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ABSTRACT

In the era of post genome-wide association studies, many investigators are currently searching

for non-multiplicative gene-environment (G x E) interaction effects for studying complex disease

phenotypes with established environmental risk factors. Several methods for screening G x E inter-

action have recently been proposed that address the issue of using gene-environment independence

in a data-adaptive way. In this brief report, we present a comparative simulation study of power

and Type I error properties of three classes of procedures: (i) The standard one-step case-control

method; (ii) The case-only method which requires an assumption of gene-environment indepen-

dence for the underlying population; (iii) A variety of hybrid methods, including empirical-Bayes,

two-step and model averaging, that aim at gaining power by exploiting the assumption of gene-

environment independence and yet can protect against false positives when the independence as-

sumption is violated. Our studies suggest that while the case-only method generally has maximum

power, it has the potential to create substantial false positives in large scale studies even when a

small fraction of markers are associated with the exposure under study in the underlying popula-

tion. All the hybrid methods perform well in protecting against such false positives and yet can

retain substantial power advantages over standard case-control tests. The relative performance of

the hybrid methods depend on the true underlying parameters for gene-environment interaction

and gene-environment association. We conclude that for future genome-wide scans for G × E

interactions, major power gain is possible by using alternatives to standard case-control analysis.

Whether a case-only type scan or one of the hybrid methods should be used, depends on degree

and direction of gene-environment association expected, the level of tolerance for false positives

and the nature of replication strategies.

KEY WORDS: Case-only; Expected number of false positives; Familywise error rate; Gene-

environment independence; Genomewide scan; Hybrid methods; Model averaging; Profile like-

lihood.
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1 Introduction

Risks of most complex traits are influenced by both genetic susceptibility and environmental ex-

posures. Epidemiologic researchers have long anticipated that exploration of gene-environment

interactions may hold the key to our understanding of the etiology of chronic diseases and it will

ultimately lead to better strategies for disease prevention. In the era of candidate gene studies,

studies of gene-environment interactions focused on candidate functional SNPs, tagging SNPs in

candidate genes or in whole candidate pathways that are typically chosen a’priori, based on hypoth-

esized mechanisms for the effect of the environmental exposure under study. Unfortunately, such

hypotheses-driven studies, although conceptually appealing, have not generally been successful in

identifying replicable gene-environment interactions. The widely replicated interaction between

NAT2 acetylation activity and smoking on risk of bladder cancer is a rare exception of success

from candidate gene studies (1). Many other claims of interactions, however, have often failed to

replicate (2).

Genome-wide association studies (GWAS) now provide tremendous opportunities for large-

scale exploration of gene-environment interactions. The agnostic approach of searching for ge-

netic associations based on GWAS have been clearly successful in identifying many susceptibility

loci for a wide variety of complex traits [http://www.genome.gov/26525384]. However, a large

fraction of variation in the different disease phenotypes still remain unknown, with the identi-

fied SNPs contributing modestly to prediction of disease risk (3-5). The identified loci are often

not within or near genes for which associations could have been expected on an a’priori basis.

Thus, there is currently hope that an agnostic genome-wide approach may also lead to detection

of gene-environment interactions involving previously unsuspected loci [Gene-Environment Wide

Interaction Studies or GEWIS as termed by (6)]. Moreover, as GWAS are now being pooled for

further discoveries through meta-analysis, various consortia are now beginning to achieve large

enough sample sizes necessary for detection of interactions with high confidence. Thomas (7)

presents a detailed review whereas Khoury and Wacholder (6) point out analytical challenges fac-
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ing large-scale G x E studies. However, none of the above two papers present numerical results

from simulation studies or quantify the comparative performances of the different methods in terms

of metrics related to Type I error and Power that are relevant to a GWAS.

Population-based case-control studies are commonly used to study the roles of genes and gene-

environment interactions in determining the risks of complex diseases. It is well known that stan-

dard case-control analysis often has poor power for detection of multiplicative interaction due to

small numbers of cases or controls in cells of crossing genotypes and exposures. In contrast, under

the assumption of gene-environment (G-E) independence for the underlying population, one can

test for multiplicative interaction in a very powerful fashion based on the genotype-exposure corre-

lation in cases alone (8), but the method can have seriously inflated Type I error when the underly-

ing assumption of gene-environment independence is violated (9). The independence assumption

is quite plausible across the genome for exogenous exposures like air-pollution, pesticides, envi-

ronmental toxins or treatment in a randomized clinical trial. The assumption, however, is expected

to be violated for some markers in the genome for behavioral exposures like smoking and alcohol

consumption, or anthropometric traits such as height, BMI, which themselves are known to have

inherited components.

When gene-environment association is suspected, practitioners often adopt a two-stage proce-

dure where, at first, one formally tests for the adequacy of the gene-environment independence

assumption based on the data itself and then uses the outcome of that test to decide whether to

choose the powerful case-only or the more robust case-control test. For a given study of modest

sample size, however, the power of the tests for gene-environment independence would be typi-

cally low and consequently the two-stage procedure, as a whole, could still remain significantly

biased (9, 10). The use of independence assumption has been extended to more general analyses

that can estimate all the parameters of an association model including main effects and interactions

(11, 12). These methods also face the same issue with bias and inflated Type I error when genetic

and environmental factors are correlated at the population level.
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Several authors recently proposed solutions to the bias vs efficiency dilemma by considering

hybrid approaches that combine case-control and case-only analysis (13, 14). Murcray et al. (15)

proposed a two-step approach that leverages the independence assumption at an initial screening

step. The promising markers are followed-up with a standard case-control analysis at the second

step. The purpose of this brief report is to provide a comparative study of these alternative tests for

screening gene-environment interactions (G x E effects) with a large number of markers, in terms

of Type I error and power. Previous results on Type I error and power comparison for each of these

methods with standard case-control and case-only analysis are separately available in each of the

above individual papers, but no comparison across methods are available so far. Cornelis et al.(16)

apply several of these methods to analyze G x E interactions in a Type 2 diabetes GWAS, but the

paper does not contain detailed simulation results. As practitioners are confronting the issue of

choosing a method for screening for G x E effects, it is important to realize the advantages and

disadvantages associated with each choice. Using simulation studies, in this report, we point out

some important operating characteristics of these procedures that could inform/guide such choices.

