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Natural variation in gene expression is extensive in humans and other organisms, and variation in the baseline expression level of
many genes has a heritable component. To localize the genetic determinants of these quantitative traits (expression phenotypes) in
humans, we used microarrays to measure gene expression levels and performed genome-wide linkage analysis for expression
levels of 3,554 genes in 14 large families. For approximately 1,000 expression phenotypes, there was significant evidence of
linkage to specific chromosomal regions. Both cis- and trans-acting loci regulate variation in the expression levels of genes,
although most act in trans. Many gene expression phenotypes are influenced by several genetic determinants. Furthermore, we
found hotspots of transcriptional regulation where significant evidence of linkage for several expression phenotypes (up to 31)
coincides, and expression levels of many genes that share the same regulatory region are significantly correlated. The combination
of microarray techniques for phenotyping and linkage analysis for quantitative traits allows the genetic mapping of determinants
that contribute to variation in human gene expression.

The expression level of many genes shows abundant natural
variation in species from yeast to humans1–6. This trait, the ‘gene
expression phenotype’7, also shows familial aggregation5,6,8 and
simple segregation patterns in yeast2, suggesting an inherited
contribution. Here, we extend our analysis6 by genetic mapping of
regulatory elements that influence the baseline level of gene
expression in human cells. Our goal is to identify determinants
whose ‘targets’ are the genes with regulated expression.

We used microarrays to measure the baseline expression levels of
genes in immortalized B cells from members of Centre d’Etude du
Polymorphisme Humain (CEPH) Utah pedigrees9. For each of the
,8,500 genes on the array, we estimated the variance of expression
level among unrelated individuals (94 CEPH grandparents) and the
mean of variance of array replicates (two array replicates per
individual). We restricted our analysis to genes with greater
expression variation between individuals than between replicates
(within individuals); these 3,554 most variable expression pheno-
types are the quantitative traits that we mapped to chromosomal
locations by genome scans.

Genotypes for genetic markers (single nucleotide polymorph-
isms; SNPs) were obtained from The SNP Consortium10. We used
the computer program S.A.G.E. v. 4.5 (ref. 11) to carry out genome-
wide linkage analysis for the 3,554 expression phenotypes in 14
CEPH families. The analysis gives the strength of the evidence for
linkage at each map position in the form of a t-value12, with
associated point-wise significance level.

We selected expression phenotypes for further analysis using two
different levels of stringency for evidence of linkage (that is, for a
regulator of expression phenotype). For the more stringent level, we
used a threshold of t . 5 from the S.A.G.E. analysis; in our sample
of families, this corresponds to a point-wise P-value of ,4.3 £ 1027

(a logarithm of odds (lod) score of ,5.3). For such a finding, the
corresponding genome-wide significance level13 (see Methods) is
approximately 0.001. Applying this genome-wide threshold to 3,554
scans we would expect only 3.5 genome scans to show any linkage
evidence with a P-value this extreme by chance. Instead we found
142 expression phenotypes with evidence for linkage beyond the
P-value threshold, and in some cases far beyond, so we conclude
that false-positive linkage findings are at most a small fraction of
the significant results. The expression phenotypes with the most

significant evidence of linkage are shown in Table 1.
In order to include additional phenotypes, we relaxed the

stringency in some of the analyses by lowering the threshold to
t . 4, which corresponds to a point-wise P-value of ,3.7 £ 1025

(lod ,3.4) and approximately P ¼ 0.05 genome-wide. There are
984 expression phenotypes that exceed this threshold, far more than
the ,178 false positives expected by chance.

