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ABSTRACT

Motivation: Graphs or networks are common ways of depicting

information. In biology in particular, many different biological

processes are represented by graphs, such as regulatory networks

or metabolic pathways. This kind of a priori information gathered

over many years of biomedical research is a useful supplement to

the standard numerical genomic data such as microarray gene-

expression data. How to incorporate information encoded by the

known biological networks or graphs into analysis of numerical data

raises interesting statistical challenges. In this article, we introduce a

network-constrained regularization procedure for linear regression

analysis in order to incorporate the information from these graphs

into an analysis of the numerical data, where the network is

represented as a graph and its corresponding Laplacian matrix.

We define a network-constrained penalty function that penalizes the

L1-norm of the coefficients but encourages smoothness of the

coefficients on the network.

Results: Simulation studies indicated that the method is quite

effective in identifying genes and subnetworks that are related to

disease and has higher sensitivity than the commonly used

procedures that do not use the pathway structure information.

Application to one glioblastoma microarray gene-expression dataset

identified several subnetworks on several of the Kyoto Encyclopedia

of Genes and Genomes (KEGG) transcriptional pathways that are

related to survival from glioblastoma, many of which were supported

by published literatures.

Conclusions: The proposed network-constrained regularization

procedure efficiently utilizes the known pathway structures in

identifying the relevant genes and the subnetworks that might be

related to phenotype in a general regression framework. As more

biological networks are identified and documented in databases, the

proposed method should find more applications in identifying the

subnetworks that are related to diseases and other biological

processes.

Contact: hongzhe@mail.med.upenn.edu

1 INTRODUCTION

A central problem in genomic research is to identify genes and
pathways involved in diseases and other biological processes

and to build a prediction model for future outcomes by linking

high-dimensional genomic data, such as microarray gene-

expression data, to various clinical outcomes. The problem

can in general be formulated as a prediction problem with n

observations having outcomes y1, y2, . . ., yn and p predictors xij,

i¼ 1, . . . , n, j¼ 1, . . ., p. The outcome can be quantitative or

binary, representing two cases such as ‘diseased’ and ‘healthy’.

Consider the usual linear-regression model where the response

y is predicted by

ŷ ¼ �̂0 þ x1�̂1 þ � � � þ xp�̂p; ð1Þ

where a model-fitting procedure produces the vector of

coefficients �̂ ¼ ð�̂0; � � � ; �̂pÞ. To deal with the problem of

high-dimensionality of the genomic data, many new regularized

methods have been developed for identifying the genes that are

related to clinical phenotypes in regression frameworks,

including lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001),

elastic net (Zou and Hastie, 2005), fused lasso (Tibshirani et al.,

2005) and LARS (Efron et al., 2005), and various extensions

such as adaptive lasso (Zou, 2006) and group lasso (Yuan and

Lin, 2006). Among these procedures, the elastic net regulariza-

tion and the fused-lasso are particularly appropriate for

analysis of genomic data, where the former encourages a

grouping effect and the latter often leads to smoothes of the

coefficient profiles for ordered covariates.

One limitation of all these popular approaches is that the

methods are developed purely from computational or algo-

rithmic points without utilizing any prior biological knowledge

or information. For many complex diseases, especially for

cancers, much biological knowledge or pathway information is

available from many years of intensive biomedical research.

The large body of information is now available primarily

through databases on different aspects of biological systems.

Such databases are often called metadata, which means data

about data. Some well-known pathway databases include

KEGG, Reactome (www.reactome.org), BioCarta (www.bio

carta.com) and BioCyc (www.biocyc.org). Of particular interest

are gene-regulatory pathways that provide regulatory relation-

ships between genes or gene products. These pathways are often

interconnected and form a network, which can be represented

as graphs, where the vertices of the graphs are genes or gene

products and the edges of the graphs indicate some regu-

latory relationship between the genes. This kind of a priori*To whom correspondence should be addressed.
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information is a useful supplement to the standard numerical

data coming from an experiment. Incorporating the informa-

tion from these graphs into an analysis of the numerical data is

a non-trivial task that is generating increasing interest. Several

statistical methods have been developed to utilize the pathways

or network information, including the hidden Markov-random

field approaches to utilize the network structures in identifying

the differentially expressed genes (Wei and Li, 2007, 2008;

Wei and Pan, 2008). Rahnenführer et al. (2004) demonstrated

that the sensitivity of detecting relevant pathways can be

improved by integrating information about pathway topology.

