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ABSTRACT

Motivation: Imaging mass spectrometry (IMS) is one of the few
measurement technology s of biochemistry which, given a thin
sample, is able to reveal its spatial chemical composition in the full
molecular range. IMS produces a hyperspectral image, where for
each pixel a high-dimensional mass spectrum is measured. Currently,
the technology is mature enough and one of the major problems
preventing its spreading is the under-development of computational
methods for mining huge IMS datasets. This article proposes a
novel approach for spatial segmentation of an IMS dataset, which
is constructed considering the important issue of pixel-to-pixel
variability.
Methods: We segment pixels by clustering their mass spectra.
Importantly, we incorporate spatial relations between pixels into
clustering, so that pixels are clustered together with their neighbors.
We propose two methods. One is non-adaptive, where pixel
neighborhoods are selected in the same manner for all pixels. The
second one respects the structure observable in the data. For a
pixel, its neighborhood is defined taking into account similarity of
its spectrum to the spectra of adjacent pixels. Both methods have
the linear complexity and require linear memory space (in the number
of spectra).
Results: The proposed segmentation methods are evaluated on two
IMS datasets: a rat brain section and a section of a neuroendocrine
tumor. They discover anatomical structure, discriminate the tumor
region and highlight functionally similar regions. Moreover, our
methods provide segmentation maps of similar or better quality
if compared to the other state-of-the-art methods, but outperform
them in runtime and/or required memory.
Contact: theodore@math.uni-bremen.de

1 INTRODUCTION
Given a thin sample (usually a tissue slice), imaging mass
spectrometry (IMS) measures high-dimensional mass spectra at its
spatial points, providing a hyperspectral image with a mass spectrum
measured at each pixel (Fig. 1). Each mass spectrum dimension
represents the abundance of molecules with this molecular mass.
Currently, IMS is one of the few biochemical technologies able
to establish the spatial biochemical composition of the sample
in the full molecular range (small and large molecules, e.g.
metabolites, lipids and proteins). Since 1970s, secondary ion
mass spectrometry was the main IMS technique for surface
analysis (Benninghoven and Loebach, 1971), although being unable
to measure large molecules (e.g. peptides and proteins). With the
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advent of Matrix-assisted laser desorption ionization (MALDI)
imaging mass spectrometry (Stoeckli et al., 2001), the measurement
of peptides and proteins became possible what opened IMS a door
to the variety of biological and biomedical problems.

Currently, IMS is one of the most promising innovative
measurement techniques in biochemistry. IMS has proven its
potential in discovery of new drugs (Solon et al., 2010; Yang
et al., 2009) and cancer biomarkers (Cazares et al., 2009; Rauser
et al., 2010) just to mention a few important applications. IMS
was used in numerous studies leading to understanding chemical
composition and biological processes, see recent reviews on this
topic (Amstalden van Hove et al., 2010; Watrous et al., 2011). As for
many modern biochemical techniques, in particular in proteomics
(Patterson, 2003), the development of computational methods for
IMS is lagging behind the technological progress. Two unsupervised
problems are currently considered in IMS data processing: (i) data
representation using principal component analysis (PCA) and its
variants (Klerk et al., 2007), the technique standardly used for
processing SIMS data, and (ii) spatial segmentation of an IMS
dataset by means of spectra (or pixels) clustering (Alexandrov et al.,
2010; Deininger et al., 2008; McCombie et al., 2005).

Concerning the second problem, the spatial segmentation of
an IMS dataset, several approaches have been proposed. First,
straightforward clustering of mass spectra, e.g. k-means (McCombie
et al., 2005). Second, feature extraction with PCA and then
hierarchical clustering of features (Deininger et al., 2008).
Hierarchical clustering has an advantage of interactive analysis
of the clustering dendrogram but needs to keep in memory the
full distance matrix; several work-arounds have been proposed
(Zhang et al., 1996) but none is accepted as a standard. The main
drawback of using straightforward clustering of mass spectra is
that it is negatively affected by the pixel-to-pixel variability issue
(Alexandrov et al., 2010; Watrous et al., 2011), which is especially
serious in the most popular IMS techniques, SIMS and MALDI-
IMS. Underestimation of this issue leads to strong noise in the
resulted segmentation maps (Alexandrov et al., 2010). As we show
later, the method combining PCA with hierarchical clustering is also
prone to this problem.