Cis and trans regulators of expression phenotypes
We consider the regions that are linked to the expression levels to be
regulatory regions or ‘regulators’ of the expression phenotypes (of
the target genes). We examined the regulatory regions for the 142
expression phenotypes with the most significant evidence of link-
age, and for each quantitative phenotype we distinguished between
apparently cis- and trans-acting regulators. We restricted the cat-
egory of cis regulators to those that mapped within 5 megabases
(Mb) of the target gene. This relatively large region was chosen to
allow for imprecision of linkage and to include long-range regula-
tors, as some cis-acting regulators act over megabase distances14,15.
All other significant linkage represents trans regulators. By these
definitions of cis and trans, we found the following distribution of
phenotypes: 27 (19%) have only a cis-acting transcriptional regu-
lator, 110 (77.5%) have only a trans-acting regulator, and 5 (3.5%)

Table 1 Expression phenotypes with the strongest evidence of linkage from
genome scans

P-value Gene Location Cis/trans
.............................................................................................................................................................................

,10211 ICAP-1A 2q25 Cis*
,10211 TM7SF3 12p11 Cis*
,10210 HSD17B12 11p11 Cis
,10210 CHI3L2 1p12 Cis
,10210 PSPHL 7p11 Cis
,10210 DSCR2 21q22.2 Trans
,10210 CBR1 21q22.1 Trans
,10210 HOMER1 5q14 Trans
,1029 DDX17 22q13 Cis
,1029 ZP3 7q11 Cis
,1029 IL16 15q25 Cis
,1029 ALG6 1p31 Trans
,1029 TNFRSF11A 18q22 Trans
.............................................................................................................................................................................

*The most extreme P-values occurred at SNPs located .5Mb from the gene, but linkage
evidence within 5Mb of target gene was also highly significant (P , 4.3 £ 1027).
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have two regulators (two phenotypes with a cis- and a trans-acting
regulator, and three phenotypes with two trans-acting regulators).

Examples of the genome scan results for several expression
phenotypes are shown in Fig. 1. We detected multiple regulators
for only a small proportion of expression phenotypes, possibly
because individual regulators make a smaller contribution when
several regulators influence the expression level of a gene. Thus,
some true regulators would not meet our criterion of
P , 4.3 £ 1027 for evidence of linkage. We therefore also examined
the 984 expression phenotypes with at least one marker significant
at the reduced stringency of P , 3.7 £ 1025. Among these, we
found 164 (16%) with multiple regulators of expression level, an
appreciably higher percentage than the 3.5% found with the more
stringent threshold. Multiple trans-acting regulators were found for
152 phenotypes, with both cis- and trans-acting regulators for the
remaining 12.

Master regulators of transcription
In addition to genomic regions with regulators that affect single
phenotypes in cis or in trans, we found genomic regions containing
transcriptional regulators that influence multiple expression
phenotypes. We divided the autosomal genome into 491 windows
of 5 Mb and determined the number of regulators mapping to each
window. We began by examining the regulators for the 142
expression phenotypes with P , 4.3 £ 1027. We found windows
that contained many more ‘hits’ than expected by chance. If
regulators for these phenotypes were distributed at random across
the genome, the probability of six or more hits per window would be

less than 6 £ 1025 and we would not expect to see any windows with
more than four hits. Instead, we found two hotspots with six or
more hits (P , 0.03 after Bonferroni correction): seven phenotypes
mapped to one window on chromosome 14, and six phenotypes
mapped to one window on chromosome 20.

When we relaxed our linkage criterion to include the 984 regions
with P , 3.7 £ 1025, we found many more expression phenotypes
whose regulation mapped to shared hotspots. The two regions
indicated above contain trans-acting regulators for the most
expression phenotypes (Fig. 2a). Regulation for 31 of the 984
expression phenotypes mapped to the 5-Mb window on chromo-
some 14 (14q32), and regulation for 25 phenotypes mapped to the
window on chromosome 20 (20q13).

