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There has never been a better time to analyse molecular 
variation data from natural populations. We are in the 
midst of an explosive growth in both the amount of 
molecular data being generated and the computational 
power available to analyse them. An increasing variety 
of computational methodologies are now available to aid 
in analysing and interpreting such data. However, the 
speed with which the field is changing means that pre-
viously useful methods will be less successful in future. 
As such, it is perhaps time to take a look at where the 
field is, where it is heading, and to contemplate 
the ways in which computational methodologies are 
changing to meet the challenges of current and forth-
coming data. In particular, we focus on the move from 
exact to more approximate methods — that is, on the 
growing need to use simplified models or summaries 
of the data.

It is impossible to survey all the applications of such 
methods. Consequently, we have chosen to concentrate 
on the area that has seen perhaps the greatest number of 
applications: population genetics and the methods that 
have been developed to answer the questions that arise 
within species, rather than between species. 

One of the aims of population genetics is to 
understand the forces that shape patterns of molecu-
lar genetic variation. Over the past 40 years, this 
variation has been assayed in different ways. The first 
method identified electrophoretic variants1. Restriction 

fragment length polymorphisms (RFLPs) soon followed2,3. 
Subsequently, DNA sequence variants were identified 
in Drosophila melanogaster4, and these studies were 

followed by surveys of sequence variation in human 
mitochondrial DNA5,6 and Y chromosomes7,8. Variation 
at autosomal loci in larger populations is often based on 
microsatellite marker loci9,10. More recently, the advent of 
fast sequencing and genotyping technologies has made 
the collection of large data sets of genetic variation a 
reality in various organisms11–13.

From its inception, theoretical population genetics 
has had strong quantitative underpinnings14,15. From a 
methodological perspective, the focus of this field has 
been to develop detailed stochastic models to describe 
the evolution of allele frequencies over time at particu-
lar loci. A model is typically a relatively simple math-
ematical formulation of the biological processes that 
produce our data. A model incorporates parameters 
of interest, such as mutation or recombination rates. 
All models that are discussed here are stochastic: there 
is no predetermined outcome, but instead many out-
comes are possible. Traditionally, models in theoretical 
population genetics have allowed researchers to predict 
how patterns of variation would be affected by forces 
such as genetic drift, selection, migration and recombi-
nation. Although understanding these models in a ‘pre-
computational’ environment led to several interesting 
developments in probability, such as the development 
of coalescent theory (see later discussion), the mod-
ern approach is to make intensive use of simulation 
methods. This approach is largely motivated by the 
current rapid growth in computational power and 
the concurrent increase in the quantity and complexity 
of data that are being collected. 
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Restriction fragment length 
polymorphisms 
Variations between individuals 

in the lengths of DNA regions 

that are cut by a particular 

endonuclease.

Microsatellite marker loci 
Polymorphic loci at which short 

DNA sequences are repeated a 

varying number of times.

Modern computational approaches 
for analysing molecular genetic 
variation data
Paul Marjoram* and Simon Tavaré*‡

Abstract | An explosive growth is occurring in the quantity, quality and complexity of 

molecular variation data that are being collected. Historically, such data have been 

analysed by using model-based methods. Models are useful for sharpening intuition, for 

explanation and for prediction: they add to our understanding of how the data were 

formed, and they can provide quantitative answers to questions of interest. We outline 

some of these model-based approaches, including the coalescent, and discuss the 

applicability of the computational methods that are necessary given the highly complex 

nature of current and future data sets.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 7 | OCTOBER 2006 | 759

 F O C U S  O N  S TAT I S T I C A L  A N A LY S I S



© 2006 Nature Publishing Group 

 

Stochastic model 
A model that is used to 

describe the behaviour of a 

random process.

Coalescent 
A popular probabilistic model 

for the evolution of ‘individuals’. 

Individuals might be single 

nucleotides, mitochondrial 

DNA, chromosomes and so on, 

depending on the context.

