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Summary. Standard prospective logistic regression analysis of case–control data often leads to very impre-
cise estimates of gene-environment interactions due to small numbers of cases or controls in cells of crossing
genotype and exposure. In contrast, under the assumption of gene-environment independence, modern “ret-
rospective” methods, including the “case-only” approach, can estimate the interaction parameters much
more precisely, but they can be seriously biased when the underlying assumption of gene-environment inde-
pendence is violated. In this article, we propose a novel empirical Bayes-type shrinkage estimator to analyze
case–control data that can relax the gene-environment independence assumption in a data-adaptive fashion.
In the special case, involving a binary gene and a binary exposure, the method leads to an estimator of the
interaction log odds ratio parameter in a simple closed form that corresponds to an weighted average of the
standard case-only and case–control estimators. We also describe a general approach for deriving the new
shrinkage estimator and its variance within the retrospective maximum-likelihood framework developed by
Chatterjee and Carroll (2005, Biometrika 92, 399–418). Both simulated and real data examples suggest that
the proposed estimator strikes a balance between bias and efficiency depending on the true nature of the
gene-environment association and the sample size for a given study.

Key words: Case-only designs; Gene-environment interaction; Profile likelihood; Retrospective analysis;
Semiparametrics.

1. Introduction

While prospective logistic regression remains an established
method to analyze case–control data, recent problems emerg-
ing in genetic epidemiology have attracted attention to ret-
rospective analysis because it can incorporate certain scien-
tifically plausible constraints on the exposure distribution in
the underlying population. In studies of gene-environment as-
sociation with disease, for example, it often may be realistic
to assume that genetic susceptibilities (G) and environmental
exposures (E) are independent of each other in the underlying
population. Piegorsch, Weinberg, and Taylor (1994) noticed
that under G-E independence and assuming a rare disease,
the interaction odds ratio between G and E can be estimated
using the association odds ratio between these factors in
cases alone. Moreover, this “case-only” estimate of interaction
can be much more precise than that obtained from standard
case–control analysis. Umbach and Weinberg (1997) general-
ized this idea to show that the maximum-likelihood estimates
(MLEs) of all of the parameters of a logistic regression model
involving categorical exposures can be obtained under the in-
dependence assumption by fitting a suitably constrained log-

linear model to the case–control data. Recently, Chatterjee
and Carroll (2005) developed a rigorous semiparametric
framework for retrospective maximum-likelihood (ML) anal-
ysis of case–control data under the gene-environment inde-
pendence assumption in a general setting that may involve
continuous exposures, nonrare diseases, and population strat-
ification. The classical result about the equivalence of prospec-
tive and retrospective maximum likelihood (Andersen, 1970;
Prentice and Pyke, 1979), which assumes unconstrained co-
variate distribution, does not hold in this setting and the
retrospective approach is generally more efficient (Chatter-
jee and Carroll, 2005). Similar gain in efficiency has been
also noted for retrospective methods that can incorporate
constraints on the genotype distribution imposed by popula-
tion genetic laws such as Hardy–Weinberg equilibrium (HWE)
(Epstein and Satten, 2003; Satten and Epstein 2004; Spinka,
Carroll, and Chatterjee, 2005; Lin and Zeng, 2006; Chen and
Chatterjee, 2007).

A major hindrance for practical use of retrospective meth-
ods, in spite of their efficiency advantage, has been the po-
tential for large bias in these methods when some of the
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underlying assumptions such as gene-environment indepen-
dence or HWE are violated (Albert et al., 2001; Satten and
Epstein, 2004; Chatterjee and Carroll, 2005; Spinka et al.,
2005). A number of alternative strategies for relaxing the
underlying assumptions have been proposed. Chatterjee and
Carroll (2005) considered a model that can account for gene-
environment dependence due to population stratification.
Satten and Epstein (2004) and Lin and Zeng (2006) con-
sidered relaxing the HWE assumption based on alternative,
more fl exible population genetics models. These models alle-
viate the concern of bias somewhat, but may not be adequate
because they only capture certain types of departures from
the underlying constraints. One could also use a two-stage
procedure where, at first, one formally tests for the adequacy
of the underlying assumption(s) based on the data itself and
then uses the outcome of that test to decide whether to use the
efficient retrospective or the more robust prospective method
for odds ratio estimation. F or a given study of modest sam-
ple size, however, the power of the tests for HWE or/and
gene-environment independence would be typically low and
consequently the two-stage procedure, as a whole, could still
remain significantly biased. Moreover, a proper variance cal-
culation for the two-stage estimator accounting for the un-
derlying model uncertainty can be fairly complicated. The
standard two-stage testing procedure that ignores this model
uncertainty maintains a much higher type I error level than
desired (Albert et al., 2001).

In this article, we propose a novel solution to the bias ver-
sus efficiency dilemma of retrospective methods using a simple
stochastic framework that allows for uncertainty around the
assumption of gene-environment independence. We show how
the magnitude of the uncertainty parameter can be estimated
from the data itself. We then use this estimate of the uncer-
tainty parameter in an empirical Bayes (EB) fashion to obtain
a shrinkage estimator that “shrinks” the MLEs of disease odds
ratio parameters under a general model for G-E dependence
to those obtained under the assumption of G-E independence.

In Section 2, we consider a simple scenario involving a
binary G and a binary E, where the proposed estimator
of the interaction odds ratio can be derived in the form
of a simple weighted average of the standard “case-only”
and “case–control” estimators. Simulation studies show that
in finite samples, the proposed estimator can strike a bal-
ance between bias and efficiency depending on the chang-
ing scenarios of gene-environment association. Motivated by
these results, in Section 3, we then describe a general ap-
proach for deriving such shrinkage estimators for all of the
parameters of a general logistic regression model. We consider
the retrospective maximum likelihood framework developed
by Chatterjee and Carroll (2005), but relax the underly-
ing gene-environment independence assumption by model-
ing the gene frequencies as a function of the environmental
covariates using a logistic or polytomous-logistic regression
model with random coefficients. We then develop a gen-
eral theory for constructing an EB-type shrinkage estimator
based on the profile likelihood of the data that avoids es-
timation of the high-dimensional nuisance parameters asso-
ciated with the marginal distribution of the environmental
covariates. F urther simulation studies are conducted to inves-
tigate the performance of the general estimator when there are

Table 1
Data for a u nmatch ed case– control stu d y w ith a binary genetic

factor and a binary environmental exposu re

G = 0 G = 1

E = 0 E = 1 E = 0 E = 1 Total

D = 0 r000 r001 r010 r011 n0

D = 1 r100 r101 r110 r111 n1

two environmental exposures, one of which is associated with
G and the other is not. In both Sections 2 and 3, a method for
variance estimation for the respective EB estimators is pro-
posed. In Section 4, we analyze two datasets, both providing
evidence of how the EB estimate is tracking the MLEs from
the constrained or unconstrained model depending upon the
strength of G-E association in the respective studies. Section
5 presents discussion and possibilities for future work. Addi-
tional simulation results and technical details are relegated to
supplementary Web Appendices.