We consider the existence of hotspots to be evidence for master
regulators of the baseline level of gene expression. The mapping was
done without considering possible relationships among phenotypes,
but the shared expression control regions suggest co-regulation. We
therefore examined the correlation in expression levels of the 31 and
25 target genes corresponding to the two master regulatory regions.
The expression levels in 94 CEPH grandparents were used. In
permutation tests with 1,000 replications, we found that the pair-
wise correlation between any two expression phenotypes did not
exceed 0.52. We therefore set 0.52 as the threshold for correlation by
chance (nominal P ¼ 0.001). Hierarchical clustering was used to
summarize these results graphically and group genes by the corre-
lations of their expression levels. We looked for clusters of
expression phenotypes whose members have pairwise correlations
that all exceed 0.52. Among the 31 target genes whose regulators

Figure 1 Genome scans for ten expression phenotypes. Chromosomal location of the

regulated (target) gene is given in parentheses. The top eight panels show examples of

linkage with cis- or trans-acting transcriptional regulators. The bottom two panels show

examples of phenotypes regulated by several unlinked genetic determinants.
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mapped to the chromosome 14 hotspot, we found one such
regulated cluster with 14 genes, and three additional clusters each
with two genes (Fig. 2b). Similarly, among the 25 phenotypes whose
regulators mapped to the chromosome 20 region, we found one
cluster of four and two clusters of two genes whose members have
pairwise correlations that all exceed 0.52. The correlation in
expression level of these genes supports the observation that they
share common transcriptional regulators. However, the regulatory
regions defined by mapping are still large, and there might be
subgroups of co-regulated phenotypes that are influenced by distinct,
but very closely linked, regulators.

Some sets of closely linked genes are influenced by the same cis
regulators, and have correlated expression profiles16–18. In our data,

some target genes whose expression levels map to a trans-acting
master regulatory region are also located very close to each other.
For example, among the target genes whose expression maps to the
regulatory region on chromosome 14 are four genes (MMP24,
C20orf24,RPN2 andTOP1) found in a 6-Mb region of chromosome
20 (UCSC Genome Browser, version hg15). In addition, among the
target genes of the regulatory region on chromosome 20 are two
genes (ITM2B, RB1) separated by less than 50 kilobases (kb) on
chromosome 13. These observations reflect a complex regulatory
network where master transcriptional regulators affect baseline
expression levels of many genes that have similar expression profiles,
and in some cases, reside close together on human chromosomes.

Family and population association analysis
Unlike linkage in trans, cis linkage of phenotypes immediately
suggests a small region containing the regulatory element. This
expectation led us to carry out follow-up studies with markers at
several of the regulated genes. Among the 27 phenotypes with cis
regulators (at P , 4.3 £ 1027), 17 were followed up by typing two
or more additional SNP markers within or near the target gene. In
each case, the expression data were used for both family-based and
population-based analysis (Table 2). Analysis of the members of the
14 CEPH pedigrees by the Quantitative Transmission Disequili-
brium Test (QTDT)19 showed significant evidence (P , 0.01) for
the combined presence of linkage and association at 14 (82%) of
these 17 genes, strengthening our conclusions in several ways. First,
the QTDT results confirm the mapping in these cases to the target
genes. Second, the results therefore support the inferred regulation
in cis. Finally, the results also imply differential allelic expression
(see below).

These conclusions were extended by regression analysis of data
from 94 unrelated CEPH grandparents. Marked associations were
found for many genes between expression phenotype and closely
linked SNPs. Figure 3 shows examples with leukocyte-derived
arginine aminopeptidase (LOC64167 or LRAP) and 3-ketoacyl-
CoA reductase (HSD17B12). The corresponding results for linear
regression analysis are given in Table 2. Among the 17 phenotypes
tested, the same 14 found to be significant by QTDT showed highly
significant evidence (P , 0.005) for population association
between gene expression level and a SNP located within or near
the gene (Table 2), directly demonstrating differential allelic
expression. For two genes (TM7SF3, ICAP-1A) that did not show
significant association, the linkage peaks were exceptionally broad
as well as high, and spanned more than 10 Mb. Although evidence at
the target gene itself was also statistically significant, the highest
linkage peak was located .5 Mb away.

