are followed up in
such studies. Despite the extensive GWA stud-
ies resulting in the identification of many ge-
netic variations that have strong evidence of
disease association, these variants explain at
most 5%–10% of the heritable component of
disease. This suggests limitations in GWA stud-
ies to identify common variants associated with
complex traits and leads in the direction of
searching for associations with MRVs (28). The
most likely scenario is that a combination of
both common and rare variants contributes to
disease risk.

One of the reasons why most studies
(typically up to a few thousand subjects) identify

Table 1 Approximate-low frequency/rare variant GWAS platform content

Platform
Affymetrix

500k
Affymetrix

6.0M
Illumina

370k
Illumina

550k
Illumina

610k
Illumina

1.2M
MAF < 0.05 55k 106k 9k 32k 35k 62k
MAF < 0.01 17k 35k 1k 7k 8k 22k

common causal single-nucleotide polymor-
phisms (SNPs) is that there is an inverse rela-
tionship between sample size and the MAF that
maximizes the power to detect a true associa-
tion (7). Furthermore, SNP genotyping panels
are typically designed with a focus on common
SNPs, therefore containing a relatively small
number of rare variants. Thus, an issue that
often arises when performing a rare variant
analysis is that most SNP typing platforms
are not designed to detect many rare variants
(Table 1).

The effects of rare variants tend to be larger
than those of higher frequency SNPs. Based on
published results, there is a clear difference in
the distributions of the odds ratios (ORs) for
common and rare variants (2), at least within
the power constraints of the published studies.
Only a few common disease-associated variants
have ORs greater than two, and the majority
currently fall between 1.1 and 1.4. On the other
hand, most identified rare variants to date have
an OR greater than two, and the mean OR
is 3.74. Furthermore, the identification of rare
variants may facilitate pinpointing causality. It
can be more difficult to ascribe causality to the
majority of loci identified through GWA stud-
ies, as high linkage disequilibrium (LD) makes
it difficult to use association mapping to deter-
mine exactly which variant is functionally rele-
vant. In addition, when (common or rare) SNPs
map to genomic regions that do not have a clear
role, elucidating their effects can become espe-
cially challenging. The problem may be sim-
plified by searching for disease-associated rare
variants in known functional genomic regions,
defined as genes. In addition, it might be easier
to at least infer causality at a locus that con-
tains both common and rare disease-associated
variants.
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Below, we discuss several known rare
variant–disease associations and the approach
that was used to find them. Various tests of asso-
ciation, from multiple single-marker to multi-
marker to collapsing methods are discussed.
Finally, we review the issues that arise when
studying rare variants, including those encoun-
tered when imputing genotypes.

KNOWN RARE VARIANT–
DISEASE ASSOCIATIONS

The literature documents a growing body of
evidence supporting the role of rare variants
in complex trait associations. For example, in
the search for causal variants of type 1 diabetes
(T1D), Nejentsev et al. (23) identified four
disease-associated rare variants in the IFIH1
gene, which are protective of T1D. They re-
sequenced exons and splice sites of 10 candi-
date genes for 480 patients and 480 controls,
and tested for association with T1D at the 212
identified SNPs. They confirmed several pre-
viously identified common SNPs and detected
associations with several rare variants occurring
only in the IFIH1 gene, of which rs35667974
and rs35337543 had the strongest associa-
tions (Fisher’s-exact p-values of 4.4 × 10−5 and
0.0049). Next, association with T1D was tested
for in case-control (8,379 cases, 10,575 con-
trols) and family (3,165 families where at least
one child has T1D) collections. Among the rare
variants detected in IFIH1 by sequencing, a to-
tal of 4 (rs35667974, rs35337543, rs35744605,
and rs35732034) were found to be associated
in the larger sample as well. The respective
MAFs in cases were 0.011, 0.010, 0.0046, and
0.0069, whereas controls had respective MAFs
of 0.022, 0.015, 0.0067, and 0.0093. The case-
control odds ratios were 0.51 (P = 1.3×10−14),
0.68 (P = 1.1 × 10−4), 0.69 (P = 9.0 × 10−3),
and 0.74 (P = 0.012), whereas the family
study relative risks were 0.60 (P = 5.9 × 10−4),
0.85 (P = 0.20), 0.55 (P = 0.028), and 0.63
(P = 0.021). The combined p-values for the
case-control and family studies were 2.1×10−16,
1.4 × 10−4, 1.3 × 10−3, and 1.1 × 10−3. Each
of these rare variants protects from T1D, and

they all have stronger protective effects than
the common nonsynonymous SNP (nsSNP)
rs1990760/T946A (OR = 0.86), identified
in previous GWA studies. Moreover, the LD
between any pair from these four rare vari-
ants is low (r2 < 0.04), and each is found
to be associated with T1D independently of
each other and of the common nsSNP. This
indicates that there are four rare polymor-
phisms and one common nsSNP in the IFIH1
gene that show independent association with
T1D.

Convincing evidence for the involvement of
rare variants in hypertension has also been pro-
duced. In the offspring cohort of the Framing-
ham Heart Study (FHS), Ji et al. (10) examined
all codons and flanking intronic sequences of
three genes (SLC12A1, SLC12A3, and KCNJ1)
that are known to cause rare recessive diseases
that are characterized by very low blood pres-
sure. Using their validated criteria of phylo-
genetic conservation and rare allele frequency
(MAF < 0.001), they reduced the 138 identi-
fied coding sequence variants to a set of 30 func-
tional variants, of which almost all were pre-
dicted to be damaging by bioinformatics tools
and have MAF < 0.0005. The mean long-term
systolic and diastolic blood pressures among
mutation carriers are both lower than the co-
hort mean by 6.3 mm Hg (P = 0.0009) and
3.4 mm Hg (P = 0.003), respectively, and there
are similar patterns from measurements taken
at various ages. This result was also confirmed
by a within-family test comparing the blood
pressures between siblings in FHS who were
discordant for mutations. In each age group
(25–40, 41–50, 51–60), the prevalence of hyper-
tension was found to be lower for mutation car-
riers, and compared with noncarriers, the car-
riers also have a 59% reduction in the risk of
developing hypertension by the age of 60, as
revealed by a Kaplan-Meier analysis (log-rank
P < 0.003).