2. Binary Genetic and Environmental F actors

In this section, we consider the simple set-up of an unmatched
case–control study with a binary genetic factor G and a bi-
nary environmental exposure E. Let E = 1 (E = 0) denote an
exposed (unexposed) individual and G = 1 (G = 0) denote
whether an individual is a carrier (noncarrier) of the suscepti-
ble genotype. Let D denote disease status, where D = 1 (D =
0) stands for an aff ected (unaff ected) individual. Let n0 and
n1 be the number of selected controls and cases, respectively.
The data can be represented in the form of a 2 × 4 table as
displayed in Table 1.

Let rd ge and pd ge denote the observed cell count and the un-
known true cell probability, respectively, for the configuration
D = d, G = g and E = e, d,g,e = 0, 1. Let r0 = (r000, r001, r010,
r011) and r1 = (r100, r101, r110, r111) denote the vector of ob-
served cell frequencies in the controls and cases, respectively.
Let p0 = (p000, p001, p010, p011 = 1 − p000 − p001 − p010) and p1 =
(p100, p101, p110, p111 = 1 − p100 − p101 − p110), respectively. The
observed vectors of cell counts can be viewed as realizations
from two independent multinomial distributions, namely,
r0 ∼ Multinomial (n0, p0) and r1 ∼ Multinomial (n1, p1).
Let OR10 = p000 p101/p001 p100 denote the odds ratio associ-
ated with E for nonsusceptible subjects (G = 0), OR01 =
p000 p110/p010 p100 denote the odds ratio associated with G for
unexposed subjects (E = 0), and OR11 = p000 p111/p011 p100

denote the odds ratio associated with G = 1 and E = 1 com-
pared to the baseline category G = 0 and E = 0. Therefore,
ψ = O R11/(O R10 O R01) = (p001p010p100p111)/(p000p011p101p110) is
the multiplicative interaction parameter of interest.

To this end, let us consider a measure of G-E association
in the control population, namely,

θGE = log {(p000p011)/(p001p010)} . (1)

The assumption of G-E independence, together with the
rare disease approximation implies θGE = 0 (Schmidt and
Schaid, 1999). When one is not certain about the G-E
independence, one may conceptually posit a stochastic
framework for the underlying true parameter θGE as,
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Table 2
Simu lation resu lts sh ow ing M SE and bias (in parenth eses) in estimation of th e interaction parameter β = log(ψ) for

d iff erent meth od s u nd er vary ing scenarios of G-E association. T h e valu e of θGE is th e control od d s ratio betw een G and
E. T h e prevalences of G and E w ere fi xed at PG = PE = 0.3 in th e control popu lation. T h e parameters in th e d isease
risk mod el w ere set at OR10 = OR01 = 1 and β = log (ψ) = log (2) = 0.6931. Resu lts are based on 5000 simu lated

d atasets.

Sample size

n0 = n1 = 100 n0 = n1 = 200 n0 = n1 = 500

θGE = 0 Case–control 0.46 (0.03) 0.22 (0.02) 0.08 (0.00)
Case-only 0.20 (0.01) 0.10 (0.01) 0.04 (0.00)

EB 0.29 (0.02) 0.14 (0.01) 0.05 (0.00)
EB+a 0.27 (0.01) 0.13 (0.01) 0.05 (0.00)

Two-stage 0.26 (0.00) 0.13 (0.01) 0.05 (0.00)
ILb 0.28 (0.02) 0.14 (0.01) 0.07 (0.01)

θGE = log (1.25) Case–control 0.45 (0.02) 0.21 (0.00) 0.08 (0.01)
Case-only 0.26 (0.24) 0.15 (0.23) 0.09 (0.23)

EB 0.31 (0.12) 0.16 (0.10) 0.07 (0.09)
EB+ 0.30 (0.16) 0.16 (0.14) 0.08 (0.12)

Two-stage 0.31 (0.16) 0.19 (0.15) 0.10 (0.13)
IL 0.35 (0.16) 0.17 (0.10) 0.09 (0.06)

θGE = log (1.5) Case–control 0.45 (0.02) 0.21 (0.01) 0.08 (0.00)
Case-only 0.39 (0.43) 0.27 (0.42) 0.21 (0.41)

EB 0.37 (0.19) 0.20 (0.16) 0.10 (0.12)
EB+ 0.36 (0.25) 0.21 (0.21) 0.11 (0.15)

Two-stage 0.44 (0.27) 0.28 (0.22) 0.15 (0.13)
IL 0.38 (0.19) 0.24 (0.17) 0.10 (0.07)

θGE = log (2) Case–control 0.45 (0.03) 0.21 (0.02) 0.08 (0.01)
Case-only 0.74 (0.73) 0.60 (0.71) 0.54 (0.70)

EB 0.46 (0.27) 0.25 (0.20) 0.10 (0.11)
EB+ 0.50 (0.33) 0.28 (0.24) 0.11 (0.12)

Two-stage 0.67 (0.34) 0.38 (0.19) 0.11 (0.03)
IL 0.53 (0.25) 0.28 (0.13) 0.10 (0.03)

aT he EB estimator using the positive part variance estimator τ̂ 2
+ = max (0, θ̂2

GE − σ̂2
θGE

).
bT he ML E of the interaction parameter as obtained from max imiz ing the IL . T he full likelihood for the case– control data w as

integrated w ith respect to the stochastic parameter θGE w ith density N(0, τ 2). T he IL w as approx imated by a 3 0 point Gauss– Hermite
q uadrature and then max imized over τ 2 and all other model parameters.