We have recently proposed a spatial segmentation method
solving this important issue, where edge-preserving spatially-
adaptive denoising (Grasmair, 2009) is applied to gray-scale images
of selected masses prior to clustering (Alexandrov et al., 2010).
The produced segmentation maps are significantly better than
those produced without using denoising, in terms of lack of
noise, discrimination of anatomical and histological details, and
the number of visible regions. However, these improvements are
achieved in full at a cost of using a computationally intensive
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Fig. 1. An IMS dataset is a data cube. Spectra (A) are measured at spatial points of a sample (B) with spatial coordinates (x,y). Given a mass, one obtains an
intensity image; examples for 4966 Da and 6717 Da are shown in (C–D).

edge-preserving spatially adaptive denoising method and slow high
dimensional discriminant clustering. Use of a simpler methods
improves the segmentation maps but not significantly due to strong
and multiplicative noise in data.

In this article, we propose another original approach for spatial
segmentation of IMS data with strong pixel-to-pixel variability. In
general, this approach can be applied to any hyperspectral data, not
necessarily IMS, but we consider segmentation of only IMS data.
In (Alexandrov et al., 2010), the motivation for using the prior-to-
clustering denoising was that neighbor pixels should have similar
intensity at a peak mass (a mass, where not just noise is represented).
Results shown by Alexandrov et al. (2010) confirm that a procedure
taking into account spatial relations between pixels delivers a better
quality than a straightforward pixels clustering. In this article,
our approach is to take into account the spatial relations between
pixels by incorporating this information directly into a clustering
method. We propose two new approaches to pixels clustering, when
each pixel is considered together with its neighbors. One is non-
adaptive, where each pixel is clustered together with pixels from its
neighborhood; neighborhoods are selected in the same manner for
all pixels. The second structure-adaptive way respects the structure
observable in data and, for a pixel, its neighborhood is defined taking
into account similarities of spectra measured at pixels around it.
In order to build efficient clustering methods based on these two
ideas (non-adaptive and structure-adaptive), we use the FastMap
method (Faloutsos and Lin, 1995), applying it for an efficient
dimensionality reduction and, given a distance matrix, for finding
points in euclidean space with similar inter-distances. Importantly,
we do not keep the full distance matrix in memory using a special
FastMap trick explained later in the paper.

We evaluate the proposed methods on two MALDI-IMS datasets,
a rat brain coronal section without pathology (20 185 spectra)
where of our interest is to recover the anatomical structure of the
brain, and a section of a neuroendocrine tumor (NET) invading
the small intestine (27 360 spectra) with the aim to discriminate
the functionally similar regions, and, to highlight the tumor area.
Both datasets have been introduced, segmented with prior-to-
clustering advanced denoising, and discussed by Alexandrov et al.
(2010).

2 METHODS

2.1 Data measurement and preprocessing
Samples preparation and IMS measurements of both the rat brain and NET
datasets are described in detail in Alexandrov et al. (2010). Shortly, the
cryosections of 10 µm thickness were cut on a cryostat, transferred to a
conductive indium-tin-oxide-coated glass slide (Bruker Daltonik GmbH,
Bremen, Germany) and measured using a MALDI-TOF instrument (Autoflex
III; Bruker Daltonik GmbH) using flexControl 3.0 and flexImaging 2.1
software (Bruker Daltonik GmbH). The lateral resolution was set to 80 µm.
For the NET data, the Haematoxylin and Eosin (H&E) stained sections,
coregistered with the MALDI-imaging results, were evaluated histologically
by an experienced pathologist using a virtual slide scanner (MIRAX desk,
Carl Zeiss MicroImaging GmbH, Munich, Germany).

The pre-processing was done in the ClinProTools 2.2 software (Bruker
Daltonik). The spectra were baseline-corrected with the TopHat algorithm
(minimal baseline width set to 10%, the default value in ClinProTools).
No normalization or binning was done. Then spectra were saved into ASCII
files and loaded in Matlab R2010b (The Mathworks Inc., Natick, MA, USA),
where the processing was performed using our original implementation of all
methods, including FastMap. The rat brain dataset comprises 20 185 spectra
acquired within the slice area (120×201 pixels), each of 3045 data points
covering the mass range 2.5–10 kDa; the NET dataset comprises 27 360
spectra (171×239 pixels) each of 5027 data points covering 3.2–18 kDa.
For examples of intensity images for masses 4966 Da and 6717 Da for the
rat brain dataset, see Figure 1; more examples are in (Alexandrov et al.,
2010).

2.2 Peak picking
Selection of dataset frequent peaks: for the peak picking, we improved the
approach proposed by Alexandrov et al. (2010). First, as by Alexandrov et al.
(2010), for each 10th spectrum we picked its peaks with orthogonal matching
pursuit (OMP) algorithm (Denis et al., 2009). This greedy algorithm searches
for the specified number pp of peaks which simultaneously are (i) high and
(ii) fit at best the given peak shape (the Gaussian shape is used). OMP is not
just selection of the pp peaks most correlated with the Gaussian function. In
comparison with this naive greedy approach, OMP has better theoretical
properties of reconstruction peaks hidden in the noise; for more details,
see (Denis et al., 2009). The peak picking for each 10th spectrum assigns
to each mz-value a number of spectra in which this mz-value was selected
as a peak. Finally, we take the most frequent peaks which were selected in
more than τp% of considered spectra. The parameters of this peak picking
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approach are: (i) σp, the standard deviation of the Gaussian shape of a peak,
(ii) np, the number of peaks selected per spectrum, and (iii) τp, the percentage
of spectra a peak should be found in.

