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CompPASS, computes scores that adjust observed spectral counts 
relative to the reproducibility of detection across biological repli-
cates and to the frequency of observing prey proteins in purifica-
tions of different baits7. Although both approaches can effectively 
analyze the datasets for which they had been developed, these 
scores are an empirical transformation of spectral counts without 
a probability model that can be used to estimate the measurement 
errors in the data in a transparent manner.

We have recently introduced an advanced approach for statistical 
analysis of interaction data from AP-MS experiments using label-
free quantification, which we termed significance analysis of inter-
actome (SAINT)8. As PP-NSAF and CompPASS, we had designed 
our original SAINT approach to analyze a specific dataset, the yeast 
kinase and phosphatase interactome. Expanding on this method, 
here we present a generalized SAINT framework that can be used 
to compute interaction probabilities in a variety of datasets. The 
method incorporates negative controls that are commonly gener-
ated as a part of the experimental study but can also be applied to 
large datasets in the absence of such data. We illustrate the metho
dology and its advantages through the analysis of datasets of dif-
ferent sizes and network density: from a large, sparsely connected 
network involving human deubiquitinating enzymes to a smaller, 
highly interconnected network for chromatin remodeling proteins 
and even to the analysis of a single bait, the protein CDC23.

The aim of SAINT is to convert the label-free quantification 
(spectral count Xij ) for a prey protein i identified in a purifica-
tion of bait j into the probability of a true interaction between the 
two proteins, P(true | Xij). The spectral counts for each prey-bait 
pair are modeled with a mixture distribution of two components 
representing true and false interactions. Note that these distribu-
tions are specific to each bait-prey pair. The parameters for true 
and false distributions, P(Xij | true) and P(Xij | false), and the prior 
probability πT of true interactions in the dataset, are inferred from 
the spectral counts for all interactions that involve prey i and bait j.  
SAINT normalizes spectral counts to the length of the proteins 
and to the total number of spectra in the purification.

In addition to the experimental data for bait proteins, AP-MS 
data often contain negative controls (Fig. 1a). When these are 
available, SAINT estimates the spectral count distribution for false 
interactions directly from the negative controls, which makes the 
modeling approach semisupervised (Online Methods). SAINT 
modeling can also be performed without negative control data, 
so long as a sufficient number of independent baits are profiled 
and provided that these baits are not densely interconnected. In 
this case (Fig. 1b), a prey detected in the purification of a bait is 
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We present ‘significance analysis of interactome’ (SAINT),  
a computational tool that assigns confidence scores to  
protein-protein interaction data generated using affinity 
purification–mass spectrometry (AP-MS). The method 
uses label-free quantitative data and constructs separate 
distributions for true and false interactions to derive the 
probability of a bona fide protein-protein interaction. We show 
that SAINT is applicable to data of different scales and protein 
connectivity and allows transparent analysis of AP-MS data.

The analysis of protein complexes and protein interaction 
networks is very important for biological research. A combina-
tion of affinity purification and mass spectrometry (AP-MS) has 
been increasingly used for both small-scale and large-scale anal
ysis of protein complexes and interaction networks1–4. However, 
the development of computational tools for the processing of  
AP-MS data has not kept pace with improvements in experimental 
approaches. In addition to the general challenge of false positive 
protein identifications in mass spectrometry–based proteomic 
data5, unfiltered AP-MS datasets contain many nonspecifically 
binding proteins; filtering these contaminants is the foremost 
computational challenge.

Whereas early methods filtered the noise using binary data 
(presence or absence of a protein), newer methods take into 
account quantitative information embedded in the mass spectro
metric data (for example, label-free quantification, such as  
spectral counts). One such method converts the normalized  
spectral abundance factor (NSAF) into the posterior probability 
of a true interaction between a bait-prey pair using simple heuris-
tics, which we term PP-NSAF hereafter6. Another method, named 
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scored in reference to the quantitative information for the same 
prey across purifications of all other baits in the dataset. Although 
this is possible for large datasets such as the yeast kinase and 
phosphatase network8, and the human deubiquitinating (DUB) 
enzyme interaction network7 (which each contain more than 75 
baits), this unsupervised approach involves additional assump-
tions and separate treatment of high- and low-frequency prey 
proteins (Online Methods).