There are two different, but related, uses of the word 
‘simulation’ in this context. The first involves simulating 
the data under a stochastic model, thereby producing 
data sets that are representative outcomes of the evo-
lutionary process; data sets that result from the same 
model might differ because of the effects of chance. For 
example, this approach might be used to examine the 
degree of variability that is possible in data that have 
been produced under a proposed model of human 
evolution. Do independent runs of the evolutionary 

scenario result in data with similar features, or do data 
vary substantially between replicates16? The second 
sense in which we use the word simulation refers to the 
use of simulation-based methods of statistical inference 
to estimate parameters, such as mutation or recombina-
tion rates, from a particular example of the evolutionary 
process that is described by the model. Here we start 
with a single, observed data set and use simulation of 
data under a variety of parameter values in an attempt 
to infer the relative likelihood of particular parameter 
values, given the data.

In this review we discuss the main model-based meth-
ods that can be applied to large population genetic data 
sets of the types that are alluded to above. These methods 
involve an interplay between the two uses of simula-
tion that we have described. Some recent successful 
applications of these methods are shown in BOX 1.

We begin by introducing the most common population 
genetics model, the coalescent. In brief, the coalescent 
provides a theoretical description of the ancestral rela-
tionships that exist among a sample of chromosomal 
segments (such as DNA sequences) taken from a popu-
lation. Its particular merit is that it ignores lineages that 
do not appear in the sample and therefore provides for 
the efficient simulation of data. To understand how 
models such as the coalescent can be used in a statisti-
cal analysis, we need to outline the general approach of 
model-based analysis; we give an example of the use 
of these methods by estimating the mutation rate and time 
to ‘mitochondrial Eve’ (mtEve). We then describe in some 
detail the modern simulation-based methods that have 
exploited a model such as the coalescent to infer demo-
graphic parameters. We conclude with a discussion of the 
present and future developments in statistical modelling. 
The paper will be useful to the non-specialist, in that the 
particular focus of the review is but one example of 
the many areas in which the quantity and complexity 
of data is rapidly increasing. The methods and develop-
ments we discuss below have parallels that are widely 
applicable in the genetics community.

The coalescent: a population genetics model

As discussed in the introduction, stochastic models 
have had an important role in population genetics for 
many years. Simulating models under varying scenarios 
(that is, parameter values) allows us to explore the effect 
that changing those parameters has on the data that 
might typically be observed. As computational power 
has improved, models have grown more complex, and 
have therefore become more realistic. Nonetheless, 
a model must be simple enough to be computation-
ally tractable. For many years, the coalescent17–19 has 
been the basic stochastic model in the analysis of 
genetic variation data that have been obtained from 
population samples. 

Basic features of the coalescent. The coalescent provides 
a description of the genealogical relationships among 
a random sample of DNA fragments, and it provides a 
way to simulate samples of such fragments under many 
genetic and demographic scenarios. Rather than simulate 

Box 1 | Successful applications of model-based approaches

Here we highlight some successful ongoing applications of the model-based approaches. 
We also give some representative references of a computational nature.

Mutation and recombination rates
An early focus of model-based approaches was to estimate population parameters such 
as mutation and recombination rates. Using computational methods such as those 
reviewed in this paper, Griffiths and Tavaré38 and Kuhner et al.79 developed estimators of 
mutation rate. A wide variety of estimators have been developed to estimate the 
recombination rate. Some of these are surveyed in REFS 80,81, but we highlight one or 
two here. In particular we draw attention to the ‘composite-likelihood’ estimators82,83, 
which use approximate methods similar to the approaches that are discussed in the 
section on approximate Bayesian computation. 

Demographic parameters
There has also been great interest in model-based inference relating to demography. For 
example, Beerli and Felsenstein developed a model-based procedure for estimating 
migration rates84; Griffiths and Tavaré39 and Kuhner et al. 85 developed methods for 
identifying population-size fluctuations; whereas Pritchard et al. 86 introduced the 
popular Structure software for identifying population substructure and assigning 
samples to subpopulations.