The report is organized as follows. In Section 2.1, we first describe the different testing proce-

dures that we consider. In Section 2.2, we describe the simulation design followed to evaluate each

method. In Section 3, we present results on Type I error and power properties corresponding to

these eight tests under different sampling ratio of cases and controls, different number of markers

and varying strength of G-E association. Section 4 contains discussion and concluding remarks.

2 Materials and Methods

2.1 Different tests for interaction

We present a guiding summary chart of all methods with glossary and key attributes in Table 1.

Following is a more detailed description.

I. SIMPLE LOGISTIC REGRESSION BASED ON CASE-CONTROL DATA: The simplest and most com-
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monly used test for gene-environment interaction is based on a logistic regression model:

logit P (D|G,E,S) = β0 + βGG+ βEE + βGEG ∗ E + β>S. (1)

Where G = 0, 1, 2 is the number of alleles present at a bi-allelic locus, E is the environmental

exposure and S are a set of other covariates one may adjust for. We will assume that an ensemble

of single nucleotide polymorphisms (SNPs) have been genotyped for study participants, leading

to data on many such genetic factors G. Instead of assuming a trend or log-additive model as the

one described above, one can modify the genetic susceptibility model by binary collapsing of G

(dominant, recessive) or by allowing separate log odds-ratios for each category of G compared to

the baseline category, leading to a 2 degree of freedom (d.f) test for the main effects of G as well

as another 2 d.f. test for the G x E interaction effects. The model for E, when continuous, may

involve inclusion of higher order non-linear terms. For categorical E, one may again allow sep-

arate log odds-ratios corresponding to each categories of E relative to the baseline category, thus

leading to a higher degrees of freedom test for the saturated interaction model. However, we use

the above simpler notation with the understanding that appropriate modification of the regression

terms can be carried out depending on the nature of G and E. The test for βGE is the standard

Wald test for H0 : βGE = 0, based on maximum likelihood (ML) estimation, or the corresponding

Likelihood ratio (LR) chi-squared test.

II. RETROSPECTIVE LIKELIHOOD BASED TESTS THAT USE GENE-ENVIRONMENT INDEPENDENCE

(II.A) CASE-ONLY ANALYSIS: In its simplest form, this class of methods include the popular

case-only analysis. This analytic strategy specifies a regression model for testing association be-

tweenG andE (conditional on other covariates S) among the cases (D = 1). This can be achieved

through modeling the distribution of G|E,S via a polytomous logistic regression model, namely,

logit P (G = g|E,D = 1) = γ0 + γgE E + γ>s S g = 1, 2; (2)

Under the assumption of G-E independence conditional on S, the likelihood-ratio test for H0 :

γ1E = γ2E = 0 among cases in (2) is a valid test for interaction effects in a corresponding logistic
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model. More commonly, when a trend model is assumed with a single coefficient γE , such that

γ1E = γE and γ2E = 2γE and one employs a Wald test for H0 : γE = 0, that test is approximately

equivalent to testing H0 : βGE = 0 in (1) with the log-additive assumption.

A major limitation of the case-only analysis, even when G-E independence assumption is true,

is the fact that it can not yield estimates of the main effect parameters βG and βE that are essential

to evaluate joint effects of G and E or subgroup effects of a genetic factor across exposure strata

or effects of an exposure across genotype categories.

(II.B) PROFILE LIKELIHOOD OF CHATTERJEE AND CARROLL (12): One can use log-linear mod-

eling technique for categorical data (11) or a profile likelihood technique more generally (12), and

obtain estimates of all model parameters under gene-environment independence using data on both

cases and controls. The profile likelihood method has complete flexibility of a regression model,

and uses gene-environment independence assumption (possibly conditional on covariates S, which

for example, may include principal components obtained from a large number of genetic markers

that can correct for gene-gene and gene-environment dependence that are induced by presence of

population stratification). The method considers a retrospective likelihood,

P (G,E,S|D) =
P (D|G,E,S)

reduces to P(G|S)︷ ︸︸ ︷
P (G|E,S) P (E,S)∑

G,E,S P (D|G,E,S)P (G|E,S)P (E,S)
. (3)

The ingredients of the above likelihood are specified as below:

1. A logistic disease incidence model: P (D|G,E,S) of the form (1).

2. A model for P (G|E,S): This is assumed to be of a multinomial logistic form with three

response categories of G and covariates (E,S). The assumption of G-E independence,

conditional on S implies, P (G|E,S) = P (G|S) and the covariate E is simply dropped

from this multinomial logit model for P (G|E,S) to reflect the assumption. Let this general

dependence model be denoted by,

logitP (G = g|E,S) = θ0 + θgEE + θ>gSS, g = 1, 2. (4)
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where θgE ≡ 0, g = 1, 2 under G-E independence assumption. One can assume a log-

additive structure and have one single association parameter θGE as well. The constrained

ML estimates of the interaction parameters based on this likelihood with θGE ≡ 0, retain the

same efficiency advantages as a case-only analysis. One can also incorporate assumptions

like HWE while modeling the distribution of G to further boost the efficiency advantage of

a retrospective likelihood (17, 18).