One challenge in modeling AP-MS data is the limited number 
of replicates that are typically available for each bait. SAINT 
addresses this problem by inferring individual bait-prey inter
action parameters through joint modeling of the entire bait-prey 
data. To this end, SAINT defines a protein-specific abundance 
parameter and establishes a multiplicative model in the mixture 
component distributions. In other words, if prey i and bait j inter-
act, then the ‘interaction abundance’ (the spectral count of the 
prey i in purification with bait j) is assumed to be proportional 
to αi× αj. Under this assumption, the protein-specific abundance 
parameters αi and αj can be learned not only from the interaction  
between the two proteins themselves but also from other bona 
fide interactions that involve either one of them. The same prin-
ciple applies to false interactions. Hence, SAINT builds a large 
number of mixture distributions by pooling data (separate mix-
ture distributions for individual prey-bait pairs), but all models 
are interconnected through the shared abundance parameters.

The probability distributions P(Xij | true) and P(Xij | false) are 
then used to calculate the posterior probability of true interaction 
P(true | Xij) (Fig. 1c,d and Online Methods). For baits profiled in 
replicates, the next step involves the computation of a combined 
probability score from independent scoring of each replicate 
(Online Methods). Finally, SAINT probabilities can be used to 
estimate the false discovery rate (FDR). By ordering interactions 
in decreasing order of probability, a threshold can be selected 
that considers the average of the complement probabilities as the 
Bayesian FDR9. Although the accuracy of FDR estimates remains 

to be validated, the availability of an objective reliability measure 
that has been widely used is an advantage over other methods.

We first tested performance of the generalized SAINT model 
using a human dataset6 centered around four key protein com-
plexes that are involved in chromatin remodeling: prefoldin, 
hINO80, SRCAP and TRRAP or TIP60 (referred to as the TIP49 
dataset). Although the original work focused the analysis on 
the interaction network between a core set of 65 proteins, here 
we analyzed the entire dataset provided by the authors of that 
study. The dataset consists of 27 baits (35 purifications) and 1,207 
preys, and yielded 5,521 unfiltered interactions. The dataset also 
included 35 negative controls, which allows semisupervised mod-
eling (Fig. 1a and Supplementary Table 1).

We applied SAINT to these data and compared the results 
to PP-NSAF6 and CompPASS Z and DN scores7,10, which we 
reimplemented in-house (Online Methods). We note that PP-NSAF6  
removes all interactions involving prey proteins for which the sum 
of squared NSAF values across the negative control purifications 
is higher than that in the experiments that contain bait proteins. 
CompPASS is the only method that does not incorporate negative 
controls in scoring.

SAINT selected 1,375 interactions at the probability threshold 
0.9, which was approximately equivalent to an estimated FDR 
of 2%. In PP-NSAF, as arbitrary cutoffs were set to define high, 
moderate and low probability interaction sets, the same number 
of top-scoring interactions was selected (corresponding to a PP-
NSAF probability 0.2 or higher). In CompPASS, the same number 
of interactions corresponded to a DN-score threshold of 1.48 
(Supplementary Table 1).

We evaluated the performance of each algorithm first by bench-
marking the selected interactions against two interaction databases 
named BioGRID11 and iRefWeb12 (Fig. 2a), and second by assess-
ing the co-annotation rate of interaction partners to common 
Gene Ontology (GO) terms in ‘biological processes’ (Fig. 2b 
and Supplementary Table 1). SAINT-filtered interactions (with 
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Figure 1 | Probability model in SAINT. (a,b) Interaction data in the presence (a) and absence (b) of control purifications. Schematic of the experimental 
AP-MS procedure is shown at the top and a spectral count interaction table is illustrated at the bottom. Ctrl, control; rep, replicate; freq, frequency.  
(c) Modeling spectral count distributions for true and false interactions. For the interaction between prey i and bait j, SAINT uses all relevant data for  
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each replicate by application of Bayes rule, and a summary probability is calculated for the interaction pair (i,j). 
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controls) consistently showed the highest overlap with previously 
reported interactions and co-annotation rates to terms relevant 
to chromatin remodeling, including histone acetylation, protein 
amino acid acetylation, chromatin organization and modifica-
tion, and cellular macromolecular complex assembly. Variation 
of the SAINT probability thresholds (~0.8–0.95) did not qualita-
tively change this conclusion (data not shown). Note that omis-
sion of negative controls from SAINT modeling decreased the 
overlap with the interactions reported in BioGRID and iRefWeb 
(Supplementary Fig. 1). Explicit incorporation of the negative 
control data improved the robustness of modeling, especially in 
small or medium datasets.