Differential allelic expression
The degree of differential allelic expression detected varies con-
siderably. The largest effect was found for the phosphoserine
phosphatase-like (PSPHL) gene, where there was an approximately
eightfold difference in mean expression level between individuals
homozygous for different alleles of a SNP marker (rs6700). In
contrast, for a SNP (rs7176604) in the coding region of cathepsin
H (CTSH), the fold difference between CC and TT homozygotes
was 1.44 (Table 2). To follow up this latter finding, we used allele-
specific quantitative real-time polymerase chain reaction (qRT–
PCR) to compare the expression of the two alleles of that marker in
30 heterozygous individuals. We found similar allelic differences in
expression level (mean fold difference ¼ 1.6; s.d. ¼ 0.45). The
QTDT results for CTSH strongly support this finding
(P ¼ 3 £ 1026). Thus, several related approaches confirm the allelic
differences in cis, and imply linkage disequilibrium between a SNP
genotype and a nearby determinant that influences expression
phenotype.

The region of linkage disequilibrium associated with differential
allelic expression of some phenotypes extends for large distances, up

Figure 2 Master transcriptional regulators. a, Distribution of significant linkage peaks

(P , 3.7 £ 1025) in 5-Mb windows across the autosomal genome. Arrowheads indicate

the two windows (located on chromosomes 14 and 20) that contain regulators for the

most expression phenotypes. b, Dendrogram representing hierarchical clustering of

genes whose transcriptional regulators map to one 5-Mb window. Target genes for the

hotspot of regulation on chromosome 14q32 are shown. Expression levels of genes with

branches connected to the right of the dotted line are correlated at P , 0.001 (see text).
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to several hundred kilobases. For example, two SNPs at HSD17B12,
separated by ,172 kb, show nearly identical correlations with gene
expression level (Fig. 3). This strong linkage disequilibrium makes it
difficult to narrow down the region that contains the sequence
variant(s) responsible for variation in the expression level of
HSD17B12. In order to determine whether studying other popu-
lations (which may have different linkage disequilibrium structure)
can solve this problem, we examined the linkage disequilibrium
pattern for the same genomic region in African-Americans and
found much less linkage disequilibrium for the SNPs shown.
Standardized linkage disequilibrium coefficient D

0
is estimated as

1.0 in CEPH, but only 0.116 in African-Americans. In general,
smaller linkage disequilibrium will make it easier to localize deter-
minants20.

For the phenotypes listed in Table 2, we estimated how much of
the variation in expression phenotype could be attributed to cis-
acting regulators. We used the results of the linear regression
analysis, and calculated R2 (the customary estimate of variation

explained by regression; see Methods). The last column of Table 2
shows the estimates obtained. These may be thought of as the
‘heritability’ attributable to the chromosomal region that is in
linkage disequilibrium with the SNP tested, and therefore indicate
what part of the variation in expression is influenced by cis-acting
genetic determinants. For four of the genes in Table 2, this fraction is
large—greater than 0.50. On the other hand, the fraction not
explained in this way is also of interest, as it includes non-genetic
causes (environmental differences, measurement variation) and
possibly other genetic differences not in linkage disequilibrium
with the SNP.

Discussion
Our study combined microarray expression data with publicly
available SNP genotype data, and applied genome-wide mapping
techniques to identify the chromosomal regions linked to the gene
expression phenotypes. Level of gene expression is thus a trait like
many others, and is amenable to genetic analysis. The classical

Table 2 Properties of genes whose expression level is regulated by cis-acting determinants

Gene Location Peak
(cis) P-value

(genome scan)

SNP
(rs or ABI hCV

identifier)

Highest/lowest
ratio†

Population
association‡

P-value

QTDT
P-value

Variation
explained
(R2)

...................................................................................................................................................................................................................................................................................................................................................................