3. A non-parametric model for P (E,S): This renders estimation of a potentially multi-dimensional

non-parametric joint distribution and is handled by the profile likelihood technique estab-

lished in (12). In fact, the likelihood can be treated in an elegant way by establishing equiv-

alence with a simpler pseudo likelihood.

III. EMPIRICAL-BAYES ESTIMATION: To trade-off between bias and efficiency of case-control

and case-only analysis, Mukherjee and Chatterjee (13) proposed a shrinkage estimator based on

the above retrospective likelihood framework of (12). The estimator is of the following form:

β̂EB = ∆>θ̂MLθ̂
>
ML∆[V̂ ˆβML

+ ∆>θ̂MLθ̂
>
ML∆]−1

unconstrained︷ ︸︸ ︷
β̂ML +V̂ ˆβML

[V̂ ˆβML

+ ∆>θ̂MLθ̂
>
ML∆]−1

constrained︷ ︸︸ ︷
β̂

0

ML

where ∆ =
∂β̂>ML(θ)

∂θ

∣∣∣
θ=0

. Here θ̂
>
ML denotes estimates of the parameters from (4) whereas

β̂ML and V̂ ˆβML

are parameter estimates and variance estimates obtained from (3) that allows for

gene-environment dependence. Finally, β̂
0

ML are the constrained ML estimates of the disease-

risk parameters from (3) while using gene-environment independence by setting θgE = 0 in (4),

g = 1, 2. Variance approximations for β̂EB are provided by Delta approximations in (13). Wald

tests based on approximate asymptotic normality is used. The authors in fact consider another form

of shrinkage weight in (10), where in the above expression, V̂ ˆβML

is replaced by V̂ (β̂ML − β̂
0

ML).

The resultant estimator will be denoted by β̂EB2 from here onwards. The specific form of the

“shrinkage” weights is obtained by the expression for the posterior mean obtained in a conjugate

analysis under a normal-normal model (19, p. 131), with the prior variance substituted by an
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estimate obtained using a method of moments approach (20).

The retrospective profile-likelihood methods, including the unconstrained maximum likeli-

hood, constrained maximum likelihood and EB are now readily implementable in the R-package

CGEN (dceg.cancer.gov/bb/tools/genetanalcasecontdata), also available as a part of the R-bioconductor

computing repository.

IV. MODEL AVERAGING

IV.A: BAYESIAN MODEL AVERAGING: Li and Conti (14) present the following approach that

uses case-control data. The method combines the case-only model and the case-control model via

the following model-averaging framework, assuming all categorical covariates (G,E).

• Note that one can represent the logistic model in (1) (without S) by an equivalent log-linear

model (M1), where µ represents the cell count of a particular (D,G,E) configuration:

log(µ|D,G, E) = α0 + αG G + αE E + αGE GE + β0 D + βG GD + βE ED + βGE GED.

Under G-E independence assumption, the above model is fitted under constraints which

sets αGE ≡ 0. Let this reduced model be termed as M2. The estimator for βGE under M2

is approximately equivalent to the case-only estimator γ in (2) for binary G. For a trinary

G, under the log-additive trend model, one can assign scores of 0,1,2 to the three categories

of G, that are equivalent to introducing a linear by linear association term in the log-linear

model for ordinal data (21).

• By specifying the prior odds W = P (M1)/P (M2), one can get the posterior distribution of

βGE and the resultant BMA estimator as

P (βGE |Data) =
2∑

k=1

P (βGE |Data,Mk)P (Mk|Data);

β̂BMA = E(βGE |Data) =
2∑

k=1

β̂k
GEP (Mk|Data).
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The variance expression of the BMA estimator is provided in (14) and Wald tests based on the

ratio of estimate to standard error is recommended for being used as a test statistic. One can note

that the BMA estimator may be computed by using the profile likelihood in (3) with and without

the independence assumption following the same recipe. Using the profile likelihood allows more

flexibility than the construct of a log-linear model which limits the analysis to categorical covari-

ates. Li and Conti (14) vary the prior odds-ratio W over a range of values to assess the properties

of their method.

IV.B FREQUENTIST AIC MODEL AVERAGING: The notion of combining two models is fairly

general (22). In addition to the BMA and EB approach, we consider another model-averaged es-

timator based on the Akaike information criterion (AIC). Note that, the BMA approach is approx-

imately equivalent to weighting the two models by their respective Bayes Information Criterion

[BIC, (23)]. In averaging a full model estimate and a reduced model estimate, the EB estima-

tors are also implicitly performing model averaging with a particular choice of model weights

(22). One can also use model AICs as alternative weights for the two models. For AIC, de-

fine w(v) = {1 + exp(v/2 − d)}−1, where d is the dimension of θGE in (4), or the difference

in dimension between the full (dependence model/unconstrained model) and the reduced model

(independence model/constrained model). Let L = 2{Ldep − Lindep} be the likelihood ratio test

statistic comparing the two models. The weight assigned to the reduced (independence) model

by AIC is w(L). All models are assumed to be fitted in the profile likelihood framework of (12).

An approximate variance expression for the AIC averaged estimator is obtained by following an

exactly analogous formula to the variance expression in BMA as presented in (14) where the BIC

model weights are replaced by AIC weights.

V. THE TWO-STEP SCREENING STRATEGY: Murcray et al. (15) proposed a simple but very

useful two-step approach to again leverage the efficiency advantage of case-only type methods

for screening, without compromising on the robustness properties of the final tests for gene-

environment interaction. Their method can be described through the following steps.

8



• Step 1. A first step screening test: A likelihood ratio test of association between G and E

in a combined sample of cases and controls is carried out. For trinary G, test H0 : γgE = 0,

g = 1, 2 in the following association model:

logit P (G = g|E,S) = γ0 + γgE E + γ>s S, g = 1, 2

with γ2E = 2γ1E under a log-additive model.