θGE ∼ N(0, τ 2), where τ 2 refl ects a measure of uncertainty
about the independence assumption.

N ext we investigate how one can estimate the prior vari-
ability τ 2 using the data itself.

The MLE of the G-E odds ratio among controls, namely,
θGE , is given by

θ̂GE = log {(r000r011)/(r001r010)} .

Standard likelihood theory implies that, given θGE , θ̂GE ∼
N(θGE , σ

2
θGE

), where an estimate of the asymptotic vari-
ance is given by σ̂2

θGE
= Σ1

g= 0Σ
1
e= 0(1/r0ge). Marginalizing over

θGE , it follows that marginally θ̂GE ∼ N(0, τ 2 + σ2
θGE

). Thus,

based on the marginal variance of θ̂GE , a consistent estimator
of the unknown hyperparameter τ 2 can be obtained simply as
(Morris, 1983; Greenland, 1993), τ̂ 2

+ = max(0, θ̂2
GE − σ̂2

θGE
).

We consider a more conservative estimate of the prior vari-
ance obtained as τ̂ 2 = θ̂2

GE because it leads to a convenient
form for the variance expression of our subsequently proposed
estimator of β = log (ψ). Simulation studies show there is
essentially no loss of efficiency using τ̂ 2 instead of τ̂ 2

+ (see
Table 2).

With the above stochastic framework in mind, we now pro-
pose a new shrinkage estimator by combining two commonly
used estimators of log (ψ) = β, the one obtained from us-
ing case–control data (β̂ C C ), and the other obtained from
cases alone (β̂ C O ), with the corresponding formulae given
by

β̂ C C = log
(
r001r010r100r111

r000r011r101r110

)
and β̂ C O = log

(
r100r111

r101r110

)
.

N ote that β̂ C C is the unconstrained MLE of β given the data
shown in Table 1, whereas β̂ C O is the MLE under the con-
straint of G-E independence, i.e., θGE = 0 (Umbach and Wein-
berg, 1997). Let σ̂2

C C = Σ1
d= 0Σ

1
g= 0Σ

1
e= 01/rdge denote the esti-

mated asymptotic variance of the case–control estimator β̂ C C .
We propose the following weighted estimator of the interac-
tion parameter:

β̂EB =
σ̂2
C C

(τ̂ 2 + σ̂2
C C )

β̂ C O +
τ̂ 2

(τ̂ 2 + σ̂2
C C )

β̂ C C . (2)

We observe β̂EB can be viewed as a shrinkage estimator where
β̂ C C , the robust case–control estimator, has been shrunk
toward β̂ C O , the possibly efficient estimator of β under the
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assumption of G-E independence. The specific form of the
“shrinkage” weights is motivated by the EB perspective (Mor-
ris, 1983; Greenland, 1993). The EB structure resembles the
form of a posterior mean obtained in a classical Bayesian anal-
ysis under a normal-normal model (Berger, 1985, p. 131), with
the prior variance substituted by an estimate obtained using a
method of moments approach. F urther justification of the pro-
posed estimator as a special case of a more general framework
is provided in Section 3. We, however, recognize that this es-
timator is not a true “Bayes” or “empirical Bayes” estimator
in a strict technical sense as we are not carrying out a proper
full Bayesian analysis here with a joint prior structure on all
the parameters of interest; we are using prior structure only
on the “nuisance parameter” θGE and embedding that prior
uncertainty in the estimation paradigm for the parameter of
interest β. In this sense, the proposed method has a concep-
tual resemblance to the partial Bayes inference introduced by
Cox (1975).

We observe that as τ̂ 2 = θ̂2
GE → 0, i.e., as the data provide

evidence in favor of G-E independence in the control popu-
lation, β̂EB → β̂ C O , and as τ̂ 2 = θ̂2

GE → ∞ , i.e., as the un-
certainty regarding G-E independence in control population
becomes stronger, β̂EB → β̂ C C . Because β̂ C C = β̂ C O − θ̂GE ,
one can also express the estimator in (2) as

β̂EB = β̂ C O −K(σ̂2
C C , τ̂)θ̂GE , (3)

where the shrinkage factor K(σ̂2
C C , τ̂) = {1 + (σ̂2

C C /τ̂
2)}−1

“shrinks” θ̂GE , the control log odds ratio between G and E,
to its hypothesized mean value of zero under the G-E inde-
pendence assumption.

In the following subsection, we study the performance of
the proposed estimator relative to a number of alternative
estimators under varying scenarios of G-E association.

2.1 Simu lation Stu d y for th e 2 × 4 T ab le

Although the estimate β̂EB is postulated in a Bayesian frame-
work, it is purely a functional of the data (namely, the multi-
nomial counts, r0 and r1). The implicit background of as-
suming a normal prior with variance τ 2 does not play any
explicit role in the computation of this estimator. Thus, in
our simulation, we first study the finite sample properties of
this estimator in the standard fixed parameter setting of a
frequentist paradigm. A second set of simulations where θGE

is generated from a random distribution is contained in Web
Appendix A (Web Table 1).

We fix the values for the prevalences of G and E, namely,
PG and PE , and the value of the odds ratio θGE in the con-
trol population. F ixing these three quantities, one is able to
obtain the control probability vector p0 by solving a system
of equations.

We then set the values of OR10, OR01, and ψ, which to-
gether with p0, define the case-probability vector (Satten and
K upper, 1993). We generate data independently from the two
multinomial distributions corresponding to the case and con-
trol populations and compute the case–control, case-only, and
the proposed shrinkage estimator under varying scenarios. We
also include the two-stage estimator proposed by Albert et al.
(2001) in our simulation study. The two-stage estimator first
tests for G-E independence in controls by testing the hypo-

thesis H0: θGE = 0 at a significance level of α = 0.05, and based
on the acceptance/rejection of this hypothesis, the case-only
or the case–control estimator is then used. Based on the sug-
gestion of an anonymous reviewer, in our simulation we also
considered an alternative approach where all of the disease
odds ratio parameters and τ 2 are jointly estimated by max-
imization of the “integrated likelihood” (IL) obtained by in-
tegration of the standard case–control likelihood with respect
to the stochastic parameter θGE .