We then tested the performance of SAINT for large-scale data-
sets without negative controls (Fig. 1b) on the human deubiquiti
nating enzymes (DUB) dataset7 (this dataset was used in the 
development of CompPASS). High confidence interactions from 
SAINT were compared to the high confidence set from CompPASS 
(Supplementary Table 2). Owing to the absence of negative 
controls, it was not possible to apply PP-NSAF to this dataset. 
SAINT probabilities and DN scores were notably correlated 
(Pearson correlation, r = 0.79). At a probability threshold of 
0.8, SAINT selected 1,300 interactions, whereas a threshold of 
CompPASS DN ≥ 1 (as used in ref. 7) reported 1,377 interactions. 
Of these, 1,051 interactions were identified by both methods.  
Reflecting the similarity of selected interactions, SAINT and 
CompPASS recovered previously reported interactions at com-
parable rates (Fig. 2c). In the top 1,000 interactions, SAINT 
showed higher overlap with published data. The co-annotation 
of interaction partners to the common GO terms also showed 
similar results between the two methods (Fig. 2d), including rele
vant terms such as positive and negative regulation of ubiquitin-
protein ligase activity during mitotic cell cycle, proteasome, and 

so on (Supplementary Table 2). Although SAINT and CompPASS 
recovered largely overlapping interactions, SAINT removed the 
interactions identified with 1–2 spectral counts, which were still 
scored by CompPASS if they were specific to a single bait protein 
and detected in duplicates.

Another advantage of SAINT over other methods is that it is 
applicable to the analysis of small-scale datasets for which control 
purifications are available; this extends to the case of a single bait. 
We illustrate this by using a recent dataset13 that contains three 
experimental purifications of the bait CDC23 and three control 
purifications. In the original analysis, the authors of the study 
identified true interactions using ion intensity–based quantifica-
tion followed by a simple t-test. We applied the SAINT approach 
to the same dataset by using spectral counts (the data were 
re-searched in-house; Online Methods). The results obtained 
by SAINT were nearly identical to those in the initial report 
(Supplementary Table 3), the sole exception being the single 
peptide hit C11orf51, which was reported as a new interactor in 
the original analysis13 but which was removed by SAINT.

The SAINT model presented here is based on label-free 
quantification using spectral counts, a parameter that is easily 
extracted from most AP-MS datasets. SAINT can also be extended 
to model other types of quantitative parameters such as peptide 
ion intensity14 or other continuous variables15, which can be 
accommodated by simply substituting the likelihood with an 
appropriate continuous distribution. SAINT is available as 
Supplementary Software.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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Figure 2 | Analysis of TIP49 and DUB datasets. (a) Benchmarking of 
filtered interactions in the TIP49 dataset by the overlap with interactions 
previously reported in BioGRID and iRefWeb databases. (b) Co-annotation 
of interaction partners to common GO terms in ‘biological processes’ in 
the TIP49 dataset. (c) Benchmarking against BioGRID and iRefWeb in the 
DUB dataset. (d) Co-annotation to GO terms in the DUB dataset.
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ONLINE METHODS
Label-free quantification by spectral counting. Label-free quan-
tification in this work was based on spectral counting. Spectral 
counts are the sum of every successful instance of sequencing a 
peptide from a particular protein by mass spectrometry, including 
redundant spectra. With proper normalization, spectral counts 
can be used as a quantitative measure of protein abundance in 
the sample. This method is conceptually similar to the approach 
of measuring gene expression using SAGE, EST or RNA-Seq 
fragment count data. For both DUB and TIP49 datasets, spec-
tral count data were taken exactly as provided by the authors6,7. 
Briefly, the DUB dataset and the TIP49 dataset were searched 
using SEQUEST16 using target-decoy database strategies against 
human databases; selected parameter sets were defined by the 
authors for filtering. The DUB dataset accepted peptides based 
on the following criteria. (i) High-stringency set: XCorr 2+ ≥  
2.5; 3+ ≥ 3.2; 4+ ≥ 3.5; +1 charge states were not collected.  
(ii) Complementary peptide set for proteins identified with high 
confidence: XCorr thresholds ≥ 1.0; ∆Cn ≥ 0.05. The parameters 
selected by the authors of the TIP49 dataset were: XCorr 1+ ≥1.8 
for 2+ ≥ 2.5, and 3+ ≥3.5 (fully tryptic peptides of at least seven 
amino acids long with max Sp score of 10). The reported spectral 
FDR for the entire TIP49 dataset was 0.065%; for the DUB data, 
a set FDR of 2% was selected to populate the interaction tables. 
No control data were used for the DUB dataset. In the case of the 
TIP49 dataset, 35 controls were provided alongside the experi-
mental samples. These controls were generated from HeLa and 
HEK293 cell lines under nine different conditions. We merged 
the 35 measurements to 9 by taking the largest spectral count 
for each prey in each condition (Supplementary Table 1). For 
the analysis of the CDC23 data, the data were downloaded from 
Tranche (trancheproject.org), and re-searched in-house using  
X!Tandem/k-score against the RefSeq database using search 
parameters similar to those used in ref. 13. The search results were 
processed using PeptideProphet and ProteinProphet5, and filtered 
to achieve a protein-level FDR of less than 0.5%. The spectral 
counts were extracted using the in-house software Abacus (D.F. 
and A.I.N., unpublished data).

