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Summary: Variable selection methods are powerful tools in analysis of high dimensional massive data.

Specifically, the methods have been applied in gene expression microarray data analysis. It is well known

that for genes sharing a common biological pathway or a similar function, the correlations among them

can be very high. However, most of the available variable selection methods cannot deal with complicated

interdependence among data. We propose two new algorithms, namely gLars and gRidge, to select groups of

highly correlated variables together in regression models. The new approaches intent to conduct grouping and

selecting at the same time. Simulations and a real example show that our proposed methods often outperform

the existing variable selection methods, including LARS and elastic net, in terms of both prediction error

and preserving sparsity of representation.
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1. Introduction and motivation

Regularization and variable selection are traditional statistical problems that attract much attention recently. Large demands

are from the analysis of high dimensional massive data, for example, gene expression microarray data and single nucleotide

polymorphism (SNP) data. A special feature of the genomic data is that genes sharing a common pathway or having a similar

biological function tend to have high pairwise correlations (Segal et al., 2003). It would be desirable for a variable selection

method to form those genes into a group and select the whole group for an appropriate data analysis.

Consider the usual linear regression model with p predictors x1, . . . ,xp and a response y. Best subset selection gives a global

optimum unbiased model estimate but is computation intensive and lack of stability (Breiman, 1996). The least absolute

shrinkage and selection operator (Lasso) proposed by Tibshirani (1996) is an ad-hoc method used widely. Lasso imposes a
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L1 norm bound on the regression coefficients while minimizes the residual sum of squares, so that it gives continuous and

sparse estimates. However, for a highly correlated gene group, Lasso tends to select only one gene from the group instead of

the whole group. Zou and Hastie (2005) propose the elastic net method by combining L2 and L1 penalties on the regression

coefficients. Elastic net aims to achieve the grouping effect that highly correlated variables will be in or out of the model

together. It works well when the absolute values of pairwise correlations are extremely high (close to 1) among the group.

Elastic net outperforms Lasso in terms of prediction error on correlated data in many circumstances. However, elastic net

does not reveal the underlying group structure in its solution and may perform poorly for variable groups with moderate

pairwise correlations.

Alternatively, for data with interdependent structures, a naive approach is a two-step procedure: first cluster highly

correlated variables into groups then select among the groups. Park et al. (2006) apply hierarchical clustering on gene

expression data in the first step. For each cluster (group), they then average the genes and take the average as a supergene to

fit a regression model. Nevertheless, results of hierarchical clustering highly depend on group size and correlation threshold.

Averaging genes into a supergene would also increase bias of the estimates, which affects the variable selection substantially.

Another method is supervised group Lasso proposed by Ma et al. (2007), which is also a two-step procedure. After dividing

genes into clusters using the K-means method, they first identify important genes within each group by Lasso then select

important clusters using the group Lasso (Yuan and Lin, 2006).

Efron et al. (2004) propose a less greedy forward variable selection algorithm - LARS. With a slight modification, LARS

gives a complete Lasso solution path. Its fast computational speed makes Lasso widely applied in many areas. Since LARS

and Lasso are designed to select individual variables, Yuan and Lin (2006) develop group LARS and group Lasso, which

extend LARS and Lasso to select groups of variables. They have shown that those extensions have superior performance to

the traditional stepwise method. However, group LARS (group Lasso) requires the underlying group structure information in

advance. Hence the method is in fact the second step of the aforementioned two-step procedure.

Inspired by Yuan and Lin (2006), we propose a new group selection algorithm - gLars. gLars does not need to define any

group structure beforehand. It does grouping and selection at the same time. Similar to LARS and group Lars, gLars also

has a computational advantage by providing a piecewise linear solution path. To select the final model on the solution path

of gLars, we use 10th-fold cross validation. Since LARS and gLars move along ordinary least square (OLS) direction at each

step, it may suffer the shortage of OLS. When the correlations between the predictors are extremely high and noise level is

high, the variance of the coefficient estimates of gLars may be large. We propose gRidge algorithm by a small change of gLars

algorithm. gRidge shares all the good properties of gLars but reduces variance of the gLars estimates. Simulations and a real

example show that gRidge and gLars works well comparing with LARS and elastic net.
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In the following sections, we present our algorithms in more details. We introduce gLars and gRidge algorithms in Section

2 and 3 respectively. Section 4 is on the selection of tuning parameters. We illustrate our methods with several simulations in

Section 5 and a real example in Section 6. A summary and discussions are given in Section 7.