Perhaps the earliest evidence in support of
the contributions of rare variants to complex
traits came from the examination of low plasma
levels of high-density lipoprotein cholesterol
(HDL-C) by Cohen et al. (5). In their study,
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the coding regions and consensus splice sites
of three candidate genes (ABCA1, APOA1, and
LCAT ) were sequenced in 256 individuals who
formed the upper and lower 5% of HDL-C
levels from the Dallas Heart Study population.
Among the 128 individuals from the low
HDL-C group, 21 had rare sequence variants
(20 in ABCA1) that were not found in the high
HDL-C group, compared with only three
individuals from the high HDL-C group who
had sequence variants not present in the low
HDL-C group (Fisher’s exact test P < 0.0001).
A similar pattern was also found in their analysis
on samples of Canadians with HDL-C at the
extremes of the distribution (Fisher’s exact test
P < 0.001). In another study, Cohen et al. (6)
identified multiple rare alleles that collectively
contribute to a significant proportion of genetic
variance in low-density lipoprotein choles-
terol (LDL-C). First, the coding regions of a
candidate gene, NCP1L1, were sequenced in in-
dividuals from the Dallas Heart Study who had
the highest and lowest cholesterol absorption,
as indicated by the Ca:L ratio (128 subjects in
each group), such that each group consisted of
32 individuals from the groups of black males,
white males, black females, and white females.
They found 13 nsSNPs unique to the low level
group and 3 nsSNPs present only in the high-
level group (Fisher’s exact test P < 0.01). A
similar result was obtained when they repeated
the analysis on the next set of 128 subjects from
each of the two extremes (Fisher’s exact test
P < 0.025). Next, the variants were analyzed
in the complete Dallas Heart Study (3,553
individuals) to examine the frequencies and
phenotypic effects of the identified nsSNPs.
The majority of nsSNPs identified were found
in African-Americans. Because of the extremely
low allele frequencies (0.03–0.6%), a particular
rare variant exists in too few individuals for a
variant-by-variant statistical analysis. However,
the aggregate of these variants was associated
with a significant reduction in the Ca:L ratio
and in the plasma LDL-C concentrations in
African-Americans (Wilcoxon’s two-sample
test P < 0.01).

TESTS OF ASSOCIATION

Although rare variants have a proven role in
some complex traits, they have not yet been
studied as extensively as common SNPs. There
are several reasons for this, including the lack of
a rare variant catalog with reference genotypes
(poised to change with the 1,000 Genomes
Project), current cost limitations in next gener-
ation sequencing technologies, and a lack of an
appropriate analytical toolbox to enable pow-
erful rare variant association analysis given cur-
rently available sample sizes. In a typical associ-
ation analysis with a focus on identifying com-
mon disease-associated variants, the number of
SNPs to test is reduced by taking into account
LD because there is no gain in information
by including highly correlated SNPs. Within
a group of high LD SNPs, a tagSNP can be
chosen such that the set of tagSNPs is of mini-
mal size to explain the majority of the genome
sequence variation. Sets of tagSNPs are usually
chosen from publicly available genotype data
based on unrelated individuals from various ref-
erence populations, such as HapMap. The In-
ternational HapMap Consortium was designed
with identifying tagSNP sets as a prime objec-
tive. However, it has been found that although
common variation is captured quite well by cre-
ating tagSNP sets using HapMap, the sample
sizes available are not sufficient for tagging vari-
ants with lower MAFs (<0.05) (37). Thus, com-
mon variants have only a limited capacity to tag
rare variants.

Many indirect LD methods have been de-
veloped to identify disease-associated common
variants based on the idea of analyzing tagSNPs,
but such methods lose power when applied to
rare variants. Rare variants are weakly corre-
lated with common tag SNPs because MAFs
must be similar in order for two variants to
be highly correlated (34). This low correlation,
together with the low frequency of rare vari-
ants, results in low power to detect associations
via indirect LD mapping, so direct mapping
through exhaustive genotyping or sequencing
is necessary in the search for rare variants. Se-
quencing the entire genome is now an option to
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sequencing only candidate genes, as the cost of
generating massive amounts of sequencing data
is dropping with the introduction of new se-
quencing technologies (29). This has led to the
1,000 Genomes Project, which will sequence
2,000 genomes in order to develop a high res-
olution human genome map that will include
almost all variants with allele frequencies as low
as 1%.

In the analysis of sequencing data to iden-
tify disease-associated rare variants, the tests for
association fall into three main types: multiple
univariate single-marker tests, multiple-marker
tests, and collapsing methods. Within a func-
tional unit of interest, all rare variants that are
genotyped may be included in the analysis at
the cost of a slight loss in power from inclu-
sion of nonfunctional variants (see below). Al-
ternatively, only those classified as functional
by bioinformatics tools may be included in the
analysis. In the latter case, this can be done by
determining the confidence in the predictions
of functionality for the variants [e.g., PolyPhen
(26) and SIFT (24)] or by classifying the vari-
ants as potentially functional or neutral [e.g.,
Evolutionary Trace (14)].

Single-Marker Tests

The simplest approach to testing for association
is to apply a univariate test at each rare vari-
ant and then assess significance, taking into ac-
count multiple testing by using an appropriately
scaled p-value threshold for declaring signifi-
cance. For case-control data, possible methods
include the χ2 test, Fisher’s exact test, Cochran-
Armitage test for trend, and logistic regression,
whereas linear regression may be applied in the
case of quantitative traits. Given that each vari-
ant is tested independently for an association, a
correction for the multiple comparisons within
the family of tests is needed so that the family-
wise error rate (FWER) is controlled. This re-
sults in a loss of power. Several methods have
been developed to account for the multiplic-
ity that arises. The most common approaches
are random permutation tests to obtain empir-
ical p-values, or methods to control the false

discovery rate (FDR), which is the expected
proportion of incorrect rejections of the null
hypothesis (1). The FDR is smaller than the
FWER and equal only when all of the hypothe-
ses are true. This indicates that by controlling
the FDR, rather than FWER, there may be a
gain in power.