Alignment of masses corresponding to a peak: however, we realized, that
because the Gaussian shape is just an approximation of a real peak shape
and probably because of small mass shifts (the mass recalibration for each
spectrum is not standardly performed in IMS), often several mz-values close
to the center of a peak are selected. This redundancy in some not fully
understood manner reduces the frequency of each mz-value. Thus, some,
in fact frequent, peaks can be omitted as its mz-value has low frequency.
Moreover, for a peak, this approach selects several masses with similar
spatial intensity distribution what can influence the subsequent clustering.
This effect seems to be stronger for large peaks, what leads to their increased
impact on the clustering.

In order to prevent this redundant selection of several masses per peak, we
grouped mz-values located close to each other (closer than σp, one fourth of
the given peak shape) and, after calculating their mean value, move it uphill
the dataset mean spectrum so that it gets in the local maximum of the mean
spectrum. This simple improvement allows us to select peaks which, from an
expert opinion, should be selected but were omitted before, thus increasing
the sensitivity of the peak picking without drop of specificity. This topic,
however, goes beyond the scope of this article which presents methods of
segmentation applied to a reduced dataset after a peak picking. After peak
picking, the images corresponding to picked masses are scaled so that their
maximal value is one.

2.3 FastMap: distance-preserving projection
The FastMap algorithm (Faloutsos and Lin, 1995), given a distance matrix
of size n×n and a euclidean space of dimension q, finds n points in this
space with inter-distances close to those given in the matrix. It resembles
multidimensional scaling (Hastie et al., 2009) but is more efficient having
the linear in n complexity of O(nq). Moreover, although it is not well-known,
for finding projections of n points, FastMap needs to calculate only n(2q+1)
pairwise distances. Computing them on-the-fly, one significantly reduces the
required memory. This trick is not described in the original paper (Faloutsos
and Lin, 1995) but implemented by Faloutsos and Lin in their C package.
We also use the FastMap algorithm as an efficient dimensionality reduction.

2.4 Spatially aware clustering
Probably, the most apparent way to embed the spatial relations between
pixels into a clustering algorithm is to use a distance-based clustering where
the distance d(s1,s2) between two spectra s1 and s2 measured at pixels with
coordinates (x1,y1) and (x2,y2) depends on pixels from the neighborhoods
of (x1,y1) and (x2,y2), for example,

dr,{αij}(s1,s2)2=
∑

−r≤i,j≤r

αij‖s
(
x1+i,y1+j

)−s
(
x2+i,y2+j

)‖22, (1)

where r defines the radius of the pixel neighborhood and {αij} are weights
of spectra corresponding to pixels from the neighborhoods. It is natural
to choose the weights {αij} which decrease with increasing i2+j2 (small
weights for pixels distant from the neighborhood center). For a neighborhood
of radius r, we define the Gaussian weights as follows

αij=exp
(

(−i2−j2)/(2σ2)
)
, with σ= (2r+1)/4, (2)

where σ is selected according to the two-sigma rule (Fig. 3A).
Unfortunately, this approach is memory-consuming, since it requires

calculating and keeping in memory a distance matrix of size (n2−n)/2.
For the NET dataset (n=27360) this needs 1.4 GB of memory, for n=
50000 (authors processed such a dataset) 4.7 GB, for n=105 (there are no
restrictions to measure such a dataset with existing instruments) 18 GB. The
key idea of our spatially aware clustering is inspired by the kernel methods
framework. We propose to map our spectra (of length p) into a euclidean

Fig. 2. Transformation of spectra s1 and s2 into feature space by taking
neighborhoods around (x1,y1) and (x2,y2) into account; the mapped positions
(x1,y1) and (x2,y2) are clustered in feature space.

feature space F using a mapping �, where the standard euclidean distance is

‖�(s1)−�(s2)‖2=dr,{αij}(s1,s2). (3)

For a spectrum s∈R
p, this is achieved with using

�(s)=�(s(x,y))=[√
α−r,−r sT(x−r,y−r),...,

√
α0,0 sT(x,y),...,

√
αr,r sT(x+r,y+r)

]T
,

(4)

which describes the concatenation of spectra of pixels neighbor to the
pixel of s, each multiplied with a square root of the corresponding weight.