However, none of these methods were developed in the frame-

work of regression analysis.

In this article, we propose to develop a network-constrained

regularization procedure for fitting linear-regression models

and for variable selection, where the predictors in the regression

model are genomic data with graphical structures. The goal of

such a procedure is to identify genes and subnetworks that are

related to diseases or disease outcomes. In order to achieve

automatic variable selection and to account for the network

structures, we define a network-constrained penalty that is a

combination of the lasso penalty and a penalty induced by the

Laplace matrix of the graph. Such a procedure can select

subgroups of correlated features in the network, thus enjoying

global smoothness over the network. Our proposed procedure,

which includes the elastic net regulation procedure as a special

case, is similar in spirit to the fused-lasso (Tibshirani et al.,

2005). It induces smoothed coefficient profiles, which can result

in more interpretable identification of genes and subnetworks

that are related to the responses in the context of known

biology. However, it is different from fused-lasso in that our

procedure does not requires that the neighboring genes to have

the same coefficients and the network-structure is explicitly

modeled using the Laplacian matrix of the graph.
The rest of the article is organized as follows. We first define

the network-constrained regularization procedure for linear-

regression models and present an efficient algorithm for

estimating the parameters. We then provide the grouping

property and the asymptotic theorem for the parameter

estimates and simulation results. We then present an applica-

tion of the proposed methods to an analysis of a microarray

gene-expression dataset of glioblastoma. Finally, we present a

brief discussion of the results.

2 NETWORK-CONSTRAINED REGULARIZATION
FOR LINEAR MODELS

Suppose that the dataset contains n observations and p

predictors, with response vector y¼ (y1, . . . ,yn)
T and design

matrix X¼ (x1|. . .|xp), where xj¼ (x1j, . . . , xnj)
T, j¼ 1, . . . , p. We

also assume that the predictors are standardized and the

response is centered so that

Xn
i¼1

yi ¼ 0;
Xn
i¼1

xij ¼ 0 and
Xn
i¼1

x2ij ¼ 1 for j ¼ 1; . . . ; p:

Consider a network that is represented by a weighted graph

G¼ (V, E, W), where V is the set of vertices that correspond to

the p predictors, E¼ {u� v} is the set of edges indicating that

the predictors u and v are linked on the network and there is an
edge between u and v and W is the weights of the edges, where
w(u, v) denotes the weight of edge e¼ (u� v). In applications,
the edge weight can be used to measure uncertainty of the edge

between two vertices. Define the degree of the vertex v as
dv¼

P
u�v w(u, v). We say u is an isolated vertex if du¼ 0.

Following Chung (1997), we define the normalized Laplacian

matrix L for G with the uvth element defined by

Lðu;vÞ ¼
1� wðu;vÞ=du if u ¼ v and du 6¼ 0;
�wðu;vÞ=

ffiffiffiffiffiffiffiffiffi
dudv

p
if u and v are adjacent;

0 otherwise:

8<
:

This matrix L is always non-negative definite and its
corresponding set of the eigenvalues or spectrum reflects

many properties of the graph (Chung, 1997).
For any fixed non-negative �1 and �2, we define the

network-constrained regularization criterion

Lð�1; �2; �Þ ¼ ðy� X�ÞTðy� X�Þ þ �1j�j1 þ �2�
TL�; ð2Þ

where j�1j ¼
Pp

j¼1 j�jj is the L1-norm, which induces a sparse
solution (Tibshirani, 1996), and the second term �T L� induces

a smooth solution of � on the network. Note that L is non-
negative definite and can be written as L¼SST, where Sp�m is
the matrix in which rows are indexed by the vertices and in

which columns are indexed by the edges of G such that each
column corresponding to an edge e¼ {u, v} has an entryffiffiffiffiffiffiffiffiffiffiffiffiffi
wðu;vÞ

p
=
ffiffiffiffiffi
du

p
in the row corresponding to u, an entry

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wðu;vÞ

p
=
ffiffiffiffiffi
dv

p
in the row corresponding to v and has zero

entries elsewhere. Based on simple algebra, we can see that �T

L� can be written as

�TL� ¼
X
u�v

�uffiffiffiffiffi
du

p �
�vffiffiffiffiffi
dv

p

� �2

wðu;vÞ;

where
P

u�v denotes the sum over all unordered pairs {u, v} for

which u and v are adjacent on the network. Equation (2) can
then be rewritten as

Lð�1; �2; �Þ ¼ ðy� X�ÞTðy� X�Þ þ �1
Xp
j¼1

j�jj

þ �2
X
u�v

�uffiffiffiffiffi
du

p �
�vffiffiffiffiffi
dv

p

� �2

wðu;vÞ; ð3Þ

and we define the network-constrained regularized estimator �̂
as the minimizer of Equation (3), i.e.