• A subset of m SNPs will exceed a first step threshold of significance α1, with P < α1.

• Step 2. For the m SNPs passing through Step 1, test H0 : βGE = 0 in the logistic model

(1). Significance at the second stage assessed by P < α/m, where α the overall Type I error

rate.

The first-step test of the two-step approach exploits the fact that under the gene-environment in-

dependence assumption in the underlying population, the presence of G-E correlation in the case-

enriched case-control sample indicates presence of gene-environment interaction on the risk of the

disease. It is important to note that the first step test is done in the combined sample of cases and

controls, and not cases only. The resulting test is less powerful than a case-only test under gene-

environment independence, but it being independent of the second step case-control test ensures

that it can be used as a pure “screening” method. Consequently, the two-step method maintains

nominal Type I error level as the ultimate second step test is the model-robust case-control test for

G x E interaction. The power advantage of the two-step method comes from reducing the mul-

tiplicity burden by decreasing the number of SNPs that are being carried forward to Step 2. The

amount of power gain of the two-step procedure depends on the choice of the first step threshold

α1. The authors use α1 as 0.05 in the original paper but follow-up empirical studies suggest α1 can

be chosen adaptively depending on study size and other parameter guesses for enhanced power.

REMARK 1: Like the case-only approach, one major limitation of the two-step approach is that one

can not screen for joint effects through this approach as only the SNPs with significant interaction
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and not necessarily main effects are carried over to Step 2, for the final case-control analysis.

Thus it is very much a targeted interaction searching procedure with the first step screening test

only filtering markers with significant interactions. Moreover, the first step test statistic is not

independent of the second step test statistic for testing main effects, the independence holds only

for testing interaction effects. Thus, for detecting joint effects, this approach is not optimal.

2.2 Simulation Setting

We first describe the simulation mechanism for any given marker. For simulation purpose, we

consider the simple set-up of an unmatched case-control study with a binary genetic factor G and

a binary environmental exposure E. Let E = 1 (E = 0) denote an exposed (unexposed) individual

and G = 1 (G = 0) denote whether an individual is a carrier (non-carrier) of the susceptible

genotype. Let D denote disease status, where D = 1 (D = 0) stands for an affected (unaffected)

individual. Let n0 and n1 be the number of selected controls and cases, respectively. The data can

be represented in the form of a 2× 4 table as displayed below.

A binary genetic factor and a binary environmental exposure
G = 0 G = 1

E = 0 E = 1 E = 0 E = 1
D = 0 r000 r001 r010 r011

D = 1 r100 r101 r110 r111

Let r0 = (r000, r001, r010, r011) and r1 = (r100, r101, r110, r111) denote the vector of observed

cell frequencies in the controls and cases respectively. The population parameters, namely, the

cell probabilities corresponding to a particular G-E configuration in the underlying control and

case populations are denoted as p0 = (p000, p001, p010, p011 = 1 − p000 − p001 − p010) and p1 =

(p100, p101, p110, p111 = 1 − p100 − p101 − p110), respectively. The observed vectors of cell counts

can be viewed as realizations from two independent multinomial distributions, namely, r0 ∼

Multinomial(n0,p0) and r1 ∼ Multinomial(n1,p1). Let OR10 = p000p101/p001p100 denote the

odds-ratio associated with E for nonsusceptible subjects (G = 0), OR01 = p000p110/p010p100 de-

note the odds-ratio associated withG for unexposed subjects (E = 0) andOR11 = p000p111/p011p100
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denote the odds-ratio associated with G = 1 and E = 1 compared to the baseline category G = 0

and E = 0. Therefore,

ψ = OR11/(OR10OR01) = (p001p010p100p111) / (p000p011p101p110)

is the multiplicative interaction parameter of interest. The interaction log OR parameter is βGE =

log(ψ).

For each marker, given the values for the prevalence of G and E, namely PG and PE , and the

value of the odds-ratio θGE in the control population, one is able to obtain the control probability

vector p0 by solving the following system of equations.

θGE =
p000(p000 − (1− PG − PE))

(1− PG − p000)(1− PE − p000)
,

p001 = 1− PG − p000, p010 = 1− PE − p000.

We then set the values of OR10, OR01 and ψ, which together with p0, defines the case-probability

vector (24). For each marker, we generate data independently from the two multinomial distribu-

tions corresponding to the case and control populations.

To mimic a large-scale study, we generated data onM markers independently distributed across

the genome. For Type I error evaluation we consider the situation with 2000 cases and 2000 con-

trols with M = 100, 000. For evaluating power characteristics we consider M = 100, 000 with

n1 = 2000, n0=2000 and 4000; and a larger study with n1 = 10000, n0=10000 and 15000. Sim-

ulation results for some additional settings with a smaller number of markers M = 10, 000 and

intermediate sample sizes n1 = 7000, n0 = 7000, 14000 are presented in the online supplemen-

tary material. Throughout, we consider E as a binary environmental covariate with P (E) = 0.5,

reflecting a common situation with dichotomization of a continuous covariate at the sample me-

dian. All main effect parameters are assumed to be unity, namely, OR10 = OR01 = 1.0 across all

scenarios. The trend of results remain unchanged with non-null main effects.

We assume a situation with only 1 causal locus having true interaction with E, others null

with no interaction effect. At the causal locus, the minor allele frequency is set at qA = 0.2, and
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we assume a dominant genetic susceptibility model with G = 1(AA,Aa), G = 0(aa), yielding

P (G = 1) = 0.36. The G-E OR among controls for the causal locus is set at three values, namely,

exp(θGE) = 1.0, 0.8, 1.1 corresponding to independence, negative and positive dependence. The

interaction parameter at the causal locus exp(βGE) is varied from 1.1 to 2.0 for 2000 cases and

from 1.1 to 1.5 for the situation with 10000 cases.