To explore the properties of these tests, as-
sume that there are n subjects and m rare vari-
ants in the locus. Regression (logistic or linear)
can be used to test for association with a trait
(binary or quantitative) by fitting a regression
model at each of the m variants, possibly in-
cluding covariates. Denote the phenotype for
subject i by yi, let xij be the minor allele count
at variant j for subject i. In the case of linear
regression, the relationship at variant j may be
modeled by yi = α j + β j xij + η j zji + εi , where
zj is a matrix of covariates, which may be in-
cluded, and there is the usual assumption of
εi being independent normal random variables
with mean 0. The null hypothesis of no associ-
ation at variant j is equivalent to testing β j = 0
in the regression. For logistic regression yi is re-
placed by log( pi

1−pi
), where pi is the probability

of the presence of the binary trait, e.g., disease
presence.

For the χ2 test, Fisher’s exact test and the
Cochran-Armitage test for trend, a 2 × 3 con-
tingency table may be constructed to compare
genotype frequencies between cases and con-
trols at a specific variant; the rows are disease
status and columns correspond to the three pos-
sible genotypes. Assume that a is the high risk
and rare minor allele. In the Cochran-Armitage
test for trend, it is assumed that the genotypes
can be viewed as ordered categories: AA, Aa,
aa, i.e., the number of rare alleles. The test for
association measures a linear trend in propor-
tions weighted by the category effects, which
are typically taken to be the number of a alleles
(31).

Both the χ2 and Fisher exact tests consider
the null hypothesis of equal genotype frequen-
cies in cases and controls. However, the χ2

test approximates the significance with an ac-
curacy that increases with sample size, pro-
vided that cell counts are large enough (e.g.,
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>5), whereas Fisher’s exact test yields exact re-
sults, so it is recommended when there are small
counts. The expected cell counts for aa will
be extremely low because of the rare variants.
An allele-based rather than genotype-based test
can be carried out so that only a 2 × 2 table
is required, but the expected combined counts
will still be low (11). Thus, Fisher’s exact test
should be used rather than the χ2 test to control
the type I error. This comes at the cost of re-
duced power because Fisher’s exact test is more
conservative.

A quick method to correct for the multiple
hypothesis tests is to use a Bonferroni correc-
tion, but because it is too conservative it is not
used in practice. For completeness, a brief de-
scription of it is given below. Assuming that
there are m variants being tested within the
locus, and the significance level for the m in-
dependent hypothesis tests is α, the Bonfer-
roni correction is to use α/m as the significance
criterion for each of the m individual tests. A
nonparametric approach is to obtain empirical
p-values by using random permutation testing,
which does not make any assumptions about
the joint distribution of the m test statistics, but
is computationally intensive. The idea behind
random permutation testing is to approximate
the reference distributions of the test statistics
under the null assumption that there is no dif-
ference between the cases and controls. Denote
the p-value from the hypothesis test for vari-
ant j, based on the original dataset, by pj. A
sample k is generated by permuting the case
and control labels. Such samples are gener-
ated B times, and for each sample k, the same
multiple tests are performed as in the origi-
nal dataset to obtain B sets of m p-values p∗

j k,
j = 1, . . . , m. The empirical p-value p∗

j for
variant j is the proportion of the p∗

j k that are
at least as significant as the original p-value pjk,
i.e., p∗

j = #{k : p∗
j k ≤ p jk}/B.

To control the FDR for independent test
statistics, Benjamini & Hochberg (1) developed
a sequential Bonferroni-type procedure. The m
p-values from the single SNP tests are first or-
dered: P(1) ≤ P(2) ≤ · · · ≤ P(m). At FDR level q,
let k be the largest i such that P(i ) ≤ i

m q . Then,

the null hypothesis is rejected for SNPs with
p-values smaller than P(k).

As a result of the multiple testing penalty,
single-marker tests lack power to detect low
to moderate effects. Even without adjusting for
multiple testing, the power of a single-marker
test at a single low-frequency variant has been
demonstrated to be very sensitive to the effect
size. Approximate sample sizes (cases+controls,
with equal sized groups) required to attain a
power of 0.8 to detect an allelic odds ratio of
2 at an α level of 5 × 10−8 increase from 2,500
to 12,000 to 117,000 samples, as the MAF de-
creases, respectively, from 0.05 to 0.01 to 0.001.
Likewise, given that joint associations are not
accounted for with single-marker tests, multi-
ple SNPs with moderate effect sizes will also
have low power. When there is allelic hetero-
geneity within a locus, there is a further reduc-
tion in power because various individuals will
contribute to a signal at different variants in
the locus. In addition, the power is greatly af-
fected by low allele frequency at a variant. In
a simulation study by Li & Leal (11), excep-
tionally low powers were observed in the ap-
plication of single-marker association tests to
rare variants in a locus. It is common practice
for common SNP GWA studies to impose a
strict p-value threshold for declaring signifi-
cance (p < 5 × 10−8). This is based on the
approximate number of estimated independent
common variants across the genome. It is not
yet clear what the equivalent threshold for rare
variants would be.

Multiple-Marker Tests

An alternative to testing each variant sepa-
rately is to use multivariate methods to combine
information across the variants and simulta-
neously test the multiple variant sites. There-
fore, in the case of multiple moderate SNP
effects, a multiple-marker test will have higher
power than single-marker tests. Possible multi-
marker approaches include Fisher’s method,
Hotelling’s T 2 test, and multiple regression
(logistic or linear). All of these methods require
multiple degrees of freedom, which lowers the
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power of the test, especially in the case that
there is only a single strong signal in the region.

Fisher’s method is a way of combining the
results from the m single-marker tests, but it
is anticonservative when there is dependency
among the single tests. Denoting the m p-values
obtained from any of the single-marker tests by
pi, the test statistic is X 2 = −2

∑m
i=1 log(pi ).

When all of the pi are independent and all of
the null hypotheses are true, X 2 follows a χ2

2m

distribution, from which the p-value can be
obtained.