Table 2 presents the mean-squared error (MSE) and bias of
diff erent estimators of the interaction parameter β = log (ψ),
when PG = PE = 0.3 and OR10 = OR01 = 1. The G-E odds
ratio among controls, namely, exp (θGE ) is varied at four dif-
ferent values, 1, 1.25, 1.5, and 2. The true value of β is set at
log (2). The results are based on 10,000 simulated datasets.
The results clearly indicate that the proposed EB estimator
follows the case–control and the case-only estimators based
on the value of θGE in a data-adaptive way. It has much re-
duced bias and MSE compared to the case-only estimator
under violation of the independence assumption. It also main-
tains significantly smaller MSE compared to the case–control
estimator under independence as well as under modest depar-
tures from independence. Under large departures from inde-
pendence, the EB estimator performs very comparably to the
case–control estimator. In contrast, the performance of the
case-only estimator deteriorates sharply as one moves away
from the independence assumption. Unlike the case-only es-
timator, which is asymptotically biased, any residual bias in
the EB estimator goes to zero in large samples. The EB+

estimator, which uses the estimate of τ̂ 2
+ instead of τ̂ 2, per-

forms comparably as EB in terms of MSE, but has somewhat
larger bias under departures from the independence assump-
tion. The two-stage estimator does not perform well in terms
of bias and MSE, especially in small samples. The IL method,
which can be computationally intensive, performs very sim-
ilar to the simpler EB estimator in terms of MSE. Interest-
ingly, however, under departure from gene-environment inde-
pendence, the bias of IL seems to go to zero at a faster rate
than EB as sample size increases.

Consistency of the proposed estimator: The proposed
estimator is n

1
2 consistent in the fixed parameter frequentist

setting. In particular, when gene-environment independence
is violated, i.e., θGE 6= 0, it is easy to see that as n→ ∞ and
hence σ̂2

C C → 0, the EB estimator will converge to the case–

control estimator at a n
1
2 rate. F or θGE = 0, the consistency

of the EB estimator can be seen from the representation (3)
and noting that the case-only estimator β̂ C O in this case is
n

1
2 consistent and the second term converges to a zero mean

random variable, also at a n
1
2 rate.

V ariance of the proposed estimator: In the following,
we propose a method to obtain an asymptotic variance ex-
pression for β̂EB . Because σ̂2

C C → 0 at the rate of O(1/n), one
may ignore the variation in σ̂2

C C and treat this as a constant

while obtaining the first-order n
1
2 -asymptotic approximation

of the proposed estimator. Under this setting, the first and
second term in (3) could be considered as asymptotically in-
dependent as the first term depends only on cases, and the
second depends only on controls. Using Taylor’s expansion on
the second term, considering it as a function of τ̂ = θ̂GE , and
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treating σ̂2
C C as a constant, we have an estimator of variance

of the form,

V̂A(β̂EB ) ≈ σ̂2
C O +

(
θ̂2
GE(θ̂2

GE + 3σ̂2
C C )

(σ̂2
C C + θ̂2

GE)2

)2

σ̂2
θGE

. (4)

This estimate of the variance in (4), namely V̂A, performs
remarkably well even in small samples (n0 = n1 = 100) when
compared to the empirical variance (see Web Appendix A,
Web Table 2).

F or constructing interval estimates, we used Wald-type con-
fidence intervals for the log odds ratio parameters based on
the standard errors derived from the above formula. The ap-
proximate normality of the proposed estimator even with
smaller sample sizes can be seen in Web F igure 1 in the
supplementary online material. Coverage probabilities for
such Wald-type confidence intervals are furnished in Web
Table 2.

3 . The General Case: P rofi le L ikelihood
and Empirical Bayes

Chatterjee and Carroll (2005) have described a general ap-
proach for estimation of the parameters of a logistic regres-
sion model from case–control studies under the assumption of
gene-environment independence. They allowed for the pres-
ence of stratification factors (S) such as ethnicity which could
be related to both G and E. They consider the following fac-
torization of the retrospective likelihood,

LR = pr(G,E,S | D)

=
pr(D | G,E,S)pr(G | E,S)pr(E,S)∑

G,E,s
pr(D | G,E,S)pr(G | E,S)pr(E,S)

. (5)

F or continuous exposure E, the sum with respect to E in the
denominator of (5) is replaced by an integral. The ingredients
of the retrospective likelihood are constituted in the follow-
ing way. Assume a logistic disease incidence model pr(D =
1 | G, E, S) = H{γ0 + m(G, E, S ; γ1)}, where H(u) =
(1 + exp (− u))−1 and m(·) is a known but arbitrary func-
tion. The joint distribution function for (E, S) is allowed to
remain completely unrestricted (nonparametric). Under G-E
independence, conditional on S, pr(G | E, S) = pr (G | S).
Assuming a binary genetic factor G, consider a logistic model
of the form

pr(G = 1 | E,S) = H{η0 + η1 S}. (6)

The model could be extended to a multinomial logistic model
for a general categorical G, such as genotype data for single
nucleotide polymorphisms which is typically coded as 0, 1
or 2 by counting the number of variant alleles carried by an
individual. We will refer to (6) as the independence model,
or the constrained model. To relax the assumption of G-E
independence, one can expand the model in (6) to

pr(G = 1 | E,S) = H{η0 + η1 S + θE}, (7)

where θ is a measure of dependence between G and E. We
will refer to (7) as the dependence or unconstrained model.
Clearly, (6) can be viewed as a special case of (7) with
θ = 0.

