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ABSTRACT
Motivation: Next-generation sequencing has become an important
tool for genome-wide quantification of DNA and RNA. However,
a major technical hurdle lies in the need to map short sequence
reads back to their correct locations in a reference genome. Here
we investigate the impact of SNP variation on the reliability of
read-mapping in the context of detecting allele-specific expression
(ASE).
Results: We generated sixteen million 35 bp reads from mRNA of
each of two HapMap Yoruba individuals. When we mapped these
reads to the human genome we found that, at heterozygous SNPs,
there was a significant bias towards higher mapping rates of the
allele in the reference sequence, compared to the alternative allele.
Masking known SNP positions in the genome sequence eliminated
the reference bias but, surprisingly, did not lead to more reliable
results overall. We find that even after masking, ∼5-10% of SNPs still
have an inherent bias towards more effective mapping of one allele.
Filtering out inherently biased SNPs removes 40% of the top signals
of ASE. The remaining SNPs showing ASE are enriched in genes
previously known to harbor cis-regulatory variation or known to show
uniparental imprinting. Our results have implications for a variety of
applications involving detection of alternate alleles from short-read
sequence data.
Availability: Scripts, written in Perl and R, for simulating short reads,
masking SNP variation in a reference genome, and analyzing the
simulation output are available upon request from JFD. Raw short
read data were deposited in GEO (http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE18156.
Contact: jdegner@uchicago.edu,

marioni@uchicago.edu,
gilad@uchicago.edu,
pritch@uchicago.edu

1 INTRODUCTION
There has been a great deal of recent interest in identifying genes
for which the two alleles in an individual are expressed at different
rates (Yan et al., 2002; Knight, 2004; Ronald et al., 2005; Wittkopp
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et al., 2008; Milani et al., 2009). At least two important biological
mechanisms can be uncovered through the identification of allele-
specific expression (ASE). For example, studies investigating ASE
have uncovered both genes harboring cis-regulatory variation and
imprinted genes that are epigenetically silenced in one copy but not
the other (Serre et al., 2008; Wang et al., 2008; Babak et al., 2008).

Recently-developed sequencing technologies such as the Illumina
Genome Analyzer, Roche 454 GS FLX sequencer, and Applied
Biosystems SOLiD sequencer have the potential to greatly improve
our ability to detect ASE and to improve our understanding of
cis-regulatory variation and epigenetic imprinting. However, the
detection of ASE depends critically on accurate mapping of short
reads in the presence of sequence variation. Here, using RNA-
Seq data from two HapMap individuals, along with simulation
experiments, we characterize the effects of individual SNPs on the
quantification of expression levels. Our results are also relevant
to other applications of next-generation sequencing, such as SNP
discovery, expression QTL mapping, and detection of allele-specific
differences in transcription factor binding.

2 METHODS

2.1 RNA isolation and sequencing
Total RNA from two HapMap Yoruba lymphoblastoid cell lines (GM19238
and GM19239) was extracted using an RNeasy Mini Kit (Qiagen) and
assessed using an Agilent Bioanalyzer. mRNA was then isolated with
Dyna1 oligo-dT beads (Invitrogen) from 10µg of total RNA. The mRNA
was randomly fragmented using the RNA fragmentation kit from Ambion.
First-strand cDNA synthesis was performed using random primers and
SuperScriptII reverse-transcriptase (Invitrogen). This was followed by
second-strand cDNA synthesis using DNA Polymerase I and RNaseH
(Invitrogen).