A multiple regression model may be used to
jointly test for association between the variants
and phenotype rather than fitting m separate
regression models at each of the rare variants. In
the simplest case of no covariates the regression
model for a binary trait is

yi = α + Xβ i + εi ,

where X is the n × m matrix of minor allele
counts for the n subjects at each of the m rare
variants, and β is the m vector of regression co-
efficients. By jointly estimating the associations
at each variant, m degrees of freedom are re-
quired for the fit so that the corresponding test
statistics for each null hypothesis of β j = 0 have
n − m degrees of freedom rather than n − 1 as
in the single-marker case.

For case-control studies, Hotelling’s two-
sample T 2 test may be used, which is a mul-
tivariate generalization of Student’s t-test (33).
Assume that there are NA affected and NĀ unaf-
fected individuals. In order to calculate the test
statistic, indicator variables Xij and Yij are de-
fined for the genotype of the jth marker for the
ith individual from the case and control popula-
tions, respectively. More explicitly, for the NA

cases we have

X ij =

⎧⎪⎨
⎪⎩

1, if aa
0, if Aa,

−1, if AA

whereas Yij is defined in an identical fashion for
the NĀ controls. Let X i = (X i1, . . . , X im)T ;
i = 1, . . . , N A for cases and Yi =
(Y i1, . . . , Y ik)T ; i = 1, . . . , NĀ for controls.

Upon determining the pooled-sample covari-
ance matrix S of the Xi and Yi, Hotelling’s two-
sample T 2 test statistic is

T 2 = NANĀ

NA + NĀ
(X̄ − Ȳ )T S(X̄ − Ȳ ), (1)

and under H0, NA+NĀ−m−1
m(NA+NĀ−2) T 2 follows an

Fm,NA+NĀ−m−1 distribution.
Several issues arise with the use of multi-

marker tests in addition to the problem of mul-
tiple degrees of freedom. Multiple marker tests
are also sensitive to allele frequencies. Li &
Leal (11) demonstrated in a simulation study on
rare variants that Hotelling’s T2 test is greatly
affected by the MAF and has a reduction in
power when the number of rare causal variants
increases. Multi-marker approaches that have
a reduction in the degrees of freedom include
the ZGlobal statistic of Schaid et al. (27) and a
variant of it developed by Wang & Elston (35).
However, with these methods, as well as many
others, the risk allele must first be identified at
each variant, and the direction of the genotype
scores at each SNP affects the test power. A
powerful approach for testing markers within a
small genomic region is multivariate distance
matrix regression (MDMR) (36), which uses
a matrix of genetic similarity among individ-
uals, and via this matrix the marker genotypes
are used as dependent variables. The similarity
scores in the matrix for MDMR are calculated
without knowledge of the risk allele, and the
method can be applied to continuous or dis-
crete traits, but it is not very powerful for a
set of independent SNPs across the genome.
The kernel-based association test (KBAT) also
jointly tests multiple SNPs without making any
assumptions on the direction of individual SNP
effects, but it is also able to handle correlated
and/or independent SNPs (22). In simulation
studies done by the authors, KBAT was found
to generally have more power than Zglobal (27)
and MDMR (36), especially in the presence of
rare causal SNPs.

KBAT is based on genotype similarity
scores, measured by a kernel function, between
individuals within the same group (e.g., cases or
controls). First, similarity scores yl(i j ) between
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individuals i and j in group l (1 = cases, 2 =
controls) are determined by using a kernel, such
as the allele match (AM) kernel, which is the
count of common alleles between the genotypes
of two individuals. By defining the kernel in this
way, there is no need to have knowledge of the
risk allele at each SNP. The similarity scores
yk

l(i j ) between individuals i and j in group l at
SNP k are modeled using a one-way ANOVA
model at each SNP,

yk
l(i j ) = μk + αk

l + εk
l(i j ), i < j = 1, . . . , nl ;

l = 1, 2,

where at SNP k, μk is the general effect for
pairs of individuals, αk

l is the group specific
treatment effect, and to test for disease asso-
ciation the null hypothesis is H 0 : αk

1 = αk
2.

Let nl be the number of individuals in group
l, and let ml be the number of possible distinct
pairs of individuals (i.e., ml = nl (nl − 1)/2),
which corresponds to the number of distinct
similarity scores. Let ȳ k

l = ∑
i< j yk

l(i j )/ml be the
mean for group l, and denote the grand mean by
ȳ k = ∑2

l=1
∑

i< j yk
l(i j )/

∑2
l=1 ml . The between-

group sum of squares at marker k is defined by
SSBk = ∑2

l=1 ml ( ȳ k
l − ȳ k)2, whereas the corre-

sponding within-group sum of squares is given
by SSWk = ∑2

l=1
∑

i< j (yk
l(i j ) − ȳ k)2. The sin-

gle SNP test statistic at marker k is then given
by SSBk

SSWk
, and the K-marker KBAT test statistic

to test for disease association with the set of K
markers is ∑K

k=1 SSBk∑K
k=1 SSWk

.

Permutation is required to obtain the p-value
of the KBAT statistic (or any of the single SNP
statistics) since the yl(ij) are not independent
normals.

Collapsing Methods

Individually, low-frequency variants are rare,
but in aggregate they may be common enough
to account for variation in common traits,
which is the basic idea behind collapsing meth-
ods. The goal of collapsing methods is to test for
an association of an accumulation of rare minor

alleles with some trait by combining informa-
tion across multiple variant sites. For each indi-
vidual, in some manner, genotypes are collapsed
across variants within the same region (group)
so that each individual has a single quantity for
that region. For example, the genotypes of the
variants in a group are collapsed for each indi-
vidual to an indicator variable for the presence
of at least one rare allele at any of the variant
sites, using the rationale that there should be a
low probability of an individual carrying more
than one rare allele (11, 17). Groups may cor-
respond to genes or may be defined by allele
frequencies or functionality. When grouping
by function or genes, the focus changes from
the sole identification of highly associated ge-
nomic regions to the causal relations between
genes and diseases (16). This leads to a com-
plex relation between sample size, minor allele
freuqency, and power. Gorlov et al. (7) illus-
trated that the power to detect a true associa-
tion ( joint probability of a SNP being identi-
fied as both functional and disease-associated)
is influenced by both the MAF and sample size.
Moreover, the MAF at which this power is max-
imal is inversely related with sample size, and
power to detect an association at an identified
functional variant is quite low.