Naturally, the feature space F is R
p(2r+1)2

for such �; see Figure 2 for an
illustration. If, as usual in IMS, n�p (number of pixels is much more than
the number of selected peaks), and r is small, then storing the mapped data of
size n×p(2r+1)2 is significantly cheaper than n(n−1)/2 pairwise distances.

As a last step, supposing redundancy in the mapped data, we apply
the FastMap algorithm for dimensionality reduction, projecting the mapped
spectra into a euclidean space of lower dimension q. Finally, clustering with
an efficient vectorial clustering algorithm is performed. We propose using
the k-means clustering algorithm.

Algorithm 1 Spatially-aware clustering (SA)

Parameters: pixel neighborhood radius r, FastMap desired
dimension q, number of clusters k

1. Given r, create weights {αij} as in Equation (2)
2. For each spectrum s, m←�(s) using weights {αij}

{map a spectrum into the feature space using Equation (4)}
3. Given q, project mapped spectra {m�}n�=1 into R

q using
FastMap obtaining {f�}n�=1

{reduce the dimensionality up to q}
4. Cluster the projected mapped spectra {f�}n�=1 into k groups using

k-means

2.5 Spatially aware structure-adaptive clustering
Applying the spatially-aware clustering proposed in the previous section to
IMS data, we realized that it improves the segmentation maps as compared to
the straightforward clustering. However, it can smooth the edges between the
anatomical or histological regions or eliminates small details; more on this in
Section 3. Use of a smaller pixel neighborhood radius r solves this problem
only partially, since for a smaller r the noise in the resulted segmentation
map is stronger.

So, we propose another method, where for a pixel, the weights of pixels in
its neighborhood are not simply Gaussian but calculated adaptively, taking
into account similarities of the pixels. The key idea is as follows. For each
pixel in the neighborhood, we consider the distance between its spectrum and
the spectrum in the center of the neighborhood. The larger is the distance (the
less similar the spectra are), the smaller is the weight. This idea is adapted
from the bilateral filtering (Tomasi and Manduchi, 1998), an edge-preserving
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color image denoising method, where the adaptively calculated weights are
used afterwards for averaging.

First, for a pixel with coordinates (x,y), we introduce

βij(x,y)=exp
−δij(x,y)2

2λ2
, −r≤ i,j≤r, (5)

in line with Tomasi and Manduchi (1998), where λ is a parameter and
δij(x,y)=‖s(x+i,y+j)−s(x,y)‖2. Then the distance between two spectra
at coordinates (x1,y1) and (x2,y2) is as follows

dr,{α̃ij},λ(s1,s2)2=
∑

−r≤i,j≤r

α̃ij(x,y)‖s(x1+i,y1+j
)−s

(
x2+i,y2+j

)‖22, (6)

α̃ij(x,y)=αij

√
βij(x1,y2)βij(x2,y2). (7)

which differs from (1) by using the adaptive weights α̃ij(x,y) instead of the
Gaussian weights αij . Note that α̃ij(x,y)≤αij , where α̃ij(x,y) are reduced
by multiplying with βij(x,y)∈ (0,1]. The more similar is the spectrum s(x+
i,y+ j) to the spectrum s(x,y) from the neighborhood center, the larger is
βij(x,y).

Figure 3B shows an example of the adaptive weights α̃ij(x,y) for a
neighborhood containing spectra from two different histological regions;
spectra in these regions differ significantly.

In order to eliminate the parameter λ in Equation (5) which adjusts the
adaptivity of α̃ij(x,y) to the spectra in the neighborhood of the pixel (x,y),
we propose the following approach. The value of λ(x,y) is selected for
each neighborhood separately, in such a way that the largest βij(x,y) in this
neighborhood is 1 and the smallest is exp(−2)≈0.15, what leads to

λ(x,y)= 1
2 max−r≤i,j≤r

{
δ̂ij(x,y)

}
(8)

where δ̂ij(x,y)=δij(x,y)−min−r≤i,j≤r{δij(x,y)}.

Fig. 3. Left panel: Gaussian weights αij for a pixel neighborhood of radius
r=3. Right panel: structure-adaptive weights α̃ij(x,y) taking into account
the similarity of its spectrum to the spectra of adjacent pixels—the weights
drop down when facing an intensity edge.

Since the weights α̃ij(x,y) in the distance Equation (6) are
determined for each pixel separately, we cannot use the concatenation
like in Equation (4) to derive the transformation �(s(x,y)) so that
dr,{α̃ij},λ(s1,s2)=‖�(s1)−�(s2)‖2. Thus, we propose to use FastMap to find
projections of spectra into R

q for a given q so that the pairwise distances are
similar to those calculated using Equation (6). Note that we do not calculate
all (n2−n)/2 pairwise distances but only n(2q+1) thanks to the FastMap
trick. Finally, the points found by FastMap are clustered with k-means.