The MLEs for the parameters ω = (γ, η) under model
(6) as well as those for ω = (γ, η, θ) under model (7)
can be obtained using the profile-likelihood techniques of
Chatterjee and Carroll (2005). In particular, the estimates of
the ω-parameters that would maximize the retrospective like-
lihood LR, while allowing the distribution of Z = (E, S) to
remain completely nonparametric, can be obtained by max-
imizing a simpler pseudolikelihood of the form L∗ = pr (D,
G | E, S, R = 1), where the conditioning event R = 1 re-
fl ects the outcome dependent sampling mechanism for case–
control studies. Computationally, the likelihood L∗ is much
more tractable as it does not require estimation of the high-
dimensional “nuisance parameters” involved in specification
of the distribution of Z. The details of the estimation method
are provided in Chatterjee and Carroll (2005), and we use
their developed software to implement the two models. In the
following, the MLE for the common set of regression param-
eters β = (γ, η) under the unconstrained and constrained
models will be denoted by β̂ M L and β̂0

M L , respectively.
Before we proceed to form the EB-type shrinkage estimator

for this particular context, we consider a general framework
where one is interested in estimating a set of focus parameters
β in the presence of prior information on a set of “nuisance”
parameters θ. The general paradigm itself is a novel feature
of this article.

Suppose ζ = (β, θ)T denotes a column vector of param-
eters, where β denotes a set of focus parameters and θ de-
notes a set of nuisance parameters. Let the dimensions of
β and θ be p and m, respectively. Let ζ0 = (β0, θ0)

T de-
note the true values of the parameters in the population.
Assume that one is willing to postulate a prior distribution
for θ as MV N m(0, A), a m-dimensional zero-mean multivari-
ate normal distribution with variance–covariance matrix A.
The goal is to conduct inference on β, without any further
prior specification on β. Intuitively, given θ and in the ab-
sence of any prior information on β, a natural way to esti-
mate β would be to use β̂ M L (θ), the profile MLE of β for
fixed θ. In the following, we show how to utilize the prior
information on θ while working with the profile MLE β̂(θ).
Define β(θ) to be the limiting value of β̂M L (θ) which is a
population parameter with β(θ) = β0 when θ is fixed at the
true value θ0. N ote that the constrained MLE for β, with
θ = 0, can be written as β̂0

M L = β̂ M L (θ = 0), and the uncon-

strained MLE can be written as β̂ M L = β̂ M L (θ = θ̂ M L ).
Let us then consider the general problem of EB estimation

of a general vector function φ = f(θ), of dimension p when the
argument θ (m × 1) has a prior M V Nm(0, A). By applying
Taylor’s expansion around θ = 0, the prior on φ could be
linearly approximated as φ ∼ M V Np(f(0), {f ′(0)}> A f ′(0)),
where f ′(θ) = ∂f>(θ)/∂θ is the gradient matrix of dimen-
sion m × p. Let V̂φ be the estimated asymptotic variance

of f(θ̂ M L ). Then an approximation to the Bayes estimate of
φ = f(θ) for a fixed A is given by

φ̂ = {f ′(0)}> Af ′(0)
[
V̂φ + {f ′(0)}> A {f ′(0)}

]−1
f(θ̂ M L )

+ V̂φ

[
V̂φ + {f ′(0)}> Af ′(0)

]−1
f(0). (8)

By applying (8), the Bayes estimator of β = β(θ) in our setting
can be approximated for a known value of the prior covariance
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matrix A as,

β̂(θ) = ∆>A∆(V̂β̂ M L
+ ∆>A∆)−1β(θ̂ M L )

+ V̂β̂ M L
(V̂β̂ M L

+ ∆>A∆)−1β(0), (9)

where ∆ = ∂β> (θ)/∂θ is the gradient matrix of dimension m
× p evaluated at θ = 0. N ote that ∆>A∆ is a p × p matrix
where p is the dimension of β. N ow (9) itself cannot be used
to estimate β as it involves the unknown function β(θ). We
propose to plug in β̂ M L (θ) for β(θ). F urther, by observing the
identity Sβ̂M L (θ)(θ) ≡ 0, where Sβ(θ) denotes the ML-score
function for β given θ, by chain rule of derivatives, one can
derive an estimate of ∆ as

∆̂ =
∂β̂>

M L

∂θ
(θ = 0) = −Iθβ(θ = 0) {Iββ(0)}−1 . (10)

Here Iθβ and Iββ denote suitable information matrices under
the unconstrained model. In alignment with the EB spirit, we
now estimate the prior hyperparameter A by a conservative
upper bound to its marginal MLE, given by θ̂ M L θ̂

>
M L . Thus

the final form of our proposed estimate is given by

β̂EB = ∆̂>θ̂ M L θ̂
>
M L ∆̂

(
V̂β̂ M L

+ ∆̂>θ̂M L θ̂
>
M L ∆̂

)−1
β̂ M L

+V̂β̂M L

(
V̂β̂ M L

+ ∆̂>θ̂ M L θ̂
>
M L ∆̂

)−1
β̂0
M L . (11)

Computationally, this requires only fitting the constrained
model and the unconstrained model and evaluating the vari-
ance covariance components for the unconstrained model at
θ = 0. We note that in the above calculations a key step is
to use the first-order Taylor’s expansion to approximate the
variance of the function β(θ). In Section 5, we discuss po-
tential limitations of this approximation and some associated
remedies.

R evisiting the 2 × 4 case: N ow consider our proposed
estimator for the 2×4 table. Let the focus parameter β de-
note the log odds ratio for interaction and θ denote the log
odds ratio between G and E in controls. Then, for a fixed
θ, β̂ M L (θ) ≡ β̂C O − θ where β̂ C O denotes the log odds ratio
between G and E in cases. So ∆̂ = ∂β̂>

M L (θ)/∂θ = −1. In this
special case, the prior covariance A is a positive scalar τ 2,
consistent with our previous notation in Section 2. Thus, fol-
lowing (11), the EB-type estimator of β using our general
profile likelihood based framework is given by

β̂EB =
σ̂2
β̂M L(

τ̂ 2 + σ̂2
β̂M L

) β̂0
M L +

τ̂ 2

(
τ̂ 2 + σ̂2

β̂M L

) β̂ M L

=
σ̂2
C C(

θ̂2
GE + σ̂2

C C

) β̂ C O +
θ̂2
GE(

θ̂2
GE + σ̂2

C C

) β̂ C C ,

which is exactly what we have proposed in Section 2.
V ariance–covariance matrix of the EB estimator:

The variance of the proposed estimator in (9) can be ob-
tained by viewing β̂EB as a function of the ML estimates,
(β̂ M L , θ̂ M L , β̂

0
M L ). The joint asymptotic multivariate normal

distribution for these three estimates can be obtained in terms
of the associated score functions and information matrices fol-
lowing classical ML theory. An application of the multivariate
Taylor’s expansion provides the variance–covariance expres-
sion for β̂EB . The derivation and expression of the variance–
covariance matrix is deferred to Web Appendix B. The small

sample performance of the variance estimator in the simula-
tion setting of Section 3.1 is shown in Web Table 3.