The collapsing approach applies a single
univariate test to the collapsed data within a
group, resulting in enriched signals and fewer
degrees of freedom, rather than facing multi-
ple correction factors for many single-marker
tests or high degrees of freedom in a multiple-
marker test (11). The weighted sum statistic
(16) and combined multivariate and collaps-
ing (CMC) method (11) are specific to case-
control data, whereas the regression approaches
of Morris & Zeggini (17) can be applied to
quantitative data as well. In describing these
methods below, we assume that there are N in-
dividuals and that the genotype score at a vari-
ant is the number of minor alleles present for
the individual.

The motivation behind the CMC method
(11) is the development of a test that combines
the high power for rare variant analyses (col-
lapsing methods) with robustness to inclusion
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of noncausal variants (multivariate test). The
CMC method is used for multiple predefined
groups and expands on the collapsing method
for a single group of markers. In both meth-
ods, only variants classified as functional are in-
cluded in the analysis. Choices for the univari-
ate test to be applied to the collapsed data that
are considered are the Cochran-Armitage test
for trend (12), χ2 test, and logistic regression
(11).

In the application of the Cochran-Armitage
test for trend, the rare variants within a locus are
collapsed for each individual to the number of
minor alleles that are carried by the subject. It is
assumed that the probability of being diseased
increases with the number of rare minor alleles,
so the counts of minor alleles can be treated as
ordered categories. This assumption is expected
to hold for the allelic heterogeneity model, for
which there is independence between multiple
causal rare variants. A contingency table is then
constructed to compare the frequencies of the
minor allele counts between cases and controls
(12).

For the χ2 test, each individual is coded by
the indicator variable of at least one rare allele
present at any of the variants within the locus.
The proportions of individuals with rare vari-
ants in cases and in controls, φA and φĀ, respec-
tively, are then tested for a difference via a χ2

statistic with 1 degree of freedom,

N

[
(φ̂A − φ̂Ā)2

φ̂A + φ̂Ā
+ (φ̂A − φ̂Ā)2

2 − φ̂A − φ̂Ā

]
,

where φ̂A and φ̂Ā are the corresponding ob-
served proportions. The power of the χ2

test is determined by the noncentral χ2
1 dis-

tribution with noncentrality parameter given
by

νc = N
[

(φA − φĀ)2

φA + φĀ
+ (φA − φĀ)2

2 − φA − φĀ

]
.

Expressions for φA and φĀ and their derivations
are provided in Li & Leal (11). The power of
the test is given by ηc = Pr(χ2

1 (νc ) ≥ χ2
1,1−α).

Li & Leal (11) use allele frequencies to
determine the partition of the variants into
groups, with 0.1 as a criterion; they only

collapse variants with allele frequencies below
0.1. They suggest multiple groups defined by
several cut-offs when there is a wide spectrum
of allele frequencies. As discovered in their sim-
ulation study, this avoids a massive loss of power
from misclassification when variants with very
different allele frequencies are collapsed into
the same group. These authors also remark that
in addition to ensuring that only variants with
similar allele frequencies are collapsed together,
care must also be taken so that protective and
high-risk variants are collapsed separately (al-
though we note that this is difficult to imple-
ment in practice). If all functional variants have
the same affect on disease risk, then collapsing
will enrich the signal. On the other hand, there
will be a weakened signal if variants that in-
crease disease risk are collapsed with those that
reduce disease risk.

After the rare variants are partitioned into
k groups, {g j , j = 1, . . . , k}, Li & Leal (11)
collapse the variants within each group to an
indicator of any rare allele presence and then
apply a multivariate test, such as Hotelling’s T 2

test or logistic regression, to the collection of
these quantities to test the null hypothesis that
none of the groups are associated with disease
susceptibility. Details of the implementation of
Hotelling’s T 2 follow (11).

In the application of Hotelling’s T 2, Li &
Leal (11) define nj to be the number of mark-
ers in group gj. Within group j, the indicator
of the presence of any rare allele for mem-
ber i of the case population is denoted by
Xij, and Yij is defined similarly for subject i
of the controls. In this manner, for each of
the k groups, the nj variants in group gj are
collapsed for each individual. Each subject is
then represented by a k-vector of indicators:
Xi = (Xi1, . . . , Xik)T ; i = 1, . . . , NA for cases
and Y i = (Yi1ts , . . . , Yik)T ; i = 1, . . . , NĀ for
controls. The proportions of cases and con-
trols with at least one rare allele in group gj are
X̄ j and Ȳj , respectively, and letting S denote
the pooled covariance matrix, the test statistic
is as given in equation 1. Under the null hy-
pothesis, NA+NĀ−k−1

k(NA+NĀ−2) T 2 follows an Fk,NA+NĀ−k−1

distribution.
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Li & Leal (11) analytically compare the
power of single-marker tests, multiple-marker
tests, the collapsing method, and the CMC
method, taking into account a number of func-
tional variants and functional misclassification
of variants. In a simulation study, LD effects on
test power are examined, as well as type I error
rates at the 0.05 level. The CMC method (with
Hotelling’s T 2 or logistic regression) controls
the type I error quite well, as does Hotelling’s
T 2 and the collapsing method based on the χ2

test, but the latter two are slightly conservative.
Logistic regression (uncollapsed data) displays
poor performance, with an inflated type I er-
ror. When LD is present, among the collaps-
ing method (χ2 test), Hotelling’s T2 test, and
the single-marker tests, the single-marker tests
have the lowest power, whereas the collapsing
method has the highest.

The power of the collapsing method in-
creases with the number of functional variants,
whereas the powers of the multiple- and single-
marker tests have the inverse relationship with
the counts. When nonfunctional variants are
included in the analysis or functional variants
are excluded from the analysis, all three tests
experience a drop in power, with the single-
marker test consistently having the lowest
power. The collapsing method manages to have
the highest power in all scenarios, despite being
generally less robust to functional misclassifi-
cation than Hotelling’s T 2. As the proportion
of variants excluded from the analysis increases,
there is a larger drop in the power of the collaps-
ing method than in Hotelling’s T 2. However,
the exclusion of high-frequency (e.g., frequency
0.02 or 0.05) functional variants results in a
more dramatic loss of power for Hotelling’s T 2

than the collapsing method. Hotelling’s T 2 is
found to be quite robust to the inclusion of non-
functional variants, irrespective of their allele
frequencies, and decreases slightly in power as
the number of nonfunctional variants increases.
On the other hand, the power of the collaps-
ing method noticeably decreases as the allele
frequency of a single nonfunctional variant in-
creases, and there is a dramatic loss of power

with the inclusion of two high-frequency (e.g.,
frequency 0.02 or 0.05) nonfunctional variants.