The short cDNA fragments from each sample were prepared into a library
for Illumina sequencing. Briefly, the Illumina adaptor was ligated to the
ends of the double-stranded cDNA fragments and a 200 bp size-selection
of the final product was performed by gel-excision, following the Illumina-
recommended protocol. 200 bp cDNA template molecules with the adaptor
attached were enriched by PCR to create the final library. Sequencing was
performed on the Illumina Genome Analyzer II for 36 cycles (resulting
in 35 bp reads after discarding the final base). The images taken during
the sequencing reactions were processed using Illumina’s standard analysis
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P−value cutoff allowing 1% FDR

Fig. 1. RNA-Seq data show a higher variance in the relative expression
of each allele and a skew toward high expression of the reference
allele compared to the predicted distribution. (A) Estimated probability
densities for the proportion of reads matching the reference allele (i.e.,
the allele given in the reference human genome sequence) at heterozygous
SNPs in exons. Solid lines correspond to the observed distributions for
known heterozygous SNPs with more than 20 reads in two Yoruba HapMap
individuals. The dashed line shows the predicted distribution without
reference bias or ASE. (B) QQ-plots of P-values for one-sided tests that
expression of the reference allele is either higher (circles) or lower (triangles)
than the non-reference allele. The horizontal dashed line is the P-value
threshold corresponding to a false discovery rate of 1.0%. Notice the
enrichment of very significant P-values for over-expression of reference
alleles.

pipeline (v.1.3.2). Two lanes of a flow-cell were used for each individual
yielding 15,579,717 and 16,780,153 total sequence reads for GM19238 and
GM19239, respectively.

2.2 Read-mapping and binomial tests
Reads were initially mapped to the human genome (build 36.3) with MAQ
(MAQ v. 0.7.1, Li et al., 2008), using default parameters, excluding random
sequence fragments and masking one copy of the pseudo-autosomal regions.
In particular, reads were assigned to the location in the genome with the best
match, provided that the number of mismatching bases was < 3 and that the
sum of quality scores at mismatched bases was < 70. Reads that mapped to
multiple locations equally well according to MAQ’s quality-aware alignment
algorithm (i.e., had mapping quality scores of 0) were discarded.

At each exonic SNP that was heterozygous according to the HapMap
genotype data, we quantified the amount of expression from each allele by
counting the number of times each allele was observed (exons defined by
RefSeq, Pruitt et al. (2007); HapMap SNPs and genotypes from release r22,
International HapMap Consortium (2005, 2007)). Overall, less than 1.0% of
all reads had a base-call at a HapMap SNP position that was inconsistent
with the known genotype of the individual and these reads were discarded.

To study the effect of allelic differences between the sequence reads
and the reference genome they were mapped against, we classified all read
calls in the data-set as matching the reference allele or the non-reference
allele. For each individual, in order to include a SNP in our analysis,
we required that at least 20 reads mapped to that SNP position in that
individual. The two sequenced individuals were analyzed independently
such that two separate tests were performed if both individuals had greater
than 20 reads overlapping the same SNP. For each individual, we compared
the observed distribution of the proportion of mapped reads coming from the
reference allele to the expected distribution assuming symmetric binomial
sampling. Two one-sided binomial tests were applied to each SNP, to test the
complementary alternative hypotheses that expression of the reference allele
was greater than or less than 0.5. False discovery rate (FDR) corrections
were applied across both individuals to correct for multiple testing such that
we allowed an overall FDR of 1%, 5%, and 10%. Results in the main text
correspond to an FDR of 1% while results corresponding to an FDR of 5%
and 10% are given in Tables S2-S4

Additionally, in an attempt to correct for the bias toward preferentially
mapping the reference allele, we created a copy of the human genome in
which all SNP positions were masked. SNP locations were obtained from
the February 2009 release of the 1000 Genomes project (Kaiser (2008);
www.1000genomes.org). Since currently available mapping algorithms do
not allow for ambiguity codes in the reference sequence, masking was
accomplished by changing the nucleotide at each SNP position to a third
allele that is not known to segregate in humans (e.g., changing A→T in the
reference sequence at the position of an A/G SNP).