Among the M − 1 null loci, without any interaction effects with E, the allele frequency distri-

bution is assumed to be uniform qA ∼ Uniform(0.1, 0.3). The population level G-E association

structure among null loci is assumed to be of the form of a mixture distribution reflecting that a

large fraction, say pind, of the SNPs, indeed are independent ofE in the population, whereas the re-

maining SNPs show some departures from the independence assumption. We generated the log OR

of GE association in controls corresponding to null loci as θG0E ∼ pind δ0 + (1− pind) N(0, sd =

log(1.5)/2). Here δ0 is a point mass at 0 reflecting G-E independence. The standard deviation

parameter of the normal distribution part of the mixture is chosen such that of the θGE values that

depart from independence, 95% fall within ± log(1.5). We vary the simulation parameter pind to

create G and E dependence among more (less) null markers.

For the generated ensemble of markers, we then carry out the eight tests described in Section

2: case-control (CC), case-only (CO), Empirical Bayes (EB, EB2), Two-step (TS with two choices

of α1, 0.05 and 5 × 10−4), BMA (W = 1), AIC model averaging (AIC). In our simulation, we

investigate the family-wise Type I error rate (FWER), expected number of false positives and power

of the above testing procedures. All family-wise Type I error rates are estimated by the empirical

proportion of simulated datasets that declare false significance for H0 : βGE = 0 corresponding

to at least one null marker. We also collect the number of false rejections in each simulation run

and present average of that count over all simulation runs. This estimate of the expected number

of false positives may be a more reasonable quantity to examine in a GWAS setting instead of

the more conservative FWER which counts the proportion of at least one false rejection. The

power values are estimated by empirical proportion of rejection of H0 : βGE = 0 corresponding
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to the causal marker. The results are based on 5000 simulated datasets. The margin of error in the

estimated proportions with nominal level α = 0.05 with 5000 simulated datasets is approximately

0.003.

REMARK 2: Under departure from the independence assumption, methods except for the two-step

and the standard case-control analysis may not adhere to strict nominal FWER for all parameter

settings considered. We present two metrics that combine Power and Type I error (25) in the

online supplementary material. The metrics are accuracy (ACC) and positive predictive value

(PPV), given by ACC=(1-Type 1 error+Power)/2 and PPV=Power/(Power+Type I error). We also

present mean-squared error (MSE) corresponding to each method except two-step, which is a pure

screening procedure. The MSE provides a combined metric of bias and variance from an estimation

standpoint.

3 Results

We now summarize the main findings of the simulation study. Table 2 presents the FWER and

expected number of false positives corresponding to each method with M = 100, 000 for varying

values of pind from 0.95 to 1.00, the proportion of markers that follow gene-environment indepen-

dence. The simulation is carried out with n1 = n0 = 2000. One can note that the two-step and

the case-control procedures always maintain FWER, whereas the FWER for the case-only method

is at 0.80 even when 99.95% of the SNPs are independent of E. The FWER control of EB-type

procedures and model averaging procedures is much superior than case-only method and FWER is

maintained if the fraction of SNPs that actually follow theG-E independence assumption is 99.0%

or more. The model averaging procedures BMA and AIC offer better control of FWER compared

to EB-Type procedures when pind is lower, say for example, 0.95, i.e., when more than 5% SNPs

are associated with E. One may note that for higher values of pind, closer to 1.00, which is likely

to be realistic in practice, the EB-type as well as model averaging procedures can maintain strict

FWER and even be conservative.
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In terms of expected number of false positives in Table 2, the case-only analysis is still worse

among all methods but does not appear to be an unreasonable strategy with expected number of

false positives less than one when pind = 0.9995, around 7 when pind = 0.9975, which rises to

around 158 with pind = 0.95. This may be a more rational metric to examine in GWAS instead

of FWER which only considers the more conservative criterion of probability of at least one false

rejection under the global null hypotheses.

Figures 1 and 2 represent the power values for testing H0 : βGE = 0 at the causal locus for

the eight methods with M = 100, 000. The exact numerical values corresponding to the graphs

are contained in the online supplementary material. The fraction of null SNPs that satisfy the

independence assumption is set at 0.995 in each case.

We first discuss the main features in Figure 1 with n1 = n0 = 2000 when the independence

assumption holds at the causal locus (exp(θGE) = 1.0). As expected, case-only analysis has

the maximum power compared to all other contenders. Among hybrid methods, two-step and EB

perform similarly and these two methods generally have higher power than BMA or AIC. The two-

step approach with α1 = 5× 10−4 has slightly higher power than EB for interaction OR exceeding

1.6. For example, with n1 = n0 = 2000, at interaction OR=1.8, the power of EB is 0.68, of EB2 is

0.58, BMA and AIC at 0.59 whereas two-step method with α1 = 5× 10−4 has power 0.74. In this

setting, two-step with α1 = 0.05 attains a power of 0.53. The case-only method has power 0.92

whereas the case-control analysis has a low power of 0.31. For lower values of the interaction OR

(≤ 1.6), the EB and TS have very similar performance and they outperform the model averaging

approaches. For example, at interaction OR=1.6, both EB and TS (α1 = 5 × 10−4) have a power

0.30, whereas the power of BMA and AIC is 0.18. The EB2 power is at 0.23 whereas TS with

α1 = 0.05 has power 0.20. The case-control and case-only analyses have power values of 0.08

and 0.54 respectively. For interaction OR less than 1.3, the EB procedure appeared to have slightly

greater power than TS but both of the power values were very low under this sample size.