Algorithm 2 Spatially-aware structure-adaptive clustering (SASA)

Parameters: pixel neighborhood radius r, FastMap desired
dimension q, number of clusters k

1. Given r, create weights {αij} as in Equation (2)
2. Given the distance function (6), project the spectra into R

q using
FastMap, where, when necessary, calculate the distance between
spectra on-the-fly

{account for neighbor pixels, adapt to structure, reduce the
dimensionality up to q}

3. Cluster the projected spectra into k groups using k-means

Figure 4 summarizes and illustrates the proposed segmentation methods,
SA and SASA. Note that each of them has only three parameters, the pixel
neighborhood radius r, the dimension q of the space where FastMap projects
the mapped data to, and the number of clusters k. Later on, we will show that
q is important, thus each method has only two easily interpretable parameters:
r adjusts the smoothness of the segmentation map and k is simply the number
of colors of the map. Both methods together with FastMap were implemented
in Matlab 2010b.

3 RESULTS
In this section, we analyze in detail the results for the rat brain
dataset. Then, we show segmentation maps for the neuroendocrine
tumor dataset.

3.1 Rat brain dataset
A rat brain section is a standard example tissue in IMS. According
to Watrous et al. (2011), 43% of publications on IMS of tissues
consider a brain tissue. This is due to the well-known anatomical
structure and clear and well-separated anatomical regions. In this
section, we compare the segmentation maps produced for the rat
brain slice with a schematic of the rat brain corresponding to the
coronal section ∼4.16 mm from Bregma drawn based on the rat
brain atlas (Paxinos and Watson, 2007). The peak picking procedure
with alignment of masses to peaks finds p=71 peaks.

Fig. 4. Summary of the proposed spatial segmentation methods with comments.
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Fig. 5. Rat brain dataset. (A) Optical image. (B) Schematic representation based on the rat brain atlas, reproduced from (Alexandrov et al., 2010) with
permission from the American Chemical Society. (C–I) Segmentation maps, q=20, k=10. C. Straightforward k-means clustering of spectra. (D–F) SA
method. (G–I) SASA method.

3.1.1 Overview Each of our proposed segmentation methods,
SA (spatially adaptive, with Gaussian weights used) and SASA
(spatially adaptive, with structure-adaptive weights), has only three
parameters: the pixel neighborhood radius r, the dimension q of the
space where FastMap projects the mapped data into, and the number
of clusters k.

We consider segmentation maps produced for r=2, 3, 4. The
FastMap dimension is q=20. The number of clusters (i.e. map
colors) is k=10, what by Alexandrov et al. (2010) was found to
be representative for this dataset. Figure 5 shows an optical image
(A), the schematic of the anatomical structure (B), a segmentation
map produced with straightforward clustering of spectra when no
spatial relations between spectra are taken into account (C), and
maps for SA (D–F) and SASA methods (G–I).

First, one can see that for the segmentation maps produced with
both SA and SASA methods reflect the anatomical structure. Some
anatomical regions (cortex, hippocampus, corpus callossum and
internal capsule, amygdala) are very well represented. Note that
the hippocampus has different parts (one in the middle and another
close to amygdala) which still have the same color in the map (mid
blue). Some regions are not well represented, e.g. a thin part of
thalamus which goes around hypothalamus is not visible. However,
as discussed by Alexandrov et al. (2010), this might be not a
computational problem but an underrepresentation of these regions
in the processed IMS dataset.

Second, our methods significantly outperform the straightforward
clustering (Fig. 5C) where strong noise hides details and the whole
anatomical regions. For example, in Figure 5C amygdala are not
separated from hippocampus; hippocampus from the inner part of
cortex and from paraventrical nuclei. Importantly, the noise in the
segmentation map is a technological and computational artifact but
not a property of the brain tissue; for more details on noise in
MALDI-imaging, see (Alexandrov et al., 2010).

Thus, we conclude that the overall quality of the produced
segmentation maps for the rat brain dataset is good. Note the blue
small region interrupting the left part of cortex (Fig. 6, region A).
This represents a tissue slice preparation defect (visible in the optical
image as well) when the thin 10 µm tissue slice was folded during
transferring it onto a glass slide.