LOC64167 5q15 1 £ 1027 4869311 7.02 2.3 £ 10219 6 £ 10224 0.60
HSD17B12 11p11 2 £ 10211 1061810 1.68 5.9 £ 10218 6 £ 10222 0.57
RPS26 12q13 2 £ 1029 1506440 1.47 1.7 £ 10217 1 £ 10215 0.55
IRF5 7q32 2 £ 1028 2280714 2.33 2.0 £ 10216 2 £ 10219 0.52
CSTB 21q22 2 £ 1029 26539999 1.74 2.9 £ 10212 1 £ 10213 0.42
PSPHL 7p11 3 £ 10211 6700 8.43 3.5 £ 10212 3 £ 10214 0.41
CHI3L2 1p12 3 £ 10211 755467 3.69 1.7 £ 10211 8 £ 10212 0.39
CPNE1 20q11 1 £ 1027 6060516 2.57 6.8 £ 10211 4 £ 10213 0.38
CTBP1 4p16 2 £ 1029 2279282 1.70 6.0 £ 10210 2 £ 10213 0.34
PPAT 4q12 2 £ 1027 2030364 1.56 3.1 £ 1026 8 £ 1025 0.21
VAMP8 2p11 9 £ 1028 6547625 1.38 4.8 £ 1025 2 £ 10210 0.17
CTSH 15q25 7 £ 1029 7176604 1.44 1.5 £ 1024 3 £ 1026 0.15
IL16 15q26 3 £ 10210 4128767 1.43 5.0 £ 1024 0.0029 0.13
ZP3 7q11 9 £ 10210 306191* 2.70 2.3 £ 1023 0.0011 0.10
GSTM2 1p13 3 £ 1028 668413 NA 0.092 .0.5 0.03
TM7SF3 12p11 ,10211 3134726* NA 0.42 .0.5 ,0.01
ICAP-1A 2p25 ,10211 434836* NA 0.79 .0.5 ,0.01
...................................................................................................................................................................................................................................................................................................................................................................

*ABI hCV SNP identifier.
†Ratio of mean expression levels of homozygotes for SNPs. NA indicates that the regression was not significant.
‡P-value for regression of expression level on genotype.

Figure 3 Regression of expression phenotype of LOC64167 and HSD17B12 on nearby SNPs. For LOC64167, the distance between SNP markers rs4869311 and rs1230381 is 30 kb.

For HSD17B12, the distance between hCV289210 and rs1061810 is 172 kb.
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linkage strategy allowed us to identify numerous transcriptional
regulatory loci, without any prior knowledge of the regulatory
mechanism. It uncovered a complex network of regulation that
includes determinants that influence expression of nearby genes
(cis-acting), determinants located on other chromosomes (trans-
acting), and hotspots of genetic determinants that affect the
expression of many genes. The approach is reliable and accurate;
results from association and differential allelic expression support
the linkages in cis, suggesting that findings of linkages in trans are
also valid. Our approach detects differential allelic expression
without requiring that sequence variants be located in coding
regions.

Many studies have shown that gene expression levels differ
according to developmental stages, health and disease, and physio-
logical or other biologically relevant states. However, little is known
about natural variation in human gene expression, especially as a
result of germ-line differences. Normal variation in gene expression
is likely to account for a substantial part of human variation. It will
therefore contribute to differences that are important for under-
standing essential aspects of human biology, including networks of
interacting genetic effects, evolution, and susceptibility to complex
diseases.

Mapping quantitative traits and unravelling transcriptional con-
trol are challenging, even when applied to one phenotype at a time.
In studies of typical quantitative human traits like blood pressure or
serum levels of metabolites, strong effects are rarely found. Here we
have coupled genomic technologies for expression profiling with
genome-wide genetic mapping using SNP markers, and shown that
specific chromosomal regions contain germ-line determinants that
regulate gene expression. These approaches and results show how it
will be possible to dissect the genetic contribution to natural
variation in human gene expression. A

Methods
CEPH samples and expression phenotyping
The data were from members of 14 CEPH families (CEPH 1333, 1340, 1341, 1345, 1346,
1347, 1362, 1408, 1416, 1418, 1421, 1423, 1424 and 1454). Expression and marker
genotype data were available for all parents and a mean of eight offspring per sibship
(range 7–9). (Data from grandparents are not used in SIBPAL.)