The bottom panel of Figure 1 with n1 = 2000 and n0 = 4000 show similar trend but weaker
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performance by the TS method with both choices of α1. With case:control ratio being tilted towards

having more controls than cases, the first step screening test in combined sample of cases and con-

trols loses the power advantage of a case-only approach, when compared to 1:1 case:control ratio.

Thus we note a surprising and counter-intuitive finding that under identical simulation settings,

the power of two-step procedure actually decreases with increasing the number of controls, if the

number of cases are held fixed, as the power depends on the case:control ratio. For example, under

the independence assumption, with interaction OR=1.9, with n0 = 2000, TS (α1 = 5× 10−4) has

power 0.87 that reduces to 0.82 as n0 increases to 4000. On the other hand, under the same setting

the power of TS (α1 = 0.05) is 0.69 with n0 = 2000 and increases to 0.89 with n0 = 4000. This

indicates that the optimal screening threshold α1 in two-step procedure does heavily depend on

case:control ratio, everything else remaining the same.

Under departures from the independence assumption at the causal locus, we consider two sit-

uations: one with positive and the other with negative association between G and E in the con-

trols. With (exp(θGE) = 1.1), again the case-only method has the highest power, two-step with

α1 = 5 × 10−4 has the second highest power and a clear dominance over other hybrid methods.

In contrast, under negative dependence at the causal locus (exp(θGE) = 0.8), case-control analysis

is the most powerful analysis and case-only analysis performs quite poorly [see also (14)]. In this

situation, where βGE is positive and θGE is negative, the G-E log odds-ratio in cases (which is

simply βGE + θGE for a 2 × 4 table) is close to null, explaining the loss of power. The two-step

approach also performs quite poorly in this setting, especially with the more stringent choice of

α1=5× 10−4. The BMA, EB, EB2 and AIC perform comparably among the hybrid methods with

BMA/AIC having an edge over the EB-type methods in this scenario. The loss of power in TS

under a study design with more controls than cases becomes quite drastic with negative G-E as-

sociation as one can notice in the left most panels in Figure 1. TS with both choices of α1 loses

power as n0 increases under such negative dependence.

In order to understand the phenomenon of better power property of EB over TS at smaller
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values of interaction OR under independence, we increased the sample size to n1 = 10, 000 and

repeated the same simulation over a more modest range of interaction OR from 1.1 to 1.5. Figure

2 essentially captures the same features of the different methods as discussed for Figure 1. Under

independence, EB has power advantages over TS for smaller values of interaction, especially for

unequal case:control ratio (bottom panel, center graph in Figure 2). Under positive dependence,

TS has a clear dominance and under negative dependence BMA/AIC has advantage over EB,

whereas TS performs quite poorly. This larger sample size setting is more reflective of current post-

GWAS consortium studies exploring G x E effects. Results for several other simulation settings

are presented in the online supplementary material.

Figure 3 presents estimated relative MSE corresponding to the log odds-ratio parameter at

the causal locus under the simulation setting of Figure 1 for all the methods except the two-step

method (which is more of a screening tool and not an estimation method). The MSE for each

method is divided by the MSE of standard case-control analysis. One can notice the advantage of

EB type methods in terms of this metric as one tries to balance between bias and efficiency in a

data-adaptive way. The case-only method is best only when the independence assumption is true

(the central block) and performs worse under any departures from the independence assumption.

4 Discussion

In summary, our study indicates that the data-adaptive hybrid methods like EB, TS, BMA or AIC

model averaging can achieve balance between power gain and Type 1 error rate control for testing

G x E effects in large-scale association studies. There is no uniform dominance of one method

versus the other in terms of their operating characteristics across all simulation scenarios. The

performance of the methods differ according to magnitude/direction of the G-E association and

interaction OR. All the new hybrid methods offer power gain over standard case-control analy-

sis and better control of Type I error rate compared to a case-only analysis. We summarize and

conclude with some observations that merit further discussion.
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Type I error control: We note that even if only a very small fraction of the SNPs actually depart

from independence, say 0.05% (pind=0.9995 in Table 1), using a case-only method will still not

offer nearly adequate control of Type I error rates to prioritize lead G x E candidates whereas

the hybrid approaches offer protection from false positives. An attractive feature of the two-step

method is that it always maintains the desired level of FWER. The EB-type methods have worse

FWER control compared to model averaging when the fraction of SNPs truly associated with E

is more than 1% (under the G-E association distribution we assumed among the null markers).

However, in a GWAS study to expect the fraction of SNPs departing from independence assump-

tion to be much less than 1% may be a quite realistic assumption, and in that range of pind, all the

weighted methods maintain nominal FWER. We note that if the prior probability for the case-only

model is increased in BMA, it boosts the power but inflates the FWER as one would expect. How-

ever, one can always postulate alternative distributions for G-E association parameters among the

null loci, instead of the mixture distribution we assumed, and the operating characteristics of the

methods in terms of FWER will change substantially based on that distribution. Note that for the

small fraction of markers that depart from independence, we assumed a N(0, sd = log(1.5)/2)

distribution. Shrinking the variance of this distribution further, leads to an improvement in the

FWER properties of case-only and all hybrid methods.

Another interesting observation is the fact that for pind exceeding 0.99, the weighted methods

have a conservative FWER falling well below 0.05. Thus there is some scope of employing a more

aggressive form of shrinkage and enhance the power of these methods further.

We observe that if one desires to control the number of false positives instead of FWER, a

case-only analysis appears to perform quite reasonably in a range of scenario for gene-environment

association that is likely to arise in practice (pind between 0.995-1.00). If in a GWAS study, discov-

eries are going to be followed by replication, it may be reasonable to accept a few false positives if

a significant boost in power occurs using a specific method. Still caution is needed to avoid large

number of false positives as they could infiltrate the limited number of top ranked SNPs that may
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be followed up for replication.