2.3 Simulations
To better understand the bias toward the reference allele and the amount
of this bias that could be attributed to read-mapping, we simulated 1.8
million 35 bp reads. Three simulated sets of reads were created that, at
each SNP, consisted of equal numbers of reference and non-reference alleles
(Figure S1). Each simulated set started with all 35 bp segments of human
chromosome 1 that overlap an exonic HapMap SNP. For each of these 35 bp
segments and on each strand, one read matched the reference allele and one
read matched the non-reference allele at the SNP position. All base quality
scores were assigned as the modal quality score for that position in the real
RNA-Seq data. Random “sequencing” errors were added to two of the sets of
simulated reads such that each base in the read had a Bernoulli probability of
0.01 or 0.05, respectively, of being changed to a different randomly selected
base. These two error rates were chosen to span the range of possible values
that might be observed in real data. Additionally, to explore the potential
impact of read-mapping biases on studies using longer read lengths, we
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applied the same procedure to simulate all 50 and 100 bp reads (without
additional errors) that overlapped the same SNPs.

To determine if there were differences in the observed bias among three
popular mapping algorithms, we mapped the simulated 35 bp reads to the
SNP-masked genome using each mapping program (MAQ v. 0.7.1, as used
for the analyses of the real data in this paper, Li et al. (2008); BOWTIE
v. 0.9.9.2, Langmead et al. (2009); and BWA v. 0.4.6, Li and Durbin
(2009)). All programs were downloaded from their respective sources on 15
April, 2009. For each mapping algorithm, the settings were left as close to
the defaults as possible while still allowing meaningful comparisons across
algorithms. If the program allowed a setting for the size of the sequence used
in a heuristic search, the entire read length was chosen (more details about
the settings used for each algorithm are given in Table S5). For most of our
analyses we considered that a read mapped to a particular location in the
genome if that location yielded a uniquely best match. Each of the mapping
programs allows for some stochastic assignment of ambiguous reads among
potential best hits in the genome. However, since allowing this feature would
not offer a complete solution to the mapping bias problem and would make
the results more difficult to interpret, we did not use this feature in any of our
analyses. For MAQ and BWA, which both report a quality score, we tested
whether changing the stringency of the quality score cutoff in simulation
experiments had any effect on the biases described here. The results of this
analysis appear in Figure S2.

Finally, for all SNP positions across the genome with > 20 reads in the
real data, we simulated all potential reads that could overlap these sites
(adding no additional errors) and mapped these reads against the SNP-
masked genome using MAQ. This set of simulations was used to determine
which SNPs have an inherent bias in the mappability of reads between
alleles. We then discarded from analysis all SNPs for which a different
number of artificial reads mapped to the reference allele compared to the
non-reference allele. Further, for all SNPs with > 20 reads in the real data,
we simulated reads where the coverage at each SNP was 10X (as compared
to the 1X simulated data described above) incorporating (1) random read-
mapping errors and (2) variable base quality scores. We found however
that the 1X coverage simulations were so highly correlated with the 10X
coverage simulations that they were sufficient to predict the SNPs that
showed an inherent bias (1X predicted bias had a correlation coefficient r2

> 0.98 with predicted bias in both 10X simulations).

3 RESULTS
Genome-wide RNA-Seq was performed on RNA from lymphoblast-
oid cell lines from two Yoruba HapMap individuals and reads were
mapped to the human reference genome using MAQ (Methods).
In both individuals, 60-65% of total reads mapped uniquely to
annotated exons. To identify ASE, we isolated all reads that,
after mapping, overlapped heterozygous exonic HapMap SNPs
(yielding 104,128 and 97,359 reads for GM19238 and GM19239,
respectively). There were 1,981 heterozygous SNPs with >20
reads in one individual (averaging 70.5 reads per SNP-individual
combination). By applying this minimum read threshold, we
enriched for highly expressed genes. Indeed, 62% of the exons
which contained the SNPs we tested were in the top 10% of exons
when ranked by expression level. We determined the allele for each
of these reads based on the observed nucleotide at the SNP position.