2. The algorithm of gLars

Consider the usual linear regression model y = Xβ + ε, where y = (y1,y2, . . . ,yn)T is the response variable, X =

(x1,x2, . . . ,xp) is the predictor matrix, and ε is a vector of independent and identically distributed random errors with

mean 0 and variance σ2. There are n observations and p predictors. Each xj = (x1j , x2j , . . . , xnj)
T , j = 1, . . . p is the column

vector of the predictor matrix. We center the response variable and standardize all the column vectors of the predictor matrix.

Hence, there is no intercept in our model.

n∑
i=1

yi = 0,

n∑
i=1

xij = 0,

n∑
i=1

x2
ij = 1 for j = 1, 2, . . . , p

Group LARS algorithm selects a group of predictors based on pre-specified grouping information. In many practical

situations where grouping information is unknown, it is difficult to implement Group LARS. Our proposed gLars avoids

this difficulty by forming groups simultaneously along the variable selection process according to certain criterions.

2.1 Grouping definition

Zou and Hastie (2005) propose elastic net, which encourages highly correlated predictors in or out of the model together.

When applying to the gene selection problem, they claim that once one gene among a group is selected, the whole group

would automatically be included into the model (group selection). Furthermore, the grouping effect exhibits if the regression

coefficients of a group of highly correlated variables tend to be equal (up to a change of sign). These discussions give an idea

of grouping effect. However, it is unclear how groups are defined. In our procedure, we give an explicit definition of group.

Predictors form a group if they satisfy both of the two criterions:

• they are highly correlated with the response variable (or current residual);

• they are highly correlated with each other.

The correlation threshold (in absolute value) for Criterion 1 is suggested to be the greater than 75th percentile of all

correlations for a large data set or greater than 50th percentile of all correlations for a small data set. The correlation

threshold (absolute value) for Criterion 2 is from a set of grids, for example 0.9, 0.8, 0.7, 0.6. We select an optimal one by

cross validation. If we set up the correlation threshold of a group in Criterion 2 to be 1, then gLars degenerates to the LARS

algorithm.
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2.2 gLars algorithm

The LARS algorithm proposed by Efron et al. (2004) is a less greedy forward model selection procedure. At the beginning of

LARS, a predictor enters the model if its absolute correlation with the response is the largest one among all the predictors.

The coefficient of this predictor grows in its ordinary least square direction until another predictor has the same correlation

with the current residual (i.e. equal-angle). Next, both coefficients of the two picked predictors begin to move along their

ordinary least square directions until a third predictor has the same correlation with the current residual as the first two.

The whole process continues until all the predictors enter the model. In each step, one variable adds into the model and the

regularization solution paths are extended in a piecewise linear way. After all the variables enter the model, the whole LARS

solution paths are completed.

In the gLars algorithm, we start as LARS to pick up a predictor which has the largest correlation with the response. We

call this predictor a “leader element”. We then build a group based on this leader element and the current residual according

to the criterions in Section 2.1. Note that both criterions have to be satisfied when selecting a variable into a group. Once

a group has been constructed, it will be represented by a unique direction in Rn as the linear combination of the ordinary

least square directions of all variables in the group. Next, we choose another leader element, analogous to the equal-angle

requirement of the LARS algorithm. A new group is formed again following the grouping definition. We refine the solution

paths in a piecewise linear format. The whole process continues until all the predictors enter the model. The detailed algorithm

can be found in Zeng (2008).

3. The algorithm of gRidge

Ordinary least square often does poorly when the correlations among the predictors are very high and the noise level is high.

Since both LARS and gLars move towards ordinary least square direction in each step, they face the same shortage. Ridge

estimates, on the other hand, perform better in this situation (Hoerl and Kennard (1970)). We propose a gRidge algorithm,

which moves towards ridge estimates direction in each step.

The relationship between ridge estimates β̂(λ) and ordinary least square estimates β̂ can be shown as

β̂(λ) = (X ′X + λI)−1X ′Y = (I + λ(X ′X)−1)−1β̂ = Cβ̂,

where C = (I + λ(X ′X)−1)−1 and λ is the ridge parameter. The gRidge algorithm is thus a simple modification of the gLars

algorithm. When a group is constructed, gRidge represents the group by a unique direction from the linear combination of

the ridge directions of all variables in the group. The variable coefficients are moving towards the ridge directions.