Power Comparison: In general, under the independence assumption and for positive G-E asso-

ciation, the case-only method has the highest power. The two-step approach is preferred over the

case-only approach for positive association scenarios as it maintains FWER, which the case-only

method does not. The power properties of the methods when the G x E interaction is positive

and the G-E association is negative is worth noting as this may very likely occur for a fraction of

SNPs in a large-scale association study. Case-only analysis is not the most powerful analysis in

such situations and a standard case-control analysis can be more powerful. The weighted methods

strike a compromise in this reverse situation as well. The performance of the two-step method in

such situation is concerning as it suffers severely from the lack of power of the first step case-only

type screening procedure, especially with a more stringent choice of the first step threshold α1.

The power performance of the two-step method in terms of study designs where control:case

ratio is larger than 1:1 is also noteworthy and have not been previously pointed out. The first step

screening test for interaction in the two-step method can be viewed as a weighted test of G-E

association in cases and in controls. When the weight corresponding to controls increase, there is

an attenuation of the test statistic, leading to a loss of power. In fact, because of such phenomenon,

there could be situations where the power of the two-step method as a whole, may decrease, as

the number of controls are increased, everything else remaining fixed. The power loss of two-

step method is more pronounced for negative G-E association in controls and positive interaction

(or vice versa). In this situation, very few of the “promising” SNPs filter through the screening

step causing this behavior. One may attempt to correct this drawback by attaching differential

sampling weights to case and control observations in the first step screening procedure, but that

will destroy the desirable independence property of the first step screening test with the second

step case-control test.

Given the sample-size and G-E association configurations, it appears that the weighted meth-

ods EB, EB2, BMA, AIC have robustness advantage of performing reasonably well across a spec-
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trum of alternatives in terms of their power properties. Among the weighted methods EB has ad-

vantage over BMA/AIC in the situation with positive G-E association, whereas BMA has power

advantage in the negative G-E association scenario.

Combined metrics of power and Type 1 error: Since five of the seven methods may not adhere

to nominal Type I error levels (in the sense of FWER), in Web Figures 4-9 of the online supplemen-

tary material we present two combined metrics ACC and PPV as described before. One can notice

that the case-only method is least desirable in terms of these metrics even when pind = 0.9995.

The performance of the hybrid methods across a spectrum ofG-E association scenarios are indeed

encouraging.

Estimation and testing for effects other than multiplicative interaction: In this article, we have

focused on tests for multiplicative interactions only. It is, however, important to recognize that the

value of studying genetic and environmental exposures together does not necessarily stem from

the ability to test for statistical interactions. Various alternative parameters, such as the joint effect

of two exposures or the sub-group effects of one exposure within strata defined by the other ex-

posure, may be useful for developing powerful test of association, understanding the public health

impact of the exposures, targeting intervention and risk prediction. The hybrid procedures can be

extended to carry out inference regarding such alternative parameters of interest. In recent years,

for example, omnibus tests, that can simultaneously account for genetic main effects and gene-

environment/gene-gene interactions have received attention as a powerful approach for detection

of disease of susceptibility loci (26, 27). A major limitation of the two-step method is that it is

targeted towards only testing for multiplicative interactions and cannot be easily generalized to

alternative tests that may involve main effect parameters (see Remark 1).

Sensitivity to user defined choices: The choice of the first step threshold α1 can largely determine

the power properties of the two-step approach. It is hard to optimize this choice for a large-scale

study as it depends on the number of markers, disease prevalence, case:control ratio, distribution of

unknown G-E association parameters and interaction effect sizes. In a more recent manuscript, an
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optimal choice of α1 has been proposed (28) and α1=0.0005 that we have used is found to be nearly

optimal under most of our simulation configuration. The performance of the BMA procedure can

also change by varying the ratio of prior weights W . We used W = 1 in our study but it may

be more reasonable to assign a larger prior mass to the case-only model or to the assumption of

gene-environment independence. On the other hand, the EB procedures and AIC averaging does

not require any prior or tuning parameter specification and is completely data adaptive.

Analytical power calculation is intractable in closed form for the hybrid methods and we resort

to simulation studies to evaluate the current ensemble of methods. We have presented results under

one particular simulation scheme, the trend in the results remain similar for changes in simulation

parameters like the allele frequency, exposure prevalence, number of cases and controls with a

given case:control ratio and number of markers. However, if one changes the parameters of the

mixture distribution for log(θG0E), or uses an alternate form of distribution as elicited in (5), the

FWER comparison may change appreciably.

Issues with lack of coherence and the violation of the likelihood principle: A reviewer has raised

an important point that some of these methods (case-only, two-step) ignore data and still gain

power. This may appear to be counterintuitive to foundational statistical principles and raises the

question: “how can ignoring data lead to better performances than using the entire information

content of a dataset?” The case-only approach makes a strong assumption to gain efficiency and

provides unbiased estimates only under the assumption of gene-environment independence. But

the method is “coherent”in the sense that it can be justified via a proper “likelihood” of the entire

data as long as the independence assumption is valid (11, 12). Note in Figures 1 and 2 (central

block) that when the independence assumption is true, the case-only method that yields the con-

strained MLE is indeed optimal in terms of power. However, as our simulation study has shown

that the gain in power by making this assumption comes at a price of inflated FWER, under depar-

tures from this assumption. If instead of controlling the FWER, one is willing to accept a limited

number of false positives, the case-only type approach may be a reasonable strategy, if we believe
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that only a handful of SNPs in a GWAS may be truly associated with the environmental exposure

under consideration (the situations corresponding to pind ≥ 0.9975 in Table 2).