3.1.2 Efficiency The efficiency of the segmentation method was
the ultimate goal for us because existing advanced segmentation
methods run several tens of minutes for a dataset. Tens of minutes
seems acceptable because it is still less than the dataset acquisition
time (several hours). However, this does not allow one to use
segmentation interactively, what is of very importance in imaging
applications. Moreover, at the present moment datasets with higher
lateral resolution of 20 µm are becoming to be measured (Lagarrigue
et al., 2010). If the rat brain slice would be measured with 20 µm
resolution (instead of 80 µm used in this article), this would result
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Fig. 6. Segmentation map (SA method) for the rat brain dataset, r=3, q=
20, k=10. Region A shows a tissue slice preparation defect (see in text,
Section 3.1.1). Regions B and C highlight an SA-specific artifact, a layer of
chartreuse yellow pixels along hippocampus (see in text, Section 3.1.4).

Table 1. Runtimes for producing a segmentation map

Dataset (n×p) Method Neighborhood radius

r=2 r=3 r=4

Rat brain (20185×71) SA 17 s 35 s 49 s

SASA 19 s 32 s 49 s
k-means∗ 10 s
Denoising+HDDC∗ 17 min
Denoising+kmeans∗ 2 min
PCA+hierarchical∗ 25 s

Tumor (27960×62) SA 23 s 41 s 62 s
SASA 25 s 39 s 62 s

Runtimes on ThinkPad laptop with Intel i5 Core 2.4 GHz; data pre-processing and peak
picking are not included; q=20, k=10.
∗No neighborhood is exploited.

into 320 000 spectra. Naturally, such a dataset would demand
efficient algorithms.

Table 1 shows the runtimes for producing a segmentation map for
the considered datasets not including the data loading, preprocessing
and peak picking. Table 2 shows the detailed runtimes for the
proposed methods. Incredibly, our methods are almost as efficient
as straightforward clustering. The reasons for such efficiency are
as follows: (i) the proposed approaches for incorporating spatial
relations between spectra are computationally simple, (ii) the
FastMap algorithm has linear complexity O(nq) in the number
of spectra and requires just n(2q+1) distances calculated on-the-
fly. The latter is especially important if such memory inefficient
programming languages as Matlab are used for implementation.

As for the memory space, the methods are very memory-
optimized. Both methods need only n(2r+1)2 memory elements for
the neighbor indices, 3n distance elements in each FastMap iteration
and nq memory elements for storing the FastMap projections. The
SASA method stores additionally n(2r+1)2 adaptive weights.

Figure 5D–I
3.1.3 The role of the pixel neighborhood radius r shows that
for both SA and SASA methods, the increase of the neighborhood
radius r makes the maps smoother. This is natural, because for a
pixel, more pixels around it are taken into account when calculating

Table 2. Detailed runtimes for SA and SASA methods

Substep Rat brain (s) Tumor (s)

SA SASA SA SASA

Scaling 0.01 0.01 0.01 0.01
Weights 4 4 6 6
Fastmap 25 25 32 31
k-means 5 2 3 3

ThinkPad laptop with Intel i5 Core 2.4 GHz; one iteration of k-means is used; r=3,
q=20, k=10.

Equations (2) or (5) what helps to reduce the pixel-to-pixel
variability. On the other side, small details can be smoothed out,
especially by using SA method with non-adaptive weights. For
example, the central part of hippocampus in the right half loses
its details visible in Figure 5D–E but not in Figure 5F, as well as
the red dot in central part of the cortex (data not attributed).

3.1.4 SA method versus SASA method Recall that the SASA
method was constructed so that in a pixel neighborhood, the weights
assigned to the pixels are adaptive; the more different is a spectrum
from the spectrum of the central pixel, the less is the weight (Fig. 3).
Thus, the ‘averaging’ in Equation (5) is done mostly among pixels
similar to the central one. Comparing the maps for the SA and SASA
method in Figure 5, one can see that making weights structure-
adaptive prevents smoothing out the details and deteriorating of
edges between different spatial regions. On the other hand, the SASA
maps look noisier.

3.1.5 SA-artifacts Comparison of the SA- and SASA-
segmentation maps reveals an artifact produced by the SA
method. It is a layer of chartreuse yellow pixels along hippocampus
which are not visible in the SASA maps and cannot be attributed
to any anatomical region. Figure 6, regions B and C, highlights
the areas of the artifact. We hypothesize that this is an ‘averaging’
artifact due to weights αij in Equation (2) are not adaptive to the
data. This is confirmed by the absence of this layer in the SA map
with the smallest pixel neighborhood radius r=2 and in the SASA
maps.

3.1.6 The role of the FastMap dimension q The parameter q, the
dimension of the space FastMap projects the spectra into, is the
most tricky among three parameters of the SA and SASA methods.
Naturally, increase of q makes the problem high-dimensional and,
thus, prone to the curse of dimensionality issue. On the other
hand, for any distance-preserving algorithm the quality of projection
reduces with decrease of the dimension q. We propose to select q not
greater than p as FastMap would project from R

p into R
q. For the

SA method, this is motivated by the assumption that the mapping (4)
into p(2r+1)2-dimensional space introduces much redundancy.