Selection
Another ongoing focus of research has been the development of methods for the 
discovery of regions of the genome that are under selective pressure. For example, 
Voight et al. 87 identified widespread evidence for recent selective events in the HapMap 
data from the International HapMap Project. Pollinger et al. 88 used a model-based 
approach to identify selective sweeps in dogs.

Ancestral inference
Historically, there has been interest in inferring the time to the most recent common 
ancestor and the age of specific mutations. The most famous example of the first is the 
large body of literature regarding the identity, location and age of mitochondrial Eve5,32. 
Examples of the second can be found in REFS 30,31.

Structure of the genome
The HapMap project12 has led to an increasing effort to understand the structure of the 
genome. For example, Nordborg and Tavaré89 surveyed the behaviour of linkage 
disequilibrium in the human genome.

As the length of the chromosomal region for which data are collected grows, the task 
of reconstructing haplotypes from SNP data becomes more difficult. Perhaps the most 
popular tool for this is the PHASE software, which was first introduced by 
Stephens et al.90 and refined by Scheet and Stephens91 as the recently released fastPHASE.

Another particular focus of present-day research is the identification of recombination 
hot spots. There are many recent and ongoing projects, of which we mention a 
representative few: Crawford et al.92 investigated the pattern of fine-scale 
recombination-rate variation in the human genome and found widespread variation;  
McVean et al.83 used a Markov chain Monte Carlo scheme to estimate recombination-rate 
variation; Fearnhead and Smith93 derived an approximate method for estimating 
recombination rate and use it to detect hot spots; Li and Stephens65 used an alternative, 
approximate approach to the same problem; Myers et al.94 identified over 25,000 
recombination hot spots, genome-wide; and Tiemann-Boege et al.95 used approximate 
Bayesian computation to estimate recombination rates from sperm-typing data.

Human association studies
An important area of interest is that of association studies for mapping disease genes 
(which are discussed in the review by Balding in this issue96).
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Selective sweep 
The increase in the frequency 

of an allele (and closely linked 

chromosomal segments) that is 

caused by selection for the 

allele. Sweeps initially reduce 

variation and subsequently 

lead to increased 

homozygosity.

Likelihood 
The probability of the data 

under a particular model, 

viewed as a function of the 

parameters of that model (note 

that data discussed in this 

paper are discrete).

Mitochondrial Eve 
The most recent maternal 

common ancestor of the 

entire human mitochondrial 

population.

Gene conversion 
A non-reciprocal 

recombination process that 

results in the alteration of the 

sequence of a gene to that of 

its homologue during meiosis.

Admixture 
Gene flow between 

differentiated populations.

Maximum likelihood 
A statistical analysis in which 

one aims to find the parameter 

value that maximizes the 

likelihood of the data.

Test statistic 
A numerical summary of the 

data that is used to measure 

support for a null hypothesis. 

Either the test statistic has a 

known probability distribution 

(such as χ2) under the 

null hypothesis, or its null 

distribution is approximated 

computationally. 

Tajima’s D 
A statistic that compares the 

observed nucleotide diversity 

to what is expected under a 

neutral, constant population-

sized model.

the evolution of a sample forwards in time, the coalescent 
models the evolutionary process by going backwards 
along the lineages that gave rise to that sample to iden-
tify points at which pairs of fragments join (that is, 
coalesce) at a common ancestor fragment. We provide a 
brief description of the coalescent in BOX 2, together with 
some useful reviews of coalescent theory that provide a 
deeper introduction than space allows here. 

The simplest form of the coalescent occurs when 
fragments inherit their genetic material from only one 
parental fragment, without recombination (BOX 2a–c). 
The canonical example is mitochondrial DNA. In such 
a setting, the topology of the ancestry is a tree. There 
are two key parameters. The first is the rate at which 
the lines of ancestry within the tree coalesce. This 
depends on the probability that two fragments have the 
same parental fragment in the previous generation; 
the rate is inversely proportional to the population size. 
However, for mathematical convenience, the standard 
formulation of the coalescent is run on a transformed 
timescale in which, on average, for any pair of frag-
ments, there is one coalescence event for each unit 
of time. In this article we cite all times in coalescent 
units to avoid arcane discussions about population 
sizes. The second parameter reflects the rate at which 
mutations occur.