These initial data suggested that ASE was widespread (Figure 1).
Out of 1,981 tests, 90 tests of the null hypothesis of equal expression
yielded binomial test P-values that were less than P = 5.5× 10−5

corresponding to an FDR of 1%. However, the results indicated a
worrying bias. First, averaging across all sites, there was a highly
significant bias towards over-representation of reference alleles.
Overall, 52.2% of reads matched the reference allele (P< 2×10−16

for a binomial test against a true frequency of 50%). Second, 61 out
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genome

Fig. 2. Magnitude of read-mapping biases in simulated data. (A) The
distribution (across SNPs) of the proportion of correctly mapped reads that
carry the reference allele, compared to the non-reference allele. The y-
axis is broken into two segments to show more clearly the rates of highly
biased SNPs. Three different rates of sequencing errors are shown. (B) Read-
mapping was performed as in (A), except that the reads were aligned against
a version of the genome sequence in which all SNP locations were masked.
Notice that for both analysis methods, some SNPs are strongly biased, and
that SNP masking does not clearly improve the results. Sequencing errors
can substantially increase the extent of bias.

of 90 significant results showed over-representation of the reference
allele (Binomial test; P = 0.002) and all eight of the strongest signals
were biased toward the reference allele (Figure 1B). Therefore, we
hypothesized that biases introduced at the read-mapping stage might
have affected our results.

To explore this hypothesis further, we simulated reads spanning
known SNPs, and tested how often each allele was mapped back to
the correct location in the genome. For both alleles at each SNP, we
generated all 35 bp reads that overlapped the position of the SNP
(Methods; Figure S1). We observed that some positions showed an
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Fig. 3. Two examples in which homology with other genomic locations leads to read-mapping biases. Each example shows the variable sites in: (top row)
the reference version of the genome sequence in the true location; (next six rows) three sample reads carrying the reference and three sample reads carrying
the non-reference alleles at the SNP, and (bottom row) the sequence in a region of homology elsewhere in the genome. The right-hand columns show how each
read is mapped with, and without SNP masking. In these examples a read is mapped to a particular location if it has a unique best match at that location, and is
unmapped if there is a tie between possible locations. The SNP masking generates a 1-nucleotide mismatch between both alleles and the reference sequence
at the masked site.

extremely strong bias towards the reference sequence. For 1% of
SNPs, at least 75% of the mapped reads (averaging across all read
positions) carried the reference allele, while for 0.7% of SNPs all
mapped reads carried the reference allele.

Overall, 50.7% of the mapped reads in the simulated data carried
the reference allele. This is actually a significantly smaller bias
than the 52.2% observed in the real data (P< 2 × 10−16 for a
binomial test of the null hypothesis that proportion in real data
is 50.7%). However, by incorporating random sequencing errors
into our simulations, we were able to generate the degree of bias
observed in the real data. We found that the magnitude of the bias
toward the reference allele rose with increasing sequencing error
rates; error rates of 0.01 and 0.05 mutations per base increased
the average proportion of mapped reads that matched the reference
allele to 51.4% and 59.0%, respectively (Figure 2A; Methods).

One plausible method for removing this bias might be to mask
all known SNP positions in the reference genome prior to read-
mapping. We found that this did eliminate the overall reference
bias in both simulated and real data (Figures 2B and 5A). However,
perhaps unexpectedly, this correction failed to reduce the number of
individual SNPs with very strong biases (Figure 2). After masking,
2% of SNPs had at least 75% of reads derived from one allele, and
for 1.4% of SNPs all mapped reads came from one allele. As before,
sequencing errors increased the fraction of SNPs that had unequal

mapping rates for the two alleles, but there was not a substantial
average bias towards the reference allele. In summary, we do not
find a clear advantage to masking over not masking; however our
subsequent analyses do use masking due to the slight improvements
for higher rates of sequencing errors.

To better understand the sources of read-mapping bias, we
examined more closely a number of the most strongly biased
SNPs. We find that the strong biases occur at SNPs for which the
flanking sequence shares sequence identity with another region of
the genome (Figure 3). When we do not mask the SNP location,
problems arise when the non-reference allele matches the alternative
location as well as, or better, than the correct location (Figure 3A).
With masking, both alleles have a 1-bp mismatch against the correct
location, but either allele might match the corresponding position in
the alternative location, thereby biasing against correct mapping of
the allele that matches elsewhere (Figure 3B).