As we run simulations, we notice that gRidge outperforms other methods in terms of relative prediction errors (RPEs,

defined in Section 5). However, this method is limited by its comparably larger false positives due to an over-grouping effect.
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We propose to add a hard threshold δ to gRidge estimates so that small (but nonzero) coefficients will be removed. Based

on simulations, we define a threshold δ =
√

σ log(p)/n. Thus smaller error terms, smaller number of predictors, or larger

sample size give smaller threshold. We name the modified gRidge algorithm gRidge new, after this hard threshold filtering.

Simulation studies show that gRidge new not only preserves low RPE but also largely reduces the false positive rate.

4. Choice of tuning parameters

Both gLars and gRidge produce the entire piecewise linear solution paths as group LARS does. Groups of variables are selected

when we stop the paths after a certain number of steps. The number of step k is the tuning parameter. Equivalently, we may

use a tuning parameter as the fraction of the L1 norm of the coefficients

s = Σj selected||βj ||L1/Σj ||βj ||L1 .

For gLars (similar to LARS), s (or k) is the only tuning parameter. It is determined by standard five-fold cross-validation

(CV). For gRidge, there are two tuning parameters: the ridge parameter λ in addition to s (or k). Similar to elastic net, we

cross-validate on two-dimension. First, we choose a grid for λ, say (0.01,0.1,1,10,100,1000). Then for each λ, gRidge produces

the entire solution path. The parameter s (or k) is selected by five-fold CV. At the end, we choose the λ value which gives

the smallest CV error.

5. Simulation Studies

Simulation studies are used to compare the proposed gLars and gRidge with ordinary least squares, ridge regression, LARS

and elastic net. The simulated data are generated from the true model

y = Xβ + σε, ε ∼ N(0, 1).

Five examples are presented for 5 scenarios below. For each example, we simulate 100 data sets. Each data set consists of a

training set and a test set. The tuning parameters are selected on training set by five-fold cross validation. Then the models

are fitted after selecting variables by a method. The variable selection methods are compared in terms of relative prediction

error (RPE) (Zou (2006)) on the test set. The relative prediction error is defined by

RPE =
1

σ2
(β̂ − β)T V (β̂ − β),

where V is the population covariance matrix of X.

The 5 scenarios are given by:

1 Example 1 (adopted from Zou and Hastie (2005)), there are 100 and 200 observations in the training and test set
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respectively. The true parameter β = (3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 3. The pairwise correlation between xi and xj was set

to be corr(xi,xj) = 0.5|i−j|. This example creates a sparse model with a few large effects and covariates with first order

autoregressive correlation structure.

2 Example 2 (adopted from Zou and Hastie (2005)) is the same as example 1, except that βj = 0.85 for all j, which creates

a non-sparse underlying model with many small effects.

3 Example 3, we simulate 100 and 400 observations in the training and test set respectively. We set the true parameters as

β = (3, . . . , 3︸ ︷︷ ︸
15

, 1.5, . . . , 1.5︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
20

)

and σ = 6. The predictors were generated as:

xi = Z + εx
i , Z ∼ N(0, 1), i = 1, . . . , 15,

xi ∼ N(0, 1), i.i.d., i = 16, . . . , 40,

where εx
i are independent identically distributed N(0, 0.01), i = 1, . . . , 15. This example creates one group from the first

15 highly correlated covariates. The next 5 covariates are independent but provide signals on the response variable.

4 Example 4 (adopted from Zou and Hastie (2005)), we simulate 100 and 400 observations in the training and test set

respectively. We set the true parameters as

β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

)

and σ = 15. The predictors were generated as:

xi = Z1 + εx
i , Z1 ∼ N(0, 1), i = 1, . . . , 5,

xi = Z2 + εx
i , Z2 ∼ N(0, 1), i = 6, . . . , 10,

xi = Z3 + εx
i , Z3 ∼ N(0, 1), i = 11, . . . , 15,

xi ∼ N(0, 1), i.i.d., i = 16, . . . , 40,

where εx
i are independent identically distributed N(0, 0.01), i = 1, . . . , 15. There are three equally important groups with

5 members in each. There are also 25 pure noise variables.