3.1 Simu lation Stu d y w ith Bivariate Environmental Exposu re

In this section, we design a simulation study involving a bi-
nary genetic factor G and two binary environmental expo-
sures E1 and E2. The joint distribution of (G, E1, E2) among
the controls is specified as follows. We assume P (G = 1) =
P (E1 = 1) = P (E2 = 1) = 0.3, and allow E1 and E2 to be
associated with OR(E1, E2) = 2.0. We assume G and E1 are
independent with OR(G, E1) = 1, but G and E2 are associated
with OR(G, E2) = 1.5. With the parameters fixed at these val-
ues, one can solve a system of equations to obtain the multi-
nomial probability vector corresponding to the eight possible
configurations of (G, E1, E2). We assume a disease risk model
with no main eff ects for G, E1, or E2, but allow for interactions
for both E1 and E2 with G, with the corresponding log odds ra-
tio parameters being βG∗E1

= βG∗E2
= log(2). Given the con-

trol probabilities and the restrictions on the parameters in
the disease risk model, one can determine the probabilities
for each (G, E1, E2) configuration in the case population. We
also considered other simulation settings where the disease
risk model included main eff ects (results not shown), the ba-
sic pattern of results remain fairly similar.

Table 3 exhibits that the EB method weighs more toward
the constrained MLE for estimation of interaction involving
G and E1 for which the independence assumption does in
fact hold, but weighs toward the unconstrained MLE for es-
timation of the interaction involving G and E2 for which the
independence assumption is violated. As a result, it main-
tains much smaller MSE than the unconstrained MLE for
estimation of G ∗E1 interaction by reducing its variance. It
also maintains much smaller MSE than the constrained MLE
for estimation of G ∗E2 interaction by reducing its bias. If
one considers the sum of the MSEs corresponding to the two
interaction parameters as a performance criterion, the EB es-
timate has leverage over all the other contenders.

This simulation brings out a major appealing feature of the
EB-type estimator. It is often the case that one is consider-
ing multiple interaction parameters where the independence
assumption may hold for some, but not hold for others, or
may be quite ambiguous for a subset. In such situations, one
can tacitly avoid specifying which of the independence mod-
els are likely to hold and simply use the EB estimator as a
data-adaptive solution to the vexing problem of model spec-
ification. Remarkably, one can still maintain attractive MSE
properties in finite samples without relying on unverifiable
model assumptions.

4 . D ata Analysis

In this section, we apply the proposed methodology to two real
datasets, refl ecting diff erent degrees of certainty regarding the
G-E independence assumption. Both examples illustrate the
adaptability of the EB estimator depending upon the nature
of the G-E association present in the data.

4.1 A naly sis of Israeli Ovarian C ancer Data

This example involves a population-based case–control study
of ovarian cancer conducted in Israel, data from which was
first reported in Modan et al. (2001) and was then reanalyzed
by Chatterjee and Carroll (2005). The main goal of the study
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Table 3
Simu lation resu lts sh ow ing M SE and bias (in parenth eses) for estimation of interaction parameters of one
genetic factor (G) w ith tw o environmental exposu res (E1, E2). T h e joint d istribu tion of (G, E1, E2) in th e

controls w as specifi ed by th e follow ing restrictions: P (E1 = 1) = P (E2 = 1) = P (G = 1) = 0.3, O RE1 E2
= 2.0,

O RGE1
= 1, O RGE2

= 1.5. T h e parameters for th e d isease risk mod el w ere set at βG = βE1
= βE2

= 0, and ,
βG∗E1

= βG∗E2
= log(2). Resu lts are based on 1000 simu lated d atasets.

M SE1 M SE2 M SE1
(G ∗E1) (G ∗E2) + M SE2

n0 = n1 = 100 Dependence 0.46 (0.04) 0.48 (0.10) 0.94
Independence 0.20 (0.04) 0.39 (0.44) 0.59

EB 0.29 (0.03) 0.36 (0.24) 0.65
n0 = n1 = 200 Dependence 0.21 (0.05) 0.21 (0.01) 0.42

Independence 0.10 (0.02) 0.26 (0.41) 0.36
EB 0.15 (0.03) 0.16 (0.14) 0.31

n0 = n1 = 500 Dependence 0.08 (0.01) 0.09 (0.01) 0.17
Independence 0.04 (0.00) 0.21 (0.41) 0.25

EB 0.06 (0.00) 0.09 (0.12) 0.15

Table 4
A naly sis of Israeli ovarian cancer d ata: Estimates of th e log od d s ratio parameters correspond ing to

each eff ect is provid ed , accompanied w ith 95% confi d ence intervalsa

β̂ B RC A1/2 β̂ O C β̂parity β̂ B RC A1/2∗ O C β̂ B RC A1/2∗parity

Dependence 3.442 −0.051 −0.060 0.049 −0.131
CI (2.476,4.408) (−0.108,0.006) (−0.126,0.006) (−0.104,0.203) (−0.373,0.111)
Independence 3.154 −0.051 −0.061 0.086 −0.036
CI (2.509,3.799) (−0.102,−0.001) (−0.125,0.002) (0.021,0.15) (−0.141,0.068)
EB 3.270 −0.051 −0.061 0.071 −0.075
CI (2.40, 4.133) (−0.108,0.006) (−0.127,0.005) (−0.038,0.181) (−0.282,0.143)

aT he analysis is adjusted for eff ects of age, ethnicity, P HB, F HBO , and history of gynecological surgery.

was to examine how mutations in the two major susceptibility
genes BRCA1 and BRCA2 may interact with known repro-
ductive risk factors for ovarian cancer, such as number of years
of oral contraceptive (OC) use and number of children (par-
ity). Both Modan et al. (2001) and Chatterjee and Carroll
(2005) analyzed data from this study assuming independence
of BRCA1/2 mutations and the reproductive risk factors in
the general population. We revisited the study to explore how
the estimates of regression parameters from the previous anal-
yses may change if a certain amount of uncertainty regarding
the gene-environment independence assumption was allowed
using the proposed EB framework.