�̂ ¼ argmin�fLð�1; �2; �Þg: ð4Þ

Let �¼ �2/(�1þ �2), then �̂ in Equation (4) is equivalent to

the solution to the optimization problem

�̂ ¼ argmin�fjy� X�j2g;

subject to ð1� �Þ
Xp
j¼1

j�jj þ �
X
u�v

�uffiffiffiffiffi
du

p �
�vffiffiffiffiffi
dv

p

� �2

wðu;vÞ � t

for some t. We call the function

ð1� �Þ
Xp
j¼1

j�jj þ �
X
u�v

fð�u=
ffiffiffiffiffi
du

p
� �v=

ffiffiffiffiffi
dv

p
Þ
2wðu;vÞg
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the network-constrained penalty, in which the second term

imposes smoothness of the parameters � over the network via

penalizing the weighted sum of squares of the scaled difference

of the coefficients between neighbor vertices in the network. We

re-scale the � coefficients in order to account for different

degrees of the vertices on the network, allowing the genes with

more connections (e.g. the hub genes) to have larger coefficients

so that small changes of expressions of such genes can lead to

large changes in the response. The biological motivation of this

penalty is that we expect the genes that are linked on the

networks to have similar functions and therefore smoothed-

regression coefficients. Note that we do not require these

coefficients to be the same or have the same signs. If the weight

w(u, v) represents the probability that vertices u and v are

connected, we impose smoothness over these two vertices with

probability w(u, v). This provides one way of accounting for

uncertainty of the network.

Note that when �¼ 0, the network-constrained penalty

reduces to the lasso, a singular penalty function at zero and

for all �2 (0, 1), it is strictly convex, and hence retains the good

properties of both sparsity and smoothness. When L¼ I, the

network-constrained penalty becomes the elastic net penalty of

Zou and Hastie (2005). Figure 1 shows contours for four

penalty functions for a bivariate argument �¼ (�1, �2), where
�¼ 0.3 for the elastic net, fused lasso and the network-

constrained penalties. Like the fused lasso penalty, one

important feature of the network-constrained penalty is that

it is not symmetric over the x-axis or y-axis; therefore, �
parameters of different signs will have different penalties.

2.1 Solution and algorithm

Following Zou and Hastie (2005), we develop a similar efficient

computation procedure to solve the network-constrained

regularization problem. As shown in the following lemma,

minimizing Equation (3) is equivalent to solving a lasso-type

optimization problem, thus enjoying the computational advan-

tage of the lasso.

LEMMA 1. Given dataset (y, X) and two fixed scalars (�1, �2),
define an artificial dataset (y, X ) by

X �
ðnþpÞ�p ¼ ð1þ �2Þ

�1=2 Xffiffiffiffiffi
�2

p
ST

� �
;Y �

ðnþpÞ ¼
Y
0

� �
;

where L¼U�UT and S¼U�1/2. Let � ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
and

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
�. Then the network-constrained criterion can be

written as

Lð�1; �2; �Þ ¼ Lð�; ��Þ ¼ ðy� � X���Þ
T
ðy� � X���Þ þ �

Xp
j¼1

j��
j j

Let �̂� be the solution to the above lasso problem, i.e,

�̂� ¼ argmin�� fLð�; �
�Þg;

then the solution to (3) becomes

�̂ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p �̂�: ð5Þ

Following Zou and Hastie (2005), to correct for potential

bias due to double shrinkage, we adjust the network-

constrained estimate �̂ by a factor 1þ �2. Lemma 1 indicates

that the network-constrained penalty problem can be reformu-

lated as an equivalent lasso-type problem by creating an

augmented dataset, thus enjoying the automatic variable

selection property. Note that this augmented dataset increases

the sample size from n to (nþ p), which means that this model

can potentially select all p variables even when n� p. Similar to

the elastic net, this feature overcomes the limitation that lasso

can select at most n (when n5p) variables before it saturates. In

the next section we will show that the network-constrained

criterion can perform the grouped variables selection procedure

in a fashion similar to the elastic net.
Finally, if only training samples are available, 10-fold cross-

validation (CV) can be used for estimating the prediction error

and for comparing models. For each fixed �2, we can use the

number of steps for the lasso solution of the optimization

problem (1) as the second tuning parameter besides �2, which is

selected by 10-fold CV. The chosen �2 is the one giving the

smallest CV error.