In contrast, the two-step method essentially divides information in the total likelihood into

two independent components, one used for screening, the other for validation. In general, these

types of two-step screening strategies that partition the total information in the data for a clever

work-around the multiple testing problem, can not be justified based on a likelihood principle

and thus sometimes can face “incoherence” issues. For example, we have noted earlier that in

some situations the power of the two-step method may decrease as the sample size for controls

increase in a study, everything else remaining fixed. Future research is merited to explore methods

that can combine the two independent sources of information used in the two-step procedure in

a more coherent fashion, while retaining the desirable unbiased property that the Type-I error

rate for the procedure overall is not influenced by the underlying gene-environment independence

assumption. Analogous developments have recently taken place for combining within and between

family information in family-based association studies (29).

The current study is certainly not exhaustive. For example, Kooperberg and LeBlanc (30)

proposed another two-step approach to screen for G x G effects by filtering the marginal genetic

associations and restricting interaction testing to this subset. Similar strategies can be adapted

to G x E screening. Murcray et al. (28) propose a hybrid approach that combines the above

Kooperberg-Leblanc marginal screening and the two-step screening of Murcray et al. (15) to

improve upon the original two-step procedure. The new paper (28) addresses some of the critiques

pointed in the discussion of the original paper by Chatterjee and Wacholder (31), specifically the

issue of choosing the optimal α1. These new and improved methods may be included in the future

to expand on the findings of the current study. We primarily considered case-control sampling and

did not consider family-based designs. Gauderman et al. (32) extended the two-step method for G

x E interactions in case-parent trios. It remains an interesting open question to compare the hybrid

methods under studies that include related individuals.

21



To conclude, we find it encouraging that under realistic violations of gene-environment in-

dependence, the hybrid procedures can protect against false positives due to gene-environment

association and yet can gain substantial power over the standard case-control analysis. Moreover,

under a range of realistic scenarios, the hybrid methods are likely to be conservative and further

power gain is possible by using case-only type methods, assuming a moderate number of false pos-

itives could be ruled out in further replication studies. Thus, future analysis of gene-environment

interactions in GWAS is likely to benefit by using the new alternatives.

Software: The R-codes for simulating power for the different tests of interaction is available at

http://www.sph.umich.edu/∼ bhramar/public html. An R-package CGEN for semiparametric ML

and EB procedure is available at http://dceg.cancer.gov/bb/tools/genetanalcasecontdata.
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                          Table 1. Glossary of Methods with Summary Features and Key Attributes 

 

Method Key Advantages Key Limitations 

Case-Control (CC) 

Always maintains Type 1 error rate 
irrespective of gene-environment 
association. Robust. Makes no 
assumption about gene-environment 
independence/dependence. Can provide 
tests for joint effects. 

Lacks power as a screening tool for 
discovery of G x E interaction.   

Case-Only (CO) 
(Piegorsch et al, 1994) 

Valid under G-E independence. 
Provides substantial gain in terms of 
power and efficiency under G-E 
independence. Does not require use of 
control data and tests association of G 
and E in cases. Reasonable control of 
expected number of false positives in 
large-scale testing even with G-E 
association being present for a fraction 
of SNPs. 

Severely inflated Type I error rates 
even with a very small fraction of 
SNPs showing association with 
environmental exposure. Loses 
power advantages if G-E association 
at the causal locus is negative and 
interaction log OR is positive (or vice 
versa). Cannot yield tests for joint 
effects and only provides test for 
interaction.  

Empirical Bayes (EB) 
Empirical Bayes ver 2 
(EB2) 
(Mukherjee and 
Chatterjee, 2008) 

A data adaptive shrinkage approach 
that provides increase in power 
compared to CC and superior control 
of Type 1 error compared to CO. 
Completely data driven and not reliant 
on user-defined choices. Works well 
across all G-E association scenarios. 
Converges to CC in large sample. EB is 
preferred over EB2 in terms of MSE. 
Can test for joint effects. 

Does not strictly adhere to nominal 
Type 1 error level under violation of 
the G-E independence assumption 
and moderate sample sizes. 
Conservative under the 
independence assumption with lower 
than nominal Type-1 error levels. 
Further power-improvements can 
possibly be achieved with more 
aggressive shrinkage weights. 

Model Averaging 
 
Bayesian (BMA) 
(Li and Conti, 2009) 
 
Frequentist (AIC) 
(Introduced in this 
paper for G x E studies) 

Data-adaptive compromise estimators 
that trade-off between bias and 
efficiency and combine CC and CO 
analysis. Similar to the EB approaches 
in terms of operating characteristics. 
AIC uses the normalized model AICs 
as weights and is completely data 
driven. Works well across all G-E 
association scenarios.  Converges to CC 
analysis in large samples. Can test joint 
effects.  

Not guaranteed to maintain nominal 
Type I error levels with moderate 
sample sizes and under violation of 
G-E independence.  Conservative 
under G-E independence. BMA 
depends on prior weight on the case-
control vs. case-only analysis and the 
results are dependent on this choice.  

Two-Step Procedure 
(TS) 
(Murcray et al,2009) 

Uses the independence assumption at 
the first step scan by testing association 
of G and E in cases and controls. 
Filtered markers are followed up by 
case-control test. Provides power gain 
by using a powerful first-step scan and 
reduction in multiple testing burden at 
second step. Always maintains nominal 
Type 1 error level and provides power 
gain in most settings. 

Loses power advantages when G-E 
association is negative and 
interaction positive (or vice versa), a 
situation where case-only also 
suffers. With more controls than 
cases, the power-advantage over one-
step case-control decreases. The 
power advantages depend on the 
choice of the first-step significance 
threshold. Cannot provide tests for 
joint effects. 
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