Next, we investigated whether any of three popular read-mapping
programs showed less bias than the others. For the simulated set
with a per-bp error rate of 0.01, MAQ seemed to slightly outperform
BWA and BOWTIE in that it produced the highest proportion of
SNPs (94%) for which an approximately equal number of reads
were mapped from each allele (within 5%; Figure 4A). However,
it remains unclear from this analysis whether this subtle difference
between algorithms was mostly due to our parameter choices or if it
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Fig. 4. Bias for three short-read alignment programs and for three read
lengths. (A) The plot shows the distribution of the fraction of mapped reads
that carry the reference allele. Simulated reads with an error rate of 0.01 were
mapped to the masked genome using MAQ (black), BOWTIE (dark blue),
and BWA (light blue). Other details as in Figure 2B. (B) As in A except reads
contained no additional errors and read lengths were as indicated.

represents inherent differences between the algorithms themselves.
Additionally, we investigated whether changing the quality score
thresholds required for mapping by MAQ and BWA reduced the
amount of bias. We found that for any particular choice of quality
score threshold, there were SNPs that showed an inherent bias. In
fact, there was no noticeable improvement in the extent of mapping
bias for increasing quality score cutoffs (Figure S2).

Because next-generation sequencing technologies are improving
and longer read lengths are becoming possible, we explored the
extent of read-mapping bias for read lengths of 50 and 100 bp. We
find that for sequences without read-mapping errors, while the read-
mapping bias decreases for increasing read lengths, even reads of
100 bp show SNPs with some bias (Figure 4B). We also find that

there is decreasing bias for increasing read lengths when random
errors are added and the default thresholds of MAQ are relaxed
(Figure S5).

Armed with an understanding of the effect of biases introduced by
SNP variation, we used this knowledge to reanalyze our RNA-Seq
data to find loci displaying evidence of ASE. We observed that 1,920
SNPs had at least 20X coverage across one individual after mapping
to the masked reference genome. Of these, 82 showed significant
deviation from equal expression after masking SNP locations, using
a P-value cutoff of P = 5.5 × 10−5 corresponding to an FDR of
1% in the initial analysis and an FDR of 1% here.

However, as we have noted above, mapping to the SNP-masked
genome does not eliminate mapping bias on a SNP-by-SNP basis
(Figures 2B, 3 and 5). Simulations show that 185 of the 1,920
SNPs have an inherent bias in the mappability of reads coming
from one of the alleles (see Methods and Figure 3). Of these
inherently biased SNPs, 29 were among the 82 most significant
SNPs. This represents a strong enrichment for the inherently biased
SNPs among the SNP set that appears to show ASE (Fisher’s exact
test; P = 2.1 × 10−7). Furthermore, the biases observed in the
simulated data-set correlated well with the biases observed at these
SNPs in the RNA-seq data, suggesting that the read-mapping biases
described above were contributing to the original signal of ASE
(Figure S3).

After excluding these biased SNPs, we were left with 53
SNPs in 47 genes that were significant at the P-value threshold
corresponding to an FDR of 1% in the initial analysis. We consider
these remaining SNPs as candidates for representing true cases of
ASE (see Table S1 for a list of these loci).