3 PROPERTIES OF THE PROPOSED
PROCEDURE

We present several properties related to the proposed network-

constrained regularization procedure, including the grouping

effect and the asymptotic property in the case when p is fixed

and n!1.

3.1 The grouping effect

We show in this section that the estimates of network-

constrained regularization can lead to desirable grouping

effects for predictors that are correlated or linked on the

network. The following Lemma, which is the direct result from

the Lemma 2 of Zou and Hastie (2005) since the network-

constrained loss function is a convex function, guarantees the

lasso elastic net

network constrained fused lasso

Fig. 1. Contours for four penalty functions for a bivariate argument

�¼ (�1, �2). The upper left shows contours of the lasso penalty. The

upper right shows contours of the elastic net penalty. The lower left

shows the contours of the network-constrained penalty and the lower

right shows the contours of the fused lasso penalty, both for �¼ 0.3.
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grouping effect for network-constrained penalization regression
in the situation with identical predictors.

LEMMA 2. Assume that �̂ is determined by equation (5), also
assume that xi¼ xj, then �̂i ¼ �̂j, for any �240.

If we consider the simple case when the two genes are linked
only to each other on the network, the following theorem
provides an upper bound on the difference of the estimates

from the network-regularization procedure.

THEOREM 1. Given dataset (y, X ) and two fixed scalars (�1, �2),
the response y is centered and predictors X are standardized. Let
�̂ð�1; �2Þ be the solution to Equation (4). Suppose that
�̂ið�1; �2Þ�̂jð�1; �2Þ > 0, and the two vertices u and v are only

linked to each other on the network, du¼ dv¼w(u,v). Define

D�1; �2 ðu;vÞ ¼
1

jyj1
j�̂uð�1; �2Þ � �̂vð�1; �2Þj;

then

D�1; �2 ðu;vÞ �
1

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �Þ

p
ð6Þ

where jyj1 ¼
Pn

i¼1 jyij and � ¼ xTu xv is the sample correlation.

The proof of this theorem is similar to that in Zou and Hastie
(2005) and can be found in Li and Li (2007). The upper bound
in (6) gives a quantitative description for the grouping effect of

the network-constrained regularization, which is half of the
upper bound in the elastic net model. In a pathway, for two
adjacent vertices i and j satisfying di¼ dj¼w(i, j ), if xi and xj are
highly correlated, i.e., �8 1, then the difference between the

coefficient paths of features i and j is almost 0.

3.2 Asymptotic property

In this section, we derive asymptotic results for the estimates

from network-constrained penalization under the assumption
that p is fixed and the sample size n!1. The result and
proof is similar in spirit to the estimates based on the fused
lasso (Tibshirani et al., 2005). Consider the following linear-

regression model,

y ¼ x1�1 þ � � � þ xp�p þ �;

where � is the error term of mean 0 and variance �2. For a given
n i.i.d. observations, recall that the network-constrained
penalized least squares criterion is

Xn
i¼1

ðyi � xi
T�Þ2 þ �ð1Þn

Xp
j¼1

j�jj þ �ð2Þn

X
u�v

�uffiffiffiffiffi
du

p �
�vffiffiffiffiffi
dv

p

� �2

wðu;vÞ;

where the Lagrange multipliers �ð1Þn and �ð2Þn are functions of the
sample size n. We have the following asymptotic theorem for
the estimates:

THEOREM 2. If �ðlÞn =
ffiffiffi
n

p
! �ðlÞ0 � 0 for l¼ 1, 2 and

C ¼ limn!1

1

n

Xn
i¼1

xix
T
i

 !