The CMC method is demonstrated to have
high power and is robust against functional vari-
ant misclassification, combining the strengths
of collapsing and multivariate methods. In the
presence of functional misclassification, the
power of the CMC method is much higher
than that of the collapsing method, especially
when a high-frequency noncausal variant is in-
cluded in the analysis. The power of the CMC
method decreases upon increasing the number
of noncausal variants in the analysis, but it is not
affected by the noncausal allele frequency. In
the analysis of data with truly functional high-
frequency variants (allele frequency of 0.02 or
0.05), the CMC method has only a slightly
lower power than the collapsing method.

Collapsing methods in a regression frame-
work have been developed by Morris & Zeggini
(17). They focus on quantitative trait associa-
tions, assuming that a normally distributed trait
is phenotyped for a sample of unrelated individ-
uals who are typed for rare variants in a gene or
small genomic region. However, the method is
easily extended to binary traits by considering a
logistic regression-modeling framework. They
model the phenotype as a function of a collapsed
summary of the variants in one of two ways, re-
ferred to as rare variant tests (RVT):

� RVT1: for each individual, the propor-
tion of rare variants that carry at least one
copy of the minor allele;

� RVT2: for each individual, the presence
or absence of at least one minor allele at
any rare variant.

The phenotype for individual i is denoted yi,
whereas ni denotes the number of successfully
genotyped rare variants for individual i, ri de-
notes the number of rare variants that carry at
least one copy of the minor allele, and I (ri ) =
1{ri > 0} is the indicator variable for the pres-
ence of at least one minor allele at any rare
variant for subject i. Incorporating a vector of
covariates for individual i, xi, the regression
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models are given by

yi = α + λ
ri

ni
+ βxi + εi , (2)

yi = α + λI (ri ) + βxi + εi , (3)

where in equation 2, λ is the expected increase
in the phenotype for an individual with a mi-
nor allele at all rare variants compared with one
with none, and in equation 3, λ is the expected
increase when an individual carries at least one
minor allele at any rare variant compared with
one that has a complete absence of rare minor
alleles. Analysis of deviance is used to compare
the maximized likelihoods of the null (λ = 0)
and unconstrained λ models in the construction
of likelihood ratio tests of disease association for
an accumulation of rare variants.

Within a functional unit of interest, the
power of the association tests based on
equations 2 and 3, as well as independent
Bonferroni-corrected trend tests of quantitative
trait association at all SNPs and haplotype trend
tests of association, are compared by Morris &
Zeggini (17) in a simulation study in which hap-
lotype data are generated in a 50-kb genomic
region. Each of the four methods is applied to
simulated data in a manner that is equivalent
to testing at low frequency variants (MAF 1%–
5%) present on the genome-wide SNP chip.
When testing on the SNP chip, it is necessary
to allow the MAF to include SNPs with MAFs
as high as 5% so that the mean number of vari-
ants tested is 1.6 rather than only 0.2 when the
analysis is restricted to variants with MAF <

1%. The regression methods are also applied
to simulated data, testing in a cohort those rare
variants that were identified through deep re-
sequencing. They examine various simulation
models for association of the trait with multi-
ple causal variants in the same region, varying
the maximum MAF of all causal variants, the
total MAF of all causal variants, and their joint
contribution to the phenotypic variance. Phe-
notypes are either generated under the assump-
tion that the trait is determined by the propor-
tion of causal variants at which a minor allele
is present (equation 2) or by the presence or

absence of a minor allele at any casual variant
(equation 3).

Morris & Zeggini (17) find that rare variants
discovered through resequencing tests based
on equation 2 tend to be more powerful than
those of equation 3, even when the simulated
traits are determined by equation 3. This
indicates that tests based on the proportion
of rare variants that carry at least one minor
allele are more robust than those based on
the presence/absence of any minor allele. A
drawback of the proportions-based method is
that it can be adversely affected by the presence
of LD. Tests based on low-frequency variants
on genome-wide SNP arrays display a distinct
loss in power in comparison to those based on
rare variants identified via resequencing, with
the largest differences in power resulting when
there is substantial allelic heterogeneity (e.g.,
maximum MAF of 0.5% for causal rare variants
in simulated data). In addition, the regression
methods, which are based on accumulations of
minor alleles, have low power to identify rare
variant associations at low-frequency variants
on genome-wide SNP chips because of their
scarcity on the chips. They also confirm the
result that when there is substantial allelic
heterogeneity, rare variant associations are de-
tected with greater power by haplotype-based
tests than by single-locus tests (21).

Both the cohort allelic sums test (CAST) (5,
19) and the weighted sum statistic (16) test for
a difference in mutation counts in a group of
variants between cases and controls by coding
individuals according to the number of muta-
tions. Both rare and common variants within
the functional unit are included in calculations
for these two methods, but in the weighted sum
statistic the variants are weighted according to
their frequency in the controls. By differing the
weight contributions of the variants, the impact
of the common mutations is not as high as in the
CAST method, where many individuals may be
grouped as having at least one mutation.

In the construction of the weighted sum
statistic, each variant within the functional unit
is assigned a weight ŵi , which is the estimated
standard deviation of the mutation count in the
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sample, under the null assumption of equal fre-
quencies in affected and unaffected subjects

ŵi =
√

ni qi (1 − qi ), where qi = mU
i + 1

2nU
i + 1

,

mU
i is the controls count of mutant alleles for

variant i, nU
i is the number of genotyped con-

trols for variant i, and ni is the total number of
subjects genotyped for variant i. These weights
are used to downweight the mutation counts
Iij, for variant i, subject j, when calculating the
genetic score of individual j

γ j =
L∑

j=1

Iij

ŵi
,

where in the generic genetic model Iij ∈
{0, 1, 2}. These weighted sums of mutation
counts are then used to rank all individuals, re-
gardless of affected status, and the test statistic
x is the sum of the ranks for the cases, which is
equivalent to the Wilcoxon rank statistic.