Several factors complicate the structure of the 
coalescent in more realistic settings; these include 
demography, recombination, gene conversion and selec-
tion. A full discussion of these is outside the scope of 
this article (we refer readers to REFS 20–22). Instead, we 
focus on the effects of recombination, which are illus-
trated in BOX 2d. Recombination events cause lines of 
ancestry to bifurcate as we move up the page (back in 
time). A new parameter is introduced to reflect the rate 
at which this occurs. As indicated in BOX 2d, the coa-
lescent topology is now a graph rather than a tree, but 
it remains the case that the ancestry of any particular 
position along the DNA fragment can be described by 
a coalescent tree. The trees that apply at different posi-
tions are correlated, with the extent of the correlation 
decreasing as the distance between the two positions 
increases. It is this correlation that induces linkage dis-
equilibrium, the non-random association of alleles at 
different positions along the fragment. 

The standard tool for simulating the coalescent is 
Hudson’s ms23. This program simulates typical data 
sets that result from the coalescent model with user-
specified parameter values. It allows for features such 
as population growth, subdivision and admixture. 
Many other programs for simulating data, such as the 
SIMCOAL program (developed by Excoffier et al., see 
online links), have been devised to deal with more com-
plicated demographic models, for example, or for rapid 
simulation24,25. Not everything can be simulated back-
wards through the coalescent, particularly some forms 
of selection. This limitation has prompted a return 
to forward simulation — exemplified by simuPOP26 
and by the FPG program of Hey et al. (see online links) 
— which has been made feasible by the recent marked 
increases in computational power.

Applications of the coalescent. The coalescent has tra-
ditionally been used in several ways. At its simplest, it 
is used as a simulation tool. It provides a concise, effi-
cient way to simulate multiple data sets under plausible 
evolutionary scenarios (that is, to simulate data in the 
first sense that was defined in the introduction). Data 
that are simulated using the coalescent are also used to 
underpin methods for statistical analysis, such as those 
we discuss later. The main limitations of the coalescent 
are, for example, that it assumes rather simplistic models 
for population structure and selection,  and can become 
highly computationally intensive when simulating long 
chromosomal regions24. 

One of the classical statistical problems in population 
genetics has been to estimate population parameters such 
as mutation, migration, recombination and growth rates. 
This has usually been approached in a classical statistical 
style, by treating the data as though they were generated by 
a suitable stochastic model (such as the coalescent), and 
estimating the parameters of this model. To do this, the 
traditional statistical paradigm of maximum likelihood has 
often been used, classical examples being the celebrated 
results of Ewens27 in estimating the mutation rate from 
electrophoretic data, and Watterson28, concerning the 
estimation of parameters from DNA sequence data. 
The ability to generate ever-richer snapshots of vari-
ation soon revealed the problem: formal statistical 
methods had to become much more computationally 
orientated. 

Another common problem in the literature concerns 
tests of neutrality: do a particular set of gene frequencies 
correspond to what would be expected under neutral 
evolution? A common approach is to devise a test statistic 
with a distribution that is sensitive to departures from 
neutrality, and then find (either explicitly or by simula-
tion) the distribution of the statistic under neutrality, 
assuming a particular model for the evolution of the data. 
The classical example of this for DNA sequence data is the 
collection of tests that are based around Tajima’s D29. 

The last class of statistical problems addressed in the 
population genetics literature concerns issues such as 
the estimation of the age of a mutation30,31, or the time 
to the most recent common ancestor (TMRCA), of a set 
of sequences5,32. Although several approaches have been 
used to address such questions, the typical strategy has 
been to calculate the probability distribution of the age, 
conditional on the observed data. 

Examples of model-based analysis

We now introduce simple examples to explain model-
based analysis techniques. These examples will be used 
throughout the paper for this purpose. The first example 
is inference concerning the TMRCA of a given sample 
of sequences. The concept of the TMRCA is introduced 
in BOX 2. The second example concerns estimation of 
the mutation rate. We use mitochondrial data in our 
examples.