is non-singular, then ffiffiffi
n

p
ð�̂n � �Þ !d argminðVÞ

where

VðuÞ ¼ �2uTWþ uTCu

þ �ð1Þ0

Xp
j¼1

fujsgnð�jÞIð�j 6¼ 0Þ þ jujjIð�j ¼ 0Þg

þ 2�ð2Þ0

X
i�j

�iffiffiffiffi
di

p �
�jffiffiffiffi
dj

p
 !

uiffiffiffiffi
di

p �
ujffiffiffiffi
dj

p
 !

wði; jÞ;

and

W � Nð0; �2CÞ:

The proof of this theorem is can be found in Li and Li (2007).
For the special case when p¼ 2 and w(i, j)¼ 1, it is easy to check
that the estimates follow a bivariate normal distribution.

4 SIMULATION STUDIES

To demonstrate the performance of the proposed network-
constrained regularization procedure, we first simulated the

following simple regulatory network: suppose that we have 200
transcription factors (TFs) and each regulates 10 genes. The
resulting network includes 2200 genes and edges between each

of the TFs and the 10 genes that they regulate. We assume that
four TFs and the genes that they regulated are related to
response Y. For the first model, we assume that the data are

simulated from the following models:

	 y¼X�þ " and

� ¼ ð5;
5ffiffiffiffiffi
10

p ; . . . ;
5ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

;�5;
�5ffiffiffiffiffi
10

p ; . . . ;
�5ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

;

3;
3ffiffiffiffiffi
10

p ; . . . ;
3ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

;�3;
�3ffiffiffiffiffi
10

p ; . . . ;
�3ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
10

; 0; . . . ; 0Þ;

where " � Nð0; �2
e Þ.

	 The expression levels for the 200 TFs follow standard

normal, XTFj
� Nð0;1Þ

	 The expression levels of the TF and the gene that it
regulates are jointly distributed as a bivariate normal with
a correlation of 0.7. This implies that conditioning on the
expression level of the TF, the expression level of the gene

it regulates, follows a Nð0:7 � XTFj
; 0:51Þ.

For the second model, the expression levels are simulated in
the same way as for Model 1, except that we assume that

� ¼ ð5;
�5ffiffiffiffiffi
10

p ;
�5ffiffiffiffiffi
10

p ;
�5ffiffiffiffiffi
10

p ;
5ffiffiffiffiffi
10

p ; . . . ;
5ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
7

;

� 5;
5ffiffiffiffiffi
10

p ;
5ffiffiffiffiffi
10

p ;
5ffiffiffiffiffi
10

p ;
�5ffiffiffiffiffi
10

p ; . . . ;
�5ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
7

;

3;
�3ffiffiffiffiffi
10

p ;
�3ffiffiffiffiffi
10

p ;
�3ffiffiffiffiffi
10

p ;
3ffiffiffiffiffi
10

p ; . . . ;
3ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
7

;

� 3;
3ffiffiffiffiffi
10

p ;
3ffiffiffiffiffi
10

p ;
3ffiffiffiffiffi
10

p ;
�3ffiffiffiffiffi
10

p ; . . . ;
�3ffiffiffiffiffi
10

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
7

; 0; . . . ; 0Þ
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This model assumes that genes that are regulated by the

same TF can have both positive and negative effects on the

response Y.
The third model is similar to Model 1, except that we replace

the
ffiffiffiffiffi
10

p
in the denominators in � with 10. The fourth model is

similar to Model 2, which assumes that genes that are regulated

by the same TF can have both positive and negative effects on

the response Y. For this model, we replace the
ffiffiffiffiffi
10

p
in the

denominators in � with 10.

For each of these four models, the noise variance was chosen

to be �2
e ¼ ð

P
j �

2
j Þ=4 so that the signal-to-noise ratio was 21.68,

7.34, 10.70 and 5.82 for Models 1, 2, 3 and 4, respectively. We

simulated a training set and an independent test set with sample

sizes of 100 for both sets. A 10-fold CV was conducted on the

training dataset to select the tuning parameters and then the

parameter estimates were obtained using all of the training

dataset. For each model, we repeated the simulations 50 times.

We then computed the prediction mean-squared error (PMSE)

on the test dataset. In addition, we also calculated both the

sensitivity and specificity for each procedure. Table 1 sum-

marizes the simulation results for these four different models.