Madsen & Browning (16) proceed in two
ways to determine the p-value, both depend-
ing on random permutation methods: a normal
approximation and the standard method. Here
we will focus on the standard method, which
is the preferred, quicker method because it in-
corporates a stopping rule so that fewer per-
mutations may be required. In either method, a
sample under the null hypothesis is obtained by
permuting the affected/unaffected status, and
the test statistic is calculated for the sample.
In this manner, the LD structure of the ge-
netic data is preserved so that regardless of
whether or not the variants are in LD, the test
has a correct false-positive rate. This sampling
is repeated k times to obtain x∗

1 , . . . , x∗
k . Let

k0 = #{ j : x∗
j ≥ x}, so that the p-value is

found by p̂ = k0+1
k+1 , under the standard ap-

proach. Sampling may be suppressed if p̂ and its
precision are satisfactory, such as when p̂ −3σ̂ p̂

is above the significance threshold, where σ̂ p̂ is
the estimated standard deviation of p̂ .

A discussion on the power of the weighted
sum statistic is deferred to follow the descrip-
tion of the data-adaptive sum test (8), which
tests for disease association with multiple rare

and/or common variants in a region. In the
usual sum test, a common-effect logistic regres-
sion model is fit for a region of k SNPs, assum-
ing that all SNPs have a common odds ratio for
disease association

logit Pr(Y i = 1) = βc 0 +
k∑

j=1

X ij βc ,

where β c is the common association strength
between the disease and each SNP (8). This
avoids multiple degrees of freedom and the
use of multiple test adjustments given that
the single test of interest is H 0:βc = 0,
which can be tested by a score statistic (or
Wald statistic). However, the least-squares
estimate of β c is a function of the k single
SNP regression coefficients that would result
from fitting a marginal model at each SNP
(logit Pr(Y i = 1) = β0 j + X ij β j ) and depends
heavily on the association directions; there
is a large power loss if the coefficient signs
are quite different. The data-adaptive sum
test adapts the coding of each SNP such that
SNP codings are optimal. This is done by first
fitting marginal logistic regression models at
each SNP j and selecting a threshold α0. If
the jth SNP coefficient is negative and has a
p-value below α0, then the jth SNP coding
is reversed. The final set of SNP codings is
then used in the fitting of the common-effect
model. A normal-based p-value p can be found
from the normalized score statistic under
H 0 : βc = 0, but because of the data-driven
coding approach that shifts the distribution
of the score statistic, it will yield inflated
type I error rates. A proper permutation-
based p-value is found in the usual manner
of permuting the case-control indicators,
then fitting the marginal and common-effect
models as before, and finally finding the
proportion of permutations with smaller
p-values than the original data. The authors re-
fer to this test as aSum-P, and they also consider
the empirical distribution of the score statistics
from the B permutations to construct the aSum
test statistic, which has a null distribution that
is a linear function of a χ2

1 random variable.
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The authors also consider a test in which they
partition the variants into two groups: common
and rare. Then, in a logistic regression, the
two corresponding regression coefficients are
tested. They refer to this approach as aSumC,
and when a permutation-based p-value is
implemented it is called aSumC-P (8).

In a simulation study, the authors compare
variants of their data-adapted sum test with the
usual sum test, as well as the CMC method (us-
ing Hotelling’s T 2) and weighted sum test (8).
The sum test and weighted sum test have the
highest power when all causal associations are
in the same direction and there are not any
noncausal SNPs. With the addition of non-
causal SNPs with low MAF (0.02 or 0.05), the
CMC test tends to achieve the highest power,
closely followed by the aSumC-P and aSumC
tests, but this is not the case for the inclusion
of nonfunctional rare variants, where the sum
test variants perform better than the CMC test.
In the situations where the direction of associ-
ation differs among the SNPs, the sum test and
weighted sum test have the lowest powers, with
or without the inclusion of nonfunctional vari-
ants; generally the various versions of the aSum
tests attain the highest powers, but the CMC
test occasionally performed better.

ISSUES AND DISCUSSION

The analysis of rare variants is not only com-
plicated by low power, but also by factors such
as the difficulty of calling rare genotypes and of
uncertainty associated with sequence calls. In-
dividual samples are resequenced many times
and the combined reads are used to calcu-
late SNP-specific quality scores, which evaluate
how likely a polymorphism truly exists at a par-
ticular location and how confident the genotype
assignment is. Rare variants with lower quality
scores are not as reliable and may need to be
downweighted in analyses.

In the search for causal rare variants, the
probability of detection is higher when genes
are sequenced only in cases, or when the pro-
portion of cases is larger than controls, but this
approach is problematic. When variant discov-

ery is based on an excess of cases and the re-
maining samples are genotyped at these vari-
ants, there tends to be inflated false-positive
rates, but the type I error rate is well-controlled
when both cases and controls are used for
discovery (12).

Genotype imputation is often used to pre-
dict unobserved/missing genotypes in order to
obtain a larger set of SNPs over a finer grid
for analysis in genome-wide association stud-
ies. Several imputation algorithms have been
developed and include IMPUTE [v1 (17) and
v2 (9)], BEAGLE (3), and MACH (13). Impu-
tation methods estimate genotypes by combin-
ing information from a reference panel (e.g.,
HapMap or 1,000 Genomes Project), consist-
ing of genotypes for a dense set of SNPs, and a
study sample in which the SNPs are genotyped
at a subset of the reference panel SNPs. Fol-
lowing the notation of Howie et al. (9), SNPs
can be categorized into one of two disjoint sets:
the set T of SNPs typed in both the study sam-
ple and reference panel, or the set U of SNPs
untyped in the study sample but typed in the ref-
erence panel. In most imputation methods, the
best match is searched for between the result-
ing haplotypes from phasing the SNPs in T and
the corresponding partial haplotypes from the
reference panel. This is based on the assump-
tion that haplotypes that match at the SNPs in
T will also match at the SNPs in U . Imputed
genotypes may also be obtained at typed SNPs
by removing the information for the SNP of
interest and using only the remaining SNPs
to estimate the genotypes at the SNP for ev-
ery individual. This probability distribution is
(should be) then taken into account for asso-
ciation analysis. In IMPUTE v2 (9), multiple
reference panels genotyped on different sets of
SNPs can be used in the imputation so that the
reference panel is effectively increased. An ex-
panded panel is shown to improve the imputa-
tion of rare SNPs rather than using only a single
reference set.