Our analysis included 1579 observations in the dataset
with 832 cases and 747 controls who did not have bilateral
oophorectomy. Similar to Chatterjee and Carroll (2005), we
considered fitting a logistic regression model that included
main eff ects for BRCA1/2 mutations (presence/absence),
OC, parity, and the interaction terms OC∗BRCA1/2 and
parity∗BRCA1/2. The model was adjusted for a set of co-
variates S that included age (categorized into five groups, by
decades), ethnicity (Ashkenazi or non-Ashkenazi), presence
of personal history of breast cancer (PHB), family history of
breast or ovarian cancer (F HBO, coded as 0 for no history in
family, 1 for one breast cancer case in the family, and 2 for
one ovarian cancer or two or more breast cancers in family),
and history of gynecological surgery. The model for BRCA1/2
mutation frequency is parameterized as

logit{pr(G = 1 | E,S)} = η0 + ηAgeI(Age ≥ 50)

+ ηEt h I(N on-Ashkenazi) + η P H I(PHB = 1)

+ η1 F H I(F HBO = 1) + η2 F H I(F HBO = 2)

+ θ O C OC + θpa r Parity.

Chatterjee and Carroll (2005) assumed the constrained model
θOC = θpar = 0, which implies conditional independence of
reproductive risk factors and BRCA1/2 mutation given the
stratification factors S. Table 4 shows the estimates and 95%
confidence intervals for disease log odds ratio parameters of
interest under the independence model, dependence model,
and using the proposed EB estimator. Under the dependence
model, the G-E association parameters were estimated as
θ̂O C = 0.036 and θ̂par=0.094. We can notice from Table 4 that
the EB point estimate regarding BRCA1/2 ∗OC interaction
is closer to the independence model, whereas EB point esti-
mate regarding the BRCA1/2 ∗parity interaction is interme-
diate between the unconstrained and constrained model. The
confidence intervals based on the constrained MLEs and EB
estimator are noticeably narrower when compared to those
obtained from the dependence model.

4.2 A naly sis of C olorectal A d enoma Data

The second example involves a case–control study of colorec-
tal adenoma, a precursor of colorectal cancer, smoking and
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Table 5
A naly sis of colorectal ad enoma d ata: Estimates of th e log od d s ratio parameters correspond ing to each

eff ect are provid ed , accompanied w ith 95% confi d ence intervalsa

β̂ N AT 2= 2 β̂ S M K = 1 β̂ S M K = 2 β̂ N AT 2= 2∗ S M K = 1 β̂ N AT 2= 2∗ S M K = 2

Dependence 0.833 0.196 1.03 −1.103 −2.784
CI (0.035,1.632) (−0.073,0.464) (0.692,1.367) (−2.227,0.021) (−4.569,−0.998)
Independence 0.596 0.176 0.999 −0.766 −2.308
CI (−0.046,1.239) (−0.089,0.443) (0.667,1.332) (−1.630,0.098) (−3.885,−0.732)
EB 0.698 0.183 1.009 −0.923 −2.531
CI (−0.031,1.426) (−0.083, 0.449) (0.678,1.339) (−1.956, 0.111) (−4.214,−0.848)

aT he analysis is adjusted for eff ects of age, gender, and family history of colorectal cancer.

NA T 2 , a gene that is believed to play an important role in
metabolism of smoking-related carcinogens. In this study, a
total of 772 left-sided prevalent advanced adenoma cases and
777 gender and ethnicity-matched controls were selected from
the screening arm of the large ongoing Prostate, Lung, Col-
orectal and Ovarian (PLCO) Cancer Screening Trial at the
N ational Cancer Institute, United States (Gohagan et al.,
2000; Hayes et al., 2005). Subjects selected in the case–control
study were genotyped for six single nucleotide polymorphisms
that have been related to NA T 2 -acetylation activity in previ-
ous laboratory studies. Based on the genotypes, subjects were
assigned an acetylation phenotype as “slow” (NA T 2 = 0), “in-
termediate” (NA T 2 = 1), or “rapid” (NA T 2 = 2). Baseline
questionnaire data were used to categorize subjects as “never”
(SM K = 0), “former” (SM K = 1), or “current” (SM K = 2)
smokers. Results from standard logistic regression analysis of
this data has been recently reported by Moslehi et al. (2006).
We considered reanalysis of this study in the proposed EB
framework. We restricted the analysis to Caucasian subjects
who had complete N AT2-phenotype information, resulting
in a total of 610 cases and 605 controls. We considered fit-
ting a logistic regression model with main eff ects of smoking,
N AT2 (categorized as rapid or not), and their interactions.
The model was adjusted for co-factors S that included age,
gender, and family history of colorectal cancer (F HC O = 1
for yes, 0 for no). The prevalence of N AT2 rapid acetylation
phenotype was modeled as

logit{P (NA T 2 = 2|E,S)} = η0 + η F H C O I(F HC O)

+ ηgenderI(M a l e) + θ S M K 1I(S M K = 1)

+ θ S M K 2I(S M K = 2).

In this dataset, there seems to be much less certainty about
the independence of N AT2 and smoking, with θSM K 1 = 0.340;
θSM K 2 = 0.495. Results in Table 5 show estimates of the inter-
action between N AT2 rapid enzymatic phenotype and current
smokers (NA T 2 = 2 ∗ SM K = 2) is highly significant under
all models, whereas the interaction between N AT2 rapid en-
zymatic phenotypes with former smokers (NA T 2 = 2 ∗ SM K
= 1) is not significant under any model. The EB estimates
of interaction parameters for this dataset are not quite close
to the ones obtained from the independence model. The EB
confidence intervals are considerably narrower compared to
the corresponding intervals from the dependence model, re-

fl ecting the combined efficiency-robustness feature of the EB
estimator.