For all four models, our proposed network-constrained

procedure gave much smaller or comparable PMSEs than the

lasso or elastic net regressions. The network-constrained

procedure also resulted in much higher sensitivity in identifying

the relevant genes. The specificity is somewhat reduced, but not

greatly as compared to the gains in sensitivity.

5 APPLICATION TO ANALYSIS OF A
MICROARRAY GENE-EXPRESSION
DATASET GLIOBLASTOMA

We demonstrate the proposed methods by analyzing a

microarray gene expression study ofglioblastoma by Horvath

et al. (2006). Glioblastoma is the most common primary

malignant brain tumor of adults and one of the most lethal of

all cancers. Patients with this disease have a median survival of

15 months from the time of diagnosis despite surgery, radiation

and chemotherapy. Global gene-expression data from two

independent sets of clinical tumor samples of n¼ 55 and n¼ 65

were obtained by high-density Affymetrix arrays. The gene-

expression datasets were normalized using the RMA methods

(Irizarry et al., 2003). Among the first set of 55 patients, five

were alive at the last followup and four were alive for the

second set. In our analysis, we built a predictive model using

the first set of 50 patients with time to death information

and tested the predictive performance using the second set

of 61 patients with time to death information. We used the

logarithm of time to death as the response variable in our

analysis.
To perform network-based analysis of the data, we merged

the gene-expression data with the 33 KEGG regulatory

pathways and identified 1533 genes on the Hu133A chip that

can be found in the 1668-node KEGG network of 33 pathways.

Instead of considering all the genes on the Hu133A chip, we

only focused analysis on these 1533 genes and aimed to identify

which genes and which subnetworks of the KEGG network of

33 pathways are related to survival times from brain cancer.

Table 2 shows the results from three different procedures in

terms of prediction errors in the test datasets and the number of

genes selected by these procedures in the training set. Both the

elastic network and the network-constrained regularization

procedures resulted in similar and slightly smaller prediction

errors than lasso. However, the network-constrained procedure

selected more genes than the lasso or elastic net, about half

of these genes (44 genes) are connected on the KEGG

pathways. As a comparison, the lasso identified three pairs of

connected genes (ITGB7� SYNJ2, PCK1� PTEN and

FOXO1A�PRKCG), and the elastic net identified only one

pair of connected genes (PRKCG� ITGB7). These genes do

not provide much information on which pathways/subnetworks

might be related to survival from glioblastoma. Finally, the

genes identified by the network-constrained procedure include

all the genes identified by the elastic network and lasso.

Results from our network-constrained analysis indeed suggest

that several pathways might be related to time to death from

glioblastoma. Figure 2 shows the connected subnetworks of

KEGG that were identified by the proposed network-

constrained procedure. The largest subnetwork includes genes

involving the MAPK signaling pathway (e.g. genes PLCE1,

PRKCG,MAP2K7, ZAK, KBKG, TRAF2 andMAPK11) and

its connected pathways, such as the PI3K/Akt signaling

pathway (e.g. genes GYS1) and its target FOXO1A. Of

particular interest is the identification of the FOXO1A that

might be related to risk of death from glioblastoma. FOXO1A is

Table 1. Results of the simulation study, sensitivity, specificity and the

prediction mean-squared-errors (PMSE) are calculated based on 50

simulations, where standard errors are given in parentheses

Sensitivity Specificity PMSE

Model Lasso Enet Net Lasso Enet Net Lasso Enet Net

1 0.482 0.471 1.00 0.996 0.996 0.906 90.2 77.0 46.9

(0.06) (0.06) (0.00) (0.002) (0.002) (0.04) (17.4) (14.7) (7.3)

2 0.351 0.332 0.766 0.993 0.995 0.966 90.1 86.6 81.3

(0.05) (0.003) (0.06) (0.002) (0.003) (0.007) (14.18) (13.6) (12.0)

3 0.504 0.668 1.00 0.996 0.993 0.909 34.4 32.9 27.5

(0.11) (0.13) (0.00) (0.002) (0.002) (0.004) (6.67) (6.41) (4.37)

4 0.455 0.413 0.940 0.996 0.997 0.943 34.9 32.3 33.6

(0.11) (0.11) (0.03) (0.002) (0.002) (0.01) (6.06) (5.79) ( 5.28)

Enet: the elastic net of Zou and Hastie (2005); Net: the proposed network-

constrained regulation procedure.