5 Example 5, we simulate 100 and 200 observations in the training and test set respectively. We set the true parameters as

β = (3, 3, 3, 0, 0︸ ︷︷ ︸
5

, 3, 3, 3, 0, 0︸ ︷︷ ︸
5

, 3, 3, 3, 0, 0︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
25

)

The predictors and the error term are the same as Example 4. There are also three equally important groups with 5

members in each of them. However, in each group, there are 2 noise variables, which have no effect on the response

variable but are highly related with the other three important variables. There are totally 31 pure noise variables.
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Table 1 and 2 summarize the prediction results. The popular Lars performs poorly in almost all examples. As the number

of covariates increases, RPE of Lars increases dramatically in example 3-5, meanwhile, its estimators are highly unsteady with

large standard deviations. The simulation results indicate that Lars performs badly under collinearity. Elastic net outperforms

Lars in all examples in terms of prediction error, and identifies true signals with very few false positives. But Elastic net method

cannot find all true signals in Example 3 (the five true signals with correspondence covariates are independently identically

distributed). Our first proposed method gLars is slightly worse than Elastic net in terms of prediction error while producing

correct sparse solutions as Elastic net. Different from elastic net, gLars can identify all true signals in Example 4. The gRidge

improves gLars in all examples in terms of prediction error. Its RPEs are either the smallest or the second smallest across

all methods. Especially as covariates increase, RPEs of gRidge are always the best. The reductions of RPEs in example 3-5

are 80.9%, 92.7% and 91.6% respectively compared with elastic net. It indicates that gRidge has unbiasedness (Fan and Li,

2001) in the long run. We also notice that while preserving the large coefficients close to the true coefficients, gRidge tends

to select more variables than elastic net, owing to its over grouping effect. After we add a hard threshold to gRidge, the new

gRidge new estimators achieves the ideal performance.

6. Prostate cancer example

The prostate cancer data come from a study by Stamey et al. (1989). There are 97 observations collected from men who

were about to receive a radical prostatectomy. We want to discover the relationship between the level of prostate specific

antigen and several clinical endpoints. Tibshirani (1996) fits a linear model by Lasso to reveal this relationship. The response

variable is log(prostate specific antigen) (lpsa). Those clinical endpoints are x1 log(cancer volume) (lcavol), x2 log(prostate

weight) (lweight), x3 age, x4 log(benign prostatic hyperplasia amount) (lbph), x5 seminal vesicle invasion (svi), x6 log(capsular

penetration) (lcp), x7 Gleason score (gleason) and x8 percentage Gleason scores 4 or 5 (pgg45).

We randomly split data into two parts: a training set with 67 observations and a test set with 30 observations. Model fitting

and tuning parameter selection by 10th-fold cross validation were carried out on training data. The prediction error were then

calculated on test data to compare model performance.

All covariates were centered and standardized to have mean 0 and standard deviation 1. There is certain correlation

presented between variables. For example, the pairwise coefficients between x7 gleason and x8 pgg45 is 0.752 and 0.675

between x1 lcavol and x6 lcp and so on. Those indicates a moderate collinearity among predictors.

Table 4 shows the coefficients estimates for ordinary least square(OLS), Lars, Elastic Net, gLars and gRidge after tenth-fold

cross validation. Fig. 1 gives the solution paths of Lars, Elastic Net, gLars and gRidge. And the order of covariates which enter

to the model is given in Table 5. All those methods suggest that covariates log(cancer volume) (lcavol), log(prostate weight)
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Table 1

Median relative prediction errors (RPE) for 6 simulated examples based on 100 replications. The numbers in parentheses are

the corresponding standard errors of RPEs estimated by using the bootstrap with B = 1000 resampling on the 100 RPEs.

Methods Example 1 Example 2 Example 3 Example 4 Example 5

OLS
0.5843 0.5696 0.6368 0.6390 0.6458

(0.0547) (0.0502) (0.0267) (0.0240) (0.0265)

Ridge
0.2832 0.1884 0.2519 0.0993 0.1971

(0.0194) (0.0150) (0.0100) (0.0050) (0.0087)

LARS
0.4640 0.4529 9.3793 3.3287 7.9525

(0.0497) (0.0460) (0.4450) (0.1321) (0.3168)