5 . D iscussion

EB (Efron and Morris, 1972; Morris, 1983; Efron, 1993; Carlin
and Louis, 2000) is a pragmatic Bayesian paradigm, steering
between the extreme Bayesian and frequentist standpoints.
In the context of the problem of relaxing gene-environment
independence assumption, the proposed EB-type approach
has a natural appeal and interpretation, powered with an ex-
tremely straightforward ML-based computation. This makes
the method readily available and implementable to the prac-
titioner. We believe, for example, the simple closed form ex-
pression for the estimate of interaction between a binary ge-
netic and a binary environmental exposure should facilitate
the use of the method for very large-scale studies such as a
genome-wide scan. We also observe that although the esti-
mator is conceived from a Bayesian standpoint, it is simply
a functional of the observed data and can thus be viewed as
a novel frequentist estimator. Our simulation studies involv-
ing fixed parameter settings indicate that the estimator has
good frequentist properties in the sense of maintaining low
MSEs across diff erent scenarios of gene-environment depen-
dence. The proposed methodology can be easily adapted to
construct EB-type shrinkage estimator assuming a nonzero,
but known, prior mean for the gene-environment log odds ra-
tio parameters. F or commonly studied combinations, such as
NA T 2 and smoking, information on such prior mean may be
gathered by meta-analysis of the gene-environment associa-
tion from previous studies (see, e.g., Marcus et al., 2000).

As discussed in the introduction, practitioners may find it
natural to resolve the bias versus efficiency issue by deciding
between the case-only and case–control estimators depending
on a statistical test of the independence assumption θGE =
0 using the control sample. This “two-stage” method essen-
tially leads to a weighted estimator for the interaction pa-
rameter with weights being 0–1 random variable indicating
the acceptance/rejection of the test of the null hypothesis of
independence. Our simulation studies indicate that the dis-
crete weights of the two-stage method generally lead to sub-
stantially larger bias and MSEs than those obtained using
the EB-weights which depend on θGE in a continuous fash-
ion. Moreover, obtaining a proper variance estimator for the
two-stage estimator, accounting for the uncertainty of the de-
cision rule associated with the hypothesis testing of indepen-
dence, can be fairly complex. A naive approach that uses the
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standard case–control or case-only variance estimator depend-
ing on which of the two estimators is being used for a given
study leads to underestimation of the variance of the whole
procedure. The resulting test of interaction could have highly
infl ated type I error (Albert et al., 2001).

It is important to note that the proposed estimator, al-
though it performs very well in terms of MSE, can have mod-
est bias in parameter estimates when the gene-environment
independence assumption is violated and for modest sample
sizes. As a result, the associated confidence intervals can also
have less than nominal coverage (see Web Tables 2 and 3).
Thus, if bias is used as the primary criterion for evaluating
the methods, then standard logistic regression remains the
best option for analysis of case–control data in general. We,
however, find it encouraging that when the violation of gene-
environment independence is modest, e.g. exp (θGE ) ≤ 1.2 or
exp (θGE ) ≥ 0.8, then the bias of the proposed estimator is
quite small and coverage of the associated confidence inter-
vals is close to the desired level (see first block of Web Table 3
and Web Table 4). Empirical studies suggest that violation of
gene-environment independence, when it occurs, would likely
to be modest in most situations (Liu, F allin, and K ao, 2004).
Thus, we believe that the proposed method, overall, is a
promising approach for investigation of gene-environment in-
teraction from case–control studies.

Alternative estimation methods are possible within the
stochastic framework we introduced for relaxation of the inde-
pendence assumption. In the simulation studies described in
Table 1, we considered an “IL” approach that estimates all of
the parameters of the model jointly from the case–control like-
lihood, after integrating it with respect to the “random eff ect”
parameter θGE . We found the IL approach does not perform
any better than the simpler EB estimator in terms of MSE.
The bias of the IL approach, however, can be smaller un-
der violation of gene-environment independence. Given that
the IL approach can be computationally quite complex, espe-
cially when there are multiple gene-environment dependence
parameters, it would be of future research interest to explore
whether there is an alternative estimator that would be com-
putationally simple and yet would be able to achieve smaller
bias than the EB estimator.

To develop the EB-type estimator for the general logistic
regression model, we approximated the prior variance for the
function β(θ) assuming a simple linear Taylor’s series approx-
imation for this function in θ. In the simple case involving a
binary G and binary E, we have shown that β(θ) is exactly
linear in θ. Although in general we do not have any such
theoretical result about how good the linear approximation
may be, our simulation studies involving multiple environ-
mental exposures indicate the proposed estimator with the
assumed linear approximation performs well in appropriately
“shrinking” the G-E interaction estimates toward constrained
or unconstrained model depending on the true nature of gene-
environment dependence. F urther, in principle, one can also
improve the accuracy of the approximation by considering
a second-order Taylor’s series approximation to the function
β(θ). We observe that under such approximations, the prior
variance of β(θ) given that θ ∼ M V N(0, τ) can be computed
in terms of second-, third-, and fourth-order moments of nor-
mal distribution and the first and second derivative of the

function β(θ). The remainder of the calculation would remain
identical as the proposed EB estimator.

The proposed “profile-likelihood-empirical Bayes” frame-
work has other potential applications for analysis of case–
control studies when certain types of covariate distributional
constraints are likely, but not certain. The same framework,
for example, can be used to exploit the constraint of HWE
for genetic association studies. In this context, development
of the EB estimator would first require specifying an “un-
constrained” model for the genotype distribution in which
the “constraint” of HWE would be a special case. The MLEs
of genetic odds ratio parameters under the constrained and
unconstrained models can be then combined based on the es-
timate(s) of certain index parameter(s) that would measure
the magnitude of departure of the “unconstrained” genotype
distribution from HWE.

The proposed framework also raises a number of interest-
ing theoretical issues including how it relates to a proper
full Bayes procedure. Intuitively, a noninformative or mini-
mally informative prior on β, after a possible orthogonaliza-
tion (Tibshirani, 1989) of the parameter space for (β, θ), may
lead to approximately similar inference. An in-depth, rigorous
examination of this connection is needed in the future.

In conclusion, the proposed methodology provides a
promising solution to the bias versus efficiency dilemma
faced in case–control studies due to the assumption of gene-
environment independence assumption. F urther, the general
framework we provide could be useful for resolving similar
issues in other areas of epidemiologic studies.

6 . Supplementary Materials

Web Appendices, Tables, and F igures referenced in Sections 2,
3, and 5 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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