By increasing the set of SNPs for an associ-
ation analysis, imputation increases the power
for detecting associations with disease. In com-
parison to an association analysis based on a

www.annualreviews.org • Rare Variant Analysis Methods 305

A
nn

u.
 R

ev
. G

en
et

. 2
01

0.
44

:2
93

-3
08

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 F
re

d 
H

ut
ch

in
so

n 
C

an
ce

r 
R

es
ea

rc
h 

C
en

te
r 

- 
A

rn
ol

d 
L

ib
ra

ry
 o

n 
08

/2
9/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



GE44CH13-Zeggini ARI 3 October 2010 13:46

tagSNP design, there is a clear increase in
power by including imputed causal SNPs that
were not tagged, with the largest increases oc-
curring for variants with MAF < 0.05 (17).
In the case of common causal variants, similar
powers are achieved by an imputation-extended
tagSNP approach and by resequencing all in-
dividuals (30), suggesting that imputation is a
cost-effective alternative to resequencing in this
case. However, for rare variants, despite the in-
crease in power by adding in imputed SNPs
to the analysis, this does not attain a power as
high as when complete resequencing data are
used (30). Care also needs to be taken to ensure
that an appropriate genetically similar reference
panel is used.

Imputation clearly has its advantages, but
the low MAF of rare variants and their low LD
with other variants make it difficult to impute
them. A related issue in imputing rare variants
is the difficulty in assessing imputation accu-
racy. Imputation accuracy is typically defined
by the proportion of correctly classified geno-
types (15), or equivalently by the discordance
between imputed and observed genotype calls
(9). Using this measure of accuracy, there is
a higher confidence in making calls at a rare
SNP than at a common one, giving the impres-
sion of higher accuracy than at common SNPs
because for most rare SNPs the genotype will
be homozygous for the common allele. By this
same reasoning, rare SNPs will have a smaller
proportion of missing genotypes than those of
higher frequency (9). Even by randomly assign-
ing the two alleles of a rare SNP to a sample, us-
ing only the MAF (<5%), an apparent accuracy
greater than 90% can be achieved if only the
concordance is considered (15). This indicates
that alternate accuracy measures are needed for
imputation at rare SNPs.

In evaluating imputation methods, Bryan
et al. (9) also examine the minor allele calls
at rare SNPs (MAF < 5%) in terms of false
positives (heterozygous call when homozy-
gous common) and false negatives (homozy-
gous common call when heterozygous). In do-
ing so, they find that IMPUTE v2 generally has
higher accuracy at rare SNPs than competing

methods. An imputation quality score (IQS)
based on Cohen’s kappa statistic for inter-rater
agreement adjusts the observed proportion of
agreement by the agreement that would occur
simply due to chance (15). An IQS of 1 indicates
a perfect match, and negative values occur when
the imputation method performed worse than
a random genotype assignment. In a compar-
ison of the concordance proportion and IQS
for imputations (using IMPUTE v1) of Euro-
pean Americans (EA) using the CEU reference
panel of HapMap and for African Americans
(AA) using the YRI reference panel, the authors
illustrate that IQS is a better measure of impu-
tation accuracy. The mean concordance pro-
portion for AA (97.1) is almost identical to EA
(98.8), whereas the difference is much larger
between the mean IQSs, with AA (78.3) hav-
ing a much lower average score than EA (90.2),
which reflects the fact that it is more difficult to
impute African populations because of their low
LD structure. In a plot of the relationship be-
tween MAF and the two imputation accuracy
measures, the concordance measure increases
as MAF decreases, whereas the IQS drops
as the MAF decreases, which is the expected
relationship since rare SNPs do not impute
well.

When testing for associations using imputed
genotypes, there is a higher uncertainty than in
experimental genotype calls, and the imputa-
tion accuracy needs to be accounted for. Meth-
ods for incorporating this uncertainty have been
developed for single SNP association testing,
e.g., implemented in the software SNPTEST
(17). For rare variants, a different strategy is re-
quired because of the low power single SNP
tests have in detecting disease-associated rare
variants.

Genotype imputation can also be used to
facilitate meta-analysis so that there are com-
mon SNPs in the study samples to be combined.
When meta-analyzing across different popula-
tions, differences in LD patterns, as well as di-
rections of association at the individual SNPs,
become issues. If an untyped functional poly-
morphism is in strong LD with a typed SNP
in one population but not in the others, the
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meta-analysis will not be effective to identify
the association. One way of quantifying how
different the LD patterns are between popu-
lations is varLD (32). For rare variant signal
meta-analysis, summary statistics can be com-
bined at the locus rather than at the SNP level,
thus alleviating problems associated with allelic
heterogeneity. However, as effect size estimates
within individual strata can be unstable due to
low rare allele numbers, p-value–based meta-
analysis may be preferable. The latter can also
overcome direction of effect differences across
studies.

In rare variant analyses, the need for strin-
gent quality control procedures is highlighted
by the loss of power due to genotype mis-
specification, which causes a rise in the false-
positive error rate. Rare variants are difficult

to genotype and challenging to impute, so
meticulous quality checks are essential before
declaring association. The field of complex trait
genetics is undergoing a shift in focus from
common to rare variants, primarily driven by
advances in next generation sequencing. As
with GWA studies a few years ago, technol-
ogy has once again outstripped analytical capac-
ity. Streamlined, powerful rare variant analysis
methods that take diverse study designs under
account (e.g., using family-based samples, sam-
ples drawn from the extremes of a distribution,
etc.) are urgently needed. Finally, improved an-
notation of the human genome will undoubt-
edly enable the interpretation of rare variant
signals and will help move the field forward,
enhancing our understanding of complex trait
genetics.
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