SAINT model. This section describes the generalized statistical 
modeling framework for the datasets with and without control 
purifications (Fig. 1a,b). In both cases, the spectral counts for prey i 
in purification with bait j are considered to be either from a Poisson 
distribution representing true interaction (with mean count λij) or 
from a Poisson distribution representing false interaction (with 
mean count κij). In the form of probability distribution, we write 

P X P X P Xij T ij ij T ij ij( | ) ( | ) ( ) ( | )i = + −p l p k1

where πT is the proportion of true interactions in the data, and dot 
notation represents all relevant model parameters estimated from the 
data (here, specifically for the pair of prey i and bait j). The individual 
bait-prey interaction parameters λij and κij are estimated from joint 
modeling of the entire bait-prey association matrix, with the prob-
ability distribution (likelihood) of the form P(X | •) = ∏i,jP(Xij | •).  
The proportion πT is also estimated from the model, which relies on 
latent variables in the sampling algorithm (see below).

When at least three control purifications are available, 
and assuming that the control purifications provide a robust 

(1)(1)

representation of nonspecific interactors, the parameter κij can 
be estimated from spectral counts for prey i observed in the nega-
tive controls. This is equivalent to assuming 

P(Xij | •) = Πi,j: j ∈ E (πT P(Xij | λij) + (1 – πT) P(Xij | κij)) ×  
	 Πi,j: j ∈ C (P(Xij | κij))� (2)

where E and C denote the group of experimental purifications 
and the group of negative controls, respectively. This leads to a 
semisupervised mixture model in the sense that there is a fixed 
assignment to false interaction distribution for negative con-
trols. As negative controls guarantee sufficient information for 
inferring model parameters for false interaction distributions, 
Bayesian nonparametric inference using Dirichlet process mix-
ture priors can be used to derive the posterior distribution of 
protein-specific abundance parameters in the model. As a result, 
the mean parameters in the Poisson likelihood functions follow 
a nonparametric posterior distribution, allowing more flexible 
modeling at the proteome level. Under this setting, all model 
parameters are estimated from an efficient Markov chain Monte 
Carlo algorithm17.

To elaborate on the two distributions, the mean parameter for 
each distribution is assumed to have the following form. For false 
interactions, it is assumed that spectral counts follow a Poisson 
distribution with mean count

 
log( ) log( ) log( )k g mij i j il c= + + +0  

where li is the sequence length of prey i, and cj is the bait coverage, 
the spectral count of the bait in its own purification experiment, γ0 
is the average abundance of all contaminants and µi is prey i specific 
mean difference from γ0. For true interactions, it is assumed that 
spectral counts follow a Poisson distribution with mean count

 
log( ) log( ) log( )l b a aij i j bj pil c= + + + +0  

where β0 is the average abundance of prey proteins in those cases 
where they are true interactors of the bait, αbj is bait j specific 
abundance factor and αpi is prey i specific abundance factor.  
In other words, the mean spectral count for a prey protein in 
a true interaction is calculated using a multiplicative model  
combining bait- and prey-specific abundance parameters. This 
formulation substantially reduces the number of parameters in 
the model, avoiding the need to estimate every λij separately.