Figure 7 shows the segmentation maps for the SASA method
with r=3 and k=10, for different values of the FastMap dimension
q=10, 20, 50. The values of q were selected to be smaller than
p=71. One can see that the maps for q=20 and 50 are very
similar. The map for q=10 looks noisier with a possibly artifact
region (chartreuse yellow) around the corpus callosum. Possibly,
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A B C

Fig. 7. Impact of the FastMap dimension q on the segmentation map; SASA method, r=3, k=10. (A) q=10. (B) q20. (C) q=50.

A B C

Fig. 8. Segmentation maps of other methods. (A) Hierarchical clustering (euclidean distance, complete linkage) after PCA-reduction of spectra to 70%
explained variance. (B–C) With prior-to-clustering edge-preserving image denoising; k=10, moderate denoising. (B) High-dimensional discriminant
clustering, reproduced from (Alexandrov et al., 2010) with permission from the American Chemical Society. (C) k-means.

the dimension q=10 is not enough to achieve sufficient quality of
the projection in contrast to q=20.

3.1.7 Comparison with other methods PCA with hierarchical
clustering We have already shown that our segmentation maps
excel the maps produced with straightforward clustering of spectra
(Fig. 5C), mostly due to reduction of the pixel-to-pixel variability.
Let us consider the method proposed by Deininger et al. (2008),
where hierarchical clustering was applied to low-dimensional
features extracted with PCA of spectra. Figure 8A shows the
segmentation map produced with this method. As recommended
in (Deininger et al., 2008), seven PCA components explaining 70%
variance and the euclidean distance between extracted features were
used. For the Ward linkage need much memory (for this dataset 8 GB
was not enough), the complete linkage was exploited. One can see
that the segmentation map is very noisy, possibly because the pixel-
to-pixel variation in spectra. We have tried the average linkage as
well; it produces a similarly noisy map.

3.1.8 Segmentation with prior-to-clustering edge-preserving
denoising Next, we compare our methods with advanced
segmentation proposed in (Alexandrov et al., 2010), where prior-to-
clustering edge-preserving denoising of mass images was used to
reduce the pixel-to-pixel variability. The edge-preserving denoising
due to (Grasmair, 2009) requires about 2 min for 71 images of
the rat brain dataset. The segmentation map from (Alexandrov
et al., 2010) for k=10 is shown in Figure 8. For clustering,
High Dimensional Discriminant Clustering (HDDC) was used,
the clustering method designed specially for high-dimensional
data. However, its main disadvantage is the long runtimes due to
using the expectation-maximization algorithm. Moreover, during
an M-step it can be unstable when a cluster has a few elements or
no elements, what requires starting it several times with random
initializations. Although a new version of HDDC fixing these issues

is planned to be included soon in the MIXMOD software (Biernacki
et al., 2006), at the present time HDDC is slow. For the rat brain,
one iteration takes about 50 s For k=10, at least 20 iterations are
necessary because of the mentioned instability, which sums up to
approximately 15 min.

For this reason, we replaced HDDC with k-means in the method
proposed in (Alexandrov et al., 2010). The resulted segmentation
map is shown in Figure 8. One can see that the map produced with
HDDC is comparable to the maps presented in Figure 5. Moreover,
as also discussed in (Alexandrov et al., 2010), k-means seems to
be worse than HDDC (artifacts, less regions, detailness). The SA-
and SASA-maps look better than those after k-means with prior-to-
clustering denoising. The runtimes for methods considered in this
section are given in Table 1, which are much longer than those for
the SA and SASA methods.

3.2 The neuroendocrine tumor dataset
In this section, we briefly consider the segmentation maps for
the second dataset, the neuroendocrine tumor invading the small
intestine (ileum). This dataset differs from the rat brain dataset in the
following respects: (i) it represents pathology (tumor), (ii) the tissue
is more complicated, the difference between anatomical regions is
not that clear, (iii) the tumor area is a heterogeneous composition
of tumor cells, tumor stroma, and connective tissue. All this poses
a complex challenge for a segmentation algorithm.

Figure 9 shows the optical image after H&E-staining together
with 3D structure of the tissue and optical image with main
functional structures as well as the segmentation maps. First, the
tumor region is separated from the rest and is represented in three
colors: blue, red and chartreuse yellow. This corresponds to results
shown in (Alexandrov et al., 2010), although there the blue and
red regions have not been separated. Moreover, the anatomical
structure is represented, although the tissue flattened when put on
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A B C

D E F

G H I

Fig. 9. Neuroendocrine tumor dataset. (A) Optical image after H&E staining, the tumor region is selected. (B) 3D structure of the tissue and optical image
with main functional structures, reproduced from (Alexandrov et al., 2010) with permission from the American Chemical Society). (C–I) Segmentation maps,
k=10. (C) Straightforward clustering of spectra. (D–E) SA method. (G–I) SASA method.

the slide. Note the layer of brown pixels which is visible in the map
after straightforward clustering (in light blue), which was not found
in (Alexandrov et al., 2010).