Table 2. Results from analysis of the glioblastoma dataset, where the

test set mean-squared errors are calculated based on an independent set

of 61 glioblastoma patients

Method Test mean-squared

error

Number of

genes selected

lasso 1.18 23

elastic net 1.02 5

network-constraint 1.06 95
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an important TF involved in the regulation of a range of critical
processes in mammalian cells, including proliferation, differen-

tiation, apoptosis, metabolism and responses to oxidative stress

and DNA damage (Accili and Arden, 2004). The prognostic

relevance of MAPK expression in glioblastoma multiforme was

reported in Mawrin et al. (2003) and Pelloski et al. (2006).

The second subnetwork includes four genes, PTEN, PRKG2,

MAPK8IP2 and ELK1. Li et al. (1997) describe a phosphatase

and tensin homolog deleted on the chromosome 10 (PTEN)

protein that is mutated in a number of human cancers including
those from breast, brain and prostate. This protein interacts

with actin filaments and is a putative protein tyrosine

phosphatase, and acts as a tumor suppressor, at least in part,

by antagonizing phosphoinositide 3-kinase (PI3K)/Akt signal-

ing. Uht et al. (2007) suggested that PKC-eta-mediated

glioblastoma proliferation involves MEK/mitogen-activated

protein (MAP) kinase phosphorylation, activation of ERK

and subsequently of Elk-1. The MAPK8IP2 (mitogen-activated

protein kinase 8 interacting protein) is closely related to

MAPK8IP1/IB1/JIP-1, a scaffold protein that is involved in

the c-Jun amino-terminal kinase signaling pathway. This

protein is expressed in brain and pancreatic cells and has

been shown to interact with, and regulate the activity of

MAPK8/JNK1 and MAP2K7/MKK7 kinases. This protein

thus is thought to function as a regulator of signal transduction

by protein kinase cascade in brain (Uht et al., 2007). Finally,

the gene PRKG2, encoding the cGMP-dependent protein

kinase II, was targeted by insertions in brain tumors.

Overexpression of PRKG2 in human glioma cell lines led to a

reduction in colony formation, cell proliferation and migration

(Uht et al., 2007).

Among the small subnetworks of two genes, their involvement
in glioblastoma has also been reported in the literature for some

of the pairs. Perego et al. (2002) showed that the invasive

behavior of glioblastoma cell lines is associated with altered

organization of the cadherin-catenin adhesion system, where the

catenin (cadherin-associated protein), beta 1 (CTNNB1) protein

is a major component. Leach et al. (1996) suggested that a

blockade of the inhibitory effects of CTLA-4 can allow for, and

potentiate, effective immune responses against tumor cells. One

reason for the poor immunogenicity of many tumors may be that

they cannot provide signals for the CD28-mediated costi-

mulation necessary to fully activate T cells. It has recently

become apparent that CTLA-4, a second counter receptor for

the B7 family of costimulatory molecules, is a negative regulator

of T-cell activation. In addition, the family of more than 20

claudin (CLDN) proteins comprises one of the major structural

elements within the apical tight junction apparatus, a dynamic

cellular nexus for maintenance of a luminal barrier, paracellular

transport, and signal transduction. Loss of normal tight junction

functions constitutes a hallmark of human carcinomas. CLDN1

may support tumor suppressive functions in tissues such as the

brain, where dramatic loss of expression has been demonstrated

in glioblastoma multiforme (Swisshelma et al., 2005).
In summary, these results indicate that by considering the

KEGG pathways, our proposed methods can identify subnet-

works that are potentially relevant to time to death from

glioblastoma. Some of these subnetworks are well-supported by

previously published work. In contrast, the genes identified by

lasso or the elastic network cannot suggest the involvement of

any possible pathways that are related to the risk of death from

glioblastoma.