For the expression analysis, RNA was extracted from lymphoblastoid cells of each
individual and hybridized onto Affymetrix Genome Focus Arrays per the manufacturer’s
protocol. Expression intensity was scaled to 500 and transformed by log2.

Genotypes
SNP genotypes for 2,756 autosomal SNP markers for individuals whose lymphoblastoid
cells were phenotyped were downloaded from The SNP Consortium database of the SNP
Consortium Linkage Map Project (http://snp.cshl.org/linkage_maps/). Most SNP
Consortium SNPs are clustered in very closely linked sets (two or three SNPs within
100 kb) with average intercluster distance approximately 3 Mb. We used PedStat21 to check
for mendelian inconsistencies. This resulted in the removal of 815 genotypes at 237
distinct SNP markers.

Analysis of linkage and association
Multipoint genome-wide linkage analysis was done by SIBPAL in S.A.G.E11. We used the
recommended option (‘W4’ SIBPAL) for weighting pairwise phenotypic differences
between siblings22. SIBPAL determines evidence for linkage at each SNP from regression of
the phenotype difference between siblings on the estimated proportion of marker alleles
shared identical-by-descent between siblings; the result is reported as a t-value with
corresponding significance, as given in the text. Point-wise significance was converted to
genome-wide significance by use of the expression in ref. 13 (see http://www.imbs.mu-
luebeck.de/pub/silcLOD/). In permutation analysis by S.A.G.E. of the results for the 142
phenotypes (t . 5, P , 4.3 £ 1027), we found one phenotype with one t-value .5
among 1,000 replicates; 100,000 additional permutations of this phenotype yielded two
more t-values . 5. Further testing with 100,000 replicates for eight phenotypes (three
with 4.1 £ 1027 , P , 4.3 £ 1027) yielded no t-values .5.

For association analysis, the log2-transformed expression level of 94 unrelated
individuals (CEPH grandparents), as the dependent variable, was regressed on SNP
genotype (coded 0, 1, 2). Conventional analysis of linear regression was carried out.R2 was
estimated for each phenotype/SNP combination as the ratio of regression sum of squares
to total sum of squares.

Master regulator probability
The autosomal genome was divided into 491 windows of 5 Mb each (with smaller
windows at the ends of chromosomes). For each of 142 phenotypes, we considered all

SNPs with t . 5, P , 4.3 £ 1027. Any window with one or more such SNP was counted as
having one ‘hit’ for that phenotype. Some phenotypes have more than one hit in the
genome because some have multiple linkage peaks, or because peaks for some phenotypes
are broad and span adjacent 5-Mb windows, in which case, each window is counted as
having one hit. There were 318 hits defined this way, representing linkages for the 142
phenotypes. We assumed that if the hits were distributed randomly across the genome,
their distribution over windows would be approximately Poisson, with mean 0.65 (318 out
of 491).

Clustering
The similarity of the expression phenotypes that mapped to the hotspots of transcriptional
control on chromosomes 14 and 20 was assessed by Pearson’s correlation (absolute value),
and the phenotypes were grouped by hierarchical clustering using the average linkage
method. The significance of the correlation between genes was assessed by permutation.
For each permutation, the expression levels of the 3,554 genes for each individual were
permuted, and all 3,554 £ 3,553/2 pairwise correlations were calculated. Among the 1,000
permuted sets, the highest pairwise correlation coefficient was 0.52.

SNP genotyping and allele-specific RT–PCR
SNPs in the region of the genes with cis regulators were identified using NCBI dbSNP or
Applied Biosystems (ABI)/Celera Discovery System. DNA samples were genotyped using
ABI TaqMan technology and the 7900 HT Sequence Detection System. PCR was carried
out with primer and probe sets (ABI Assay-on-Demand and Assay-by-Design) according
to the manufacturer’s protocols. Allele-specific RT–PCR was performed using similar
protocols with complementary DNA samples as template.
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