Thus, we conclude that the segmentation maps for this complex
and heterogeneous tissue discriminate the tumor area, highlight the
anatomical structure even after the transformation of the tissue,
and excel the maps produced with the advanced prior-to-clustering
denoising method by Alexandrov et al. (2010).

4 DISCUSSION
Clustering algorithm: k-means was selected as a clustering
algorithm after the FastMap projection because it is a fast and
reliable algorithm. Moreover, k-means optimizes the euclidean
distances between the points, see e.g. Chapter 14.3.6 of (Hastie et al.,
2009) (publicly available online). Thus, performing k-means in the
space after FastMap projection (for both SAand SASA) is equivalent
to minimize the within-point scatter between spectra where the
distance between two spectra is calculated using Equations (1) or (6).

No mass-wise processing: in Alexandrov et al. (2010), denoising
of each gray-scale image corresponding to a mass (channel)
selected after peak picking is performed. Naturally, a channel-wise
processing may be criticized as being prone to lose information
presented in a combination of channels. In our methods SA and
SASA, we never do channel-wise processing but consider the full
spectra.

FastMap dimension q: as discussed in Section 3.1.6, the FastMap
dimension q is the most tricky parameter. We have done a
computational study investigating the properties of the FastMap
projection and observed that increase of q changes the distances

between projections, but only until some value. After this value, the
distances between projections stay almost unchanged. Investigating
this question can lead to a way of choosing q, and, more generally,
to the way of finding the intrinsic dimension of a set of points.

Evaluation: the evaluation of produced results is an important
problem, especially in an unsupervised framework, where no simple
criterion (like total recognition rate) can be computed. We have
tested the silhouette criterion (Rousseeuw, 1987) of separation
between found clusters but have not found correspondence between
the value of criterion and the visual quality of the maps. Probably,
this might be explained by no clear separation between clusters.

In general, the evaluation of a spatial segmentation remains an
important and unsolved problem in imaging mass spectrometry data
processing, where no reference or simulated data are provided yet.
Other publications on IMS segmentation, e.g. (Alexandrov et al.,
2010; Deininger et al., 2008), do not consider this question and
present their methods as a data mining tool with extensive support
from histologists or biologists estimating the quality of the produced
segmentation maps. This is explained by the novelty of this problem
and the lack of existing problems and research groups solving
this problem. Certainly, in the nearest future the formal evaluation
will be necessary, in particular for comparing results of different
segmentation. However, any formal evaluation is a complicated task
since it requires the ground truth maps for a complex enough dataset.
We are working in this direction and hope to present some results
soon.

In this article, which is based mostly on work by Alexandrov et al.
(2010), our aim was to construct an efficient algorithm delivering
segmentation maps of at least comparable quality for the datasets
from Alexandrov et al. (2010) where comparison is done visually
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taking into account the anatomical or histological structure of the
tissue sample.

Application to other hyper-spectral or multi-channel data: the
proposed methods can be applied to other IMS modalities, especially
those with with strong pixel-to-pixel variability (e.g. MALDI ion
source, SIMS). Moreover, the SASA method can be of use for
processing MALDI-IMS data obtained with the recent FT-ICR mass
analyzer (Cornett et al., 2008) which produces spectra much longer
than MALDI-TOF-IMS (considered in this article), of order 105.
Recall that the memory space and computational complexity of the
SASA method does not depend on the dimensionality p of spectra
but only on number of spectra n and the FastMap dimension q.

Our spatial segmentation methods can be applied for segmenting
other hyper-spectral or multi-channel data, for example for terahertz
imaging (Brun et al., 2010), or hyper-spectral imaging (Tarabalka
et al., 2010) like that one used in German Hyperspectral Satellite
Mission (Stuffler et al., 2007). The SASA method is recommended,
since for this type of data usually no peak picking is performed and
the dimensionality p of data is high. Moreover, in the SASA method,
more appropriate distance between spectra can be selected instead
of the euclidean distance in Equation (6).

3D imaging mass spectrometry: our methods can be used in spatially
3D IMS, where a spectrum is measured for a voxel with spatial
coordinates (x,y,z). In this case, the number of spectra increases
another order of magnitude reaching n=106. For such n, pure
distance-based methods which need to keep the full distance matrix
in memory become inappropriate in contrast to our methods which
are linear in n in memory space.
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