To verify that the significant results in our final analysis
were biologically relevant, we analyzed the overlap of genes in
this set with genes previously identified as having cis-regulatory
variation or genetic imprinting. Using an eQTL browser that we
have developed (http://eQTL.uchicago.edu; JFD and JT Bell), we
analyzed the extent of overlap of our significant results with the
genes known to have a cis-eQTL (expression quantitative trait locus)
in lymphoblasts. Veyrieras et al. (2008) tested for cis-eQTL in
11,466 genes in the HapMap lymphoblastoid cell lines and found
that 419 of these genes contained strong evidence for an eQTL
(using a posterior probability cutoff of >0.9). Our list of significant
genes at an FDR of 1% included 19 of the genes tested by Veyrieras
et al. (2008), of which 3 showed evidence for an eQTL using the
same cutoff. We find that this fraction (3/19) supports an enrichment
of genes in our set that were previously found to have an eQTL
in lymphoblasts (P = 0.04; Fisher’s exact test). Further, our set
of significant genes contained two examples of genes known to
be imprinted in humans (annotated imprinted genes obtained from
www.geneimprint.com). One gene (SNURF/SNRPN) is located
within human chromosome 15q11-15q12, the same region that
is involved in Prader-Willi and Angelman Syndromes, and is
known to be paternally imprinted (reviewed in Horsthemke and
Wagstaff (2008)). A second gene (GNAS) at 20q13.3 is known to
be maternally imprinted and, when disrupted, can cause Albright
hereditary osteodystrophy and other complications (reviewed in
Weinstein et al. (2004)). Thus, we find that there is a significant
enrichment among genes showing ASE for genes known to be
imprinted in humans (P = 0.01; Fisher’s exact test). Further
supporting the biological relevance of the final results is the fact
that in four genes (HLA-DPB1, PIP4K2A, GYPC, and PTK2B),
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B. QQ−plot after excluding inherently biased SNPs
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Fig. 5. Summary of the ASE results after SNP masking, and after
excluding inherently biased SNPs. (A) Distribution of ASE P-values
after masking known SNP variation. Masking has largely eliminated bias
toward the reference allele (circles: over-representation of reference allele;
triangles, over-representation of non-reference allele), however, the number
of significant results is not reduced. Display is as in Figure 1B. The
horizontal dashed line represents the P-value threshold of P = 5.5× 10−5

that allowed an FDR of 1% in the analysis presented in Figure 1. The
FDR for this analysis using the initial P-value threshold was also 1%.
(B) Distribution of P-values after excluding SNPs with an inherent bias
toward one allele, as determined by simulations of perfect reads. This set
of significant results is likely much more reflective of genes that show
genuine allele-specific expression. The FDR for this analysis using the
initial P-value threshold here was 1.4%. (C) Barplot showing the number
of significant results for the three read-mapping strategies used in this paper,
corresponding to Figures 1B, 5A and 5B, using a P-value cutoff of P =
5.5× 10−5, corresponding to FDRs of 1.0%, 1.0%, and 1.4%, respectively

we find ASE in both individuals and in four other genes (CRYZ,
ATF5, HLA-DRA, and SEPT9), two SNPs in the same individual
give significant results for ASE in the same direction (i.e., the
higher expressed alleles are in phase in the HapMap data; Table

S1). Finally, we find that heterozygous SNPs within the same
genes as our top results, although not all significant by the same
threshold, generally support the same direction of ASE as the top
results (i.e., the higher expressed alleles are in phase in the HapMap
dataset; Figure S4). Taken together, these results suggest that after
filtering our data to exclude inherently biased SNPs, we are able
to identify real signals of both cis-regulatory DNA variation and
genetic imprinting.

4 DISCUSSION
We have shown here that differential mapping of SNP alleles can
greatly affect inferences that rely on quantifying DNA or RNA
with next-generation sequencing data. This may be especially
problematic in studies that aim to detect allele-specific differences
in gene expression, transcription factor binding, or other related
applications. It may also cause problems in other contexts, for
example in QTL mapping of exon expression levels, or for discovery
of new sequence variants. Our results also highlight the complexities
that may arise when using short read sequences to study organisms
with poor quality genome sequences or whose actual genome
sequence differs from the reference individual. Although not
considered here, it is likely that small insertions and deletions will
cause problems at least as severe as we have described here for
SNPs.

Perhaps surprisingly, we found that masking known SNPs does
little to eliminate inherent biases in read-mapping. However, using
simulated sequence reads, we were able to identify individual SNPs
that are inherently biased due to problems in read-mapping. In so
doing, we were able to identify and remove a large number of
false positive results that were present in a naive analysis (Figure
5C). Although our final analysis makes use of knowledge of SNP
variation in the human genome, the simulations that determined
“mappability” of each allele were the key to identifying and
removing false positive results. Thus, a similar approach could be
taken in organisms with a less complete annotation of SNP variation.
This paper highlights a clear need for the development of more
detailed statistical models that can incorporate knowledge of SNP
variation into read-mapping and explicitly model uncertainty in the
mapping locations for reads when testing for allele-specific effects.
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