For datasets without negative control purifications, the mixture 
component distributions for true and false interactions have to 
be identified solely from experimental (noncontrol) purifica-
tions. In this case, a user-specified threshold is applied to divide  
preys into high-frequency and low-frequency groups, denoted as 
Yi = 1 or 0 if prey i belongs to the high- or low-frequency group, 
respectively. An arbitrary 20% threshold was applied in the case 
of the DUB dataset; however, the results were not very sensitive to  
the choice of the threshold. For preys in the high frequency group, 
the model considers spectral counts for the observed prey proteins 
(ignoring zero count data, which represent the absence of protein 
identification), as there are sufficient data to estimate distribu-
tion parameters. In the low-frequency group, nondetection of a  
prey is included to help the separation of high-count from low-
count hits. The entire mixture model can then be expressed as

(3)(3)

(4)(4)
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   P(Xij | •) = Πi,j (πT P(Xij | λij) + (1 – πT) P(Xij | κij))Zij        (5)

where Zij = 1(Yi = 0) + 1(Yi = 1,Xij > 0) and the false and true interaction 
distributions are modeled by equations (3) and (4), respectively.

The posterior probability of a true interaction given the data  
is computed using Bayes rule

P X T T Fij ij ij ij( | ) /( )true = +

where Tij = πT P(Xij | λij) and Fij = (1 – πT) P(Xij | κij). If there are 
replicate purifications for bait j, the final probability is computed 
as an average of individual probabilities over replicates. Note that 
one alternative approach is to compute the probability assuming 
conditional independence over replicates, that is, ∏ k ∈ j P(Xijk | 
λijk) and ∏ k ∈ j P(Xijk | κijk) for true and false interactions, with 
additional index k denoting replicates for bait j. Unlike average 
probability, this probability puts less emphasis on the degree of 
reproducibility, and thus may be more appropriate in datasets 
where replicate analysis of the same bait is performed using differ-
ent experimental conditions (for example, purifications using dif-
ferent affinity tags) to increase the coverage of the interactome.

When probabilities have been calculated for all interaction 
partners, the Bayesian false discovery rate (FDR) can be estimated 
from the posterior probabilities as follows. For each probability 
threshold p*, the Bayesian FDR is approximated by 

FDR( *) ( ( *)( ))/( ( *))p p p p p pk k k k k= ∑ ≥ − ∑ ≥1 1 1

where pk is the posterior probability of true interaction of protein 
pair k. The output from SAINT allows the user to select a prob-
ability threshold to filter the data to achieve the desired FDR.

Implementation of other scores. CompPASS7,10 calculates two 
different scores. First, Z score is constructed by mean centering 
and scale normalization in the conventional Z statistic, where 

(6)(6)

(7)(7)

mean and s.d. are estimated from the data for each prey. D score 
is based on the spectral count adjusted by a scaling factor that 
reflects the reproducibility of prey detection over replicate purifi-
cations of the same bait. If Xij denotes the spectral count between 
prey i and bait j, then Dij = ((k / fi)pij·Xij)1/2, where k is the total 
number of baits profiled in the experiment, fi is the number of 
experiments in which prey i was detected and pij is the number of 
replicate experiments of bait j in which prey i was detected. After 
computing the scores, a threshold DT is selected from simulation 
data so that 95% of the simulated data falls below the chosen 
threshold. Note that CompPASS merges replicate data for bait j 
to produce a unique spectral count Xij for a given pair. In doing 
so, it takes nonzero counts only when the prey is identified in a 
single replicate or otherwise averages counts over multiple rep
licates. In the analysis of TIP49 dataset, we used both the original 
D score and the more recently implemented ‘weighted D score’, 
which is designed for datasets with large protein complexes10. The 
weighted D scores are shown in Figure 2 for the TIP49 dataset.

To replicate PP-NSAF6, we removed 330 contaminants from 
the dataset using the vector magnitude approach. After filtering, 
probabilities were computed using an in-house script following 
the method presented in ref. 6. Although our implementation 
did not reproduce exactly the same scores for the interactions 
reported in ref. 6, the scores computed by the in-house imple-
mentation showed a clear linear correspondence to the reported 
scores (Pearson correlation 0.89).

Software. The source C code and a user manual for the generalized 
SAINT model described in this work (SAINT 2.0) can be down-
loaded from http://saint-apms.sourceforge.net/, where updates 
will be distributed. The published version is also available as 
Supplementary Software.

16.	 Eng, J.K., McCormack, A.L. & Yates, J.R.I. J. Am. Soc. Mass Spectrom. 5, 
976–989 (1994).

17.	 Ishwaran, H. & James, L.F. J. Am. Stat. Assoc. 96, 161–173 (2001).
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