Elastic net
0.1714 0.1481 0.5884 0.2096 0.3308

(0.0130) (0.0155) (0.0546) (0.0377) (0.0610)

gLars
0.2616 0.3158 0.1917 0.2363 0.4800

(0.0336) (0.0359) (0.0535) (0.0518) (0.1057)

gRidge
0.1806 0.2301 0.1125 0.0152 0.0277

(0.0298) (0.0254) (0.0068) (0.0037) (0.0047)

gRidge new
0.1816 0.2407 0.1113 0.0141 0.0267

(0.0297) (0.0255) (0.0083) (0.0039) (0.0049)

(lweight), seminal vesicle invasion (svi) and Gleason score(gleason) are important in explaining the level of prostate specific

antigen. Both Elastic net and LARS also choose age and in their final model. However, gLars and gRidge choose log(capsular

penetration) (lcp) and Gleason scores 4 or 5 (pgg45)instead. This situation is due to the group effect. We notice that the

correlation of gleason and pgg45 is 0.752 i.e. they form a small group. As all 4 methods picks gleason in their final model, it

is better to include pgg45 in the model too. The similar case happens for covariates lcavol and lcp too. We think those two

form another group. The test prediction errors for the 4 methods on the test set are reported in Table 3. It is clearly that

gLars, gRidge and gRidge new perform better than Lars and Elastic net methods in terms of prediction error.

7. Summary and discussion

Group LARS(Yuan and Lin, 2006) is a natural extension of LARS. It is successful in selecting groups of variables once

the grouping structure is known. gLar aims to select groups of predictors even though the underlying grouping structure is

unknown in advance. The performance of gLar is competitive with elastic net. However, because of its dependence on the
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Table 2

Median number of nonzero coefficients / median number of zero coefficients misspecified as nonzero coefficients of 6

simulations based on 100 replications

Methods Example 1 Example 2 Example 3 Example 4 Example 5

OLS 3/5 8/0 20/20 15/25 9/31

Ridge 3/5 8/0 20/20 15/25 9/31

LARS 3/0 7/0 9/0 4/0 5/1

Elastic net 3/1 8/0 15/0 15/0 9/6

gLars 3/2 8/0 20/0 15/0 9/6

gRidge 3/3 8/0 20/12.5 15/8 9/11.5

gRidge new 3/1 7/0 20/0 15/0 9/6

Table 3

The test prediction error of models selected by OLS, Lars, Elastic Net, gLars and gRidge

Methods OLS LARS Elastic net gLars gRidge gRidge new

Prediction error 0.688 0.586 0.610 0.562 0.550 0.547

Table 4

Coefficients estimator for OLS, Lars, Elastic Net, gLars and gRidge methods

Coefficents OLS Lars Elastic Net gLars gRidge gRidge new

Intercept 1.92 1.92 1.92 1.92 1.92 1.92

lcavol 0.562 0.481 0.487 0.484 0.464 0.464

lweight 0.426 0.358 0.358 0.299 0.293 0.293

age -0.214 -0.076 -0.108 0 0 0

lbph 0.126 0.069 0.087 0 0.009 0

svi 0.444 0.338 0.354 0.339 0.311 0.311

lcp -0.165 0 0 -0.113 -0.055 -0.055

gleason 0.226 0.158 0.174 0.141 0.123 0.123

pgg45 0.04 0 0 0.011 0.015 0
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Table 5

The order of covariates enter the model

Lars lcavol→ svi→ lweight→ gleason→ lbph→ age→ lcp→ pgg45

Elastic net lcavol→ svi→ gleason → lcp → lweight → pgg45→ lbph→ age

gLar lcavol, lcp→ svi→ lweight → gleason, pgg45 → lbph → age

gRidge lcavol, lcp→ svi→ lweight→ gleason, pgg45 → lbph → age
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Figure 1. Solution paths of LARS, Elastic net, gLars and gRidge.

full least squares estimates, the gLars estimates may vary when the noise level is high. We develop an extended method

gRidge which overcomes this shortage. gRidge performs well when the number of predictors is large, and the predictor matrix

is close to singular. In some cases, gRidge tends to select more variables due to its over-grouping effect. We further add a

hard threshold to the gRidge solutions to make the estimates more sparse. gLars and gRidge are computationally as fast

as LARS. But solutions of both methods would depend on the two grouping criterions. gLars and gRidge algorithm can be

easily extended to generalized linear models. Our algorithms offer new tools of variable selection for data with complicated

interdependent structures.
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