Fig. 2. Subnetworks identified by the network-constrained regulation method that might be related to survival time from glioblastoma based on a

sample of 50 patients.
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6 DISCUSSION

We have introduced a network-constrained regularization

procedure for linear models in order to incorporate information

coded in known genetic networks. Such a regularization

procedure can also be regarded as a penalized least-squared

estimation where the penalty is defined as a combination of

the L1 penalty and L2 penalty on degree-scaled differences of

coefficients between variables linked on the networks. Such a

penalty induces both sparsity and smoothness with respect

to the network structure of the regression coefficients. Our

proposed network-constrained regularization procedure is

similar in spirit to the fused lasso (Tibshirani et al., 2005),

both of which try to smooth the regression coefficients in

certain ways. However, the fused lasso does not utilize prior

genetic network information; instead, it first clusters genes

to provide a gene order for the fusion process. Second, instead

of using L2-norm on the differences of the coefficients of

the nearby genes, the fused lasso uses the L1-norm on the

differences, which tends to lead to the same regression

coefficients for genes that are nearby. However, when the

gene neighbors are defined by the prior network information,

we should expect that the corresponding coefficients are similar

but not the same. So for the settings that we consider in this

article, it makes more sense to use the L2-norm on the scaled

coefficients in our definition of the network penalty. It is

important to note that our proposed network-constraint

regularization procedure does not require the coefficients of

the genes that are linked on the network to have the same

values or even the same signs. As shown in our simulations

(Models 2 and 4), even when the coefficients of the neighboring

genes are different, the proposed procedure still performs well

in terms of the sensitivity and the prediction errors.
We used the normalized Laplacian L of the graph G in our

definition of the smoothness penalty. Alternatively, one may

use the combinatorial Laplacian of graph G (Chung, 1997),

defined by

Lðu;vÞ ¼

du � wðu;uÞ if u ¼ v and du 6¼ 0;

�wðu; vÞ if u and v adjacent;

0 otherwise;

8><
>:

in the definition of the smoothness penalty. It is easy to verify

that �T L�¼
P

u�v (�u��v)
2 w(u,v). This penalty may also make

biological sense, however, it does not account for the variable

degrees of the genes on the network. In addition, the matrix L is

not always non-negative definite and cannot always be

decomposed similarly as the L matrix in Lemma 1. The

consequence of this fact is that the regularization problem

cannot always be converted into an efficient lasso-type solution

and some new optimization procedure such as the coordinate

descent algorithm (Wu and Lange, 2008) has to be developed.

It would be interesting to compare the performance of these

two different definitions of the smoothness penalty.
In this article, we analyzed the glioblastoma gene-expression

data using KEGG pathways and aimed to identify the KEGG

pathways or subnetworks that are related to time to death from

the cancer. However, the proposed methods can be applied to

any other networks of pathways. An important question is

to decide which pathways one should use in analyzing the

gene-expression data. This partially depends on the scientific
questions to be addressed. If an investigator is only interested in

a particular pathway, the proposed method can be applied to
that particular pathway. If an investigator is interested in fully

exploring his/her data and all available pathways, one should
use a large collection of pathways, e.g. the pathways collected

by Pathway Commons (http://www.pathwaycommons.org/pc/)

or build the network of pathways using some existing network
construction tools. It should also be noted that our proposed

methods can include all the genes probed on microarray by
simply adding isolated nodes to the graphs.

Another related issue is that our knowledge of pathways is
not complete and can potentially include errors or misspecified

edges on the networks. One possible solution to this problem is
to first check the consistency of the pathway structure using

the data available. For example, if the correlation in gene-

expression levels between two neighboring genes is very small,
we may want to remove the edge from the pathway structure.

Alternatively, one can build a set of new pathways using
various data sources and compare these pathways with those in

the pathway databases in order to identify the most plausible
pathways for use in the proposed method. Important future

research will be to assess how sensitive the results are to

misspecification of the network structures. Note that our
proposed smoothness penalty is equivalent to imposing a

graph-based Markov-random field prior on the regression
coefficients. For the problem of identifying differentially

expressed genes, recently studies have indicated that the results

are not too sensitive to misspecification of the network
structures (Wei and Li, 2007; Wei and Li, 2008; Wei and Pan,

2008). Since majority of the genes on the network are expected
not to be associated with the response and therefore to have

zero coefficients, we expect that only misspecification of the
true response-related subnetworks will have great effects on

the results. Finally, we presented the asymptotic property of the

network-constrained estimates of the regression parameters for
the scenario when p is fixed and n!1. Interesting future

research will be to derive the asymptotic property of the
estimates when p¼ pn!1 as n!1.

The proposed methods can be extended in several ways.
First, the methods can be similarly extended to other types of

response variables such as binary or survival responses. Second,
many genetic networks are given by directed graphs. It is

possible to extend our method to directed networks by using

the Laplacian matrix for directed graphs (Chung, 1997) in our
definition of the network-constraint penalty.
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