In a model-based analysis, we have a model that 
reflects, to an acceptable degree of accuracy, how the 
data were generated. The behaviour of the model is 
determined by the values of a set of parameters. We then 
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Box 2 | The coalescent

Here we introduce the most popular population genetics model: the coalescent. We begin by introducing the simplest 
form, in which there is no recombination, and then discuss the version that applies in a more realistic setting.

Coalescent without recombination 
Panels a–c illustrate the intuition that underlies the coalescent using a population of DNA fragments that are evolving 
according to a Wright–Fisher model — that is, in the absence of recombination, in a population of constant size.

Panel a shows a schematic of an evolving population. In this simplified representation of evolution, each row corresponds 
to a single generation, and each blue circle denotes a fragment in that generation. Generations are replaced in their 
entirety by their offspring, with arrows running from the parental fragment to the offspring fragment. The present day is 
represented by the bottom row, with each higher row representing one generation further back into the past.

Panel b indicates the ancestry of a sample from the present day. In this example, six fragments, indicated in red, are 
sampled from the current generation. The ancestry of this sample is then traced back in time (that is, up the page), and is 
indicated in red. 

Panel c highlights one of the key features of the coalescent: all information outside the ancestry of the sample of interest 
can be ignored. The coalescent provides a mathematical description of the ancestry of the sample. As we move back in 
time, the number of lines of ancestry decreases until, ultimately, a single line remains. The most recent fragment from which 
the entire sample is descended is known as the ‘most recent common ancestor’ (MRCA), whereas the time at which the 
MRCA appears is known as the ‘time to the most recent common ancestor’ (TMRCA).

Coalescent with recombination
The coalescent with recombination is illustrated in panel d. In such settings, lines bifurcate, as well as coalesce (join), as 
we move back in time. Here we show the genealogy for three copies of a fragment. By tracing the lineages back in time, we 
observe the following events: in event 1 the green lineage undergoes recombination and splits into two lineages, which are 
then traced separately; in event 2 one of the resulting green lineages coalesces with the red lineage, creating a segment 
that is partially ancestral to both green and red, and partially ancestral to red only; in event 3 the blue lineage coalesces 
with the lineage created by event 2, creating a segment that is partially ancestral to blue and red, and partially ancestral to 
all three colours; in event 4 the other part of the green lineage coalesces with the lineage created by event 3, creating a 
segment that is ancestral to all three colours in its entirety. As the inset shows, the recombination event induces different 
genealogical trees on either side of the break.

Coalescent methods have been reviewed extensively20–22, and there are now book-length treatments97,98 to which the 
reader is referred for further details.

Panel d is modified with permission from REF. 89 © (2002) Elsevier. 
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use results that have been obtained by simulation 
(or analysis) of this model using varying parameter 
values, combined with the properties of an observed 
data set, to estimate parameters. We approach this from 
a Bayesian perspective. A traditional alternative is to 
estimate parameters using the maximum-likelihood 
method. In a Bayesian framework, our prior knowledge 
of the parameters of interest is expressed in terms of a 
probability distribution known as the prior distribution. 
This is modified by the data to produce the posterior 

distribution, which summarizes our updated knowledge 
about the parameters conditional on the observed 
data. We give a formal statement of the model-based 
approach in BOX 3. 

In the context of mtEve, we start with a set of mito-
chondrial DNA sequences obtained from a random sam-
ple of present-day individuals. We start with a model, in 
this case a coalescent with no recombination, and a prior 
distribution for population parameters, such as the muta-
tion rate in the sequenced region. We then calculate the 
posterior distribution of the population parameters, 
the coalescent tree topology and the times of events on 
that topology. In this case, interest focuses on the pos-
terior distribution of the TMRCA (that is, the mtEve of 
the sample33–35) and the mutation rate.

Most models of sequence evolution are sufficiently 
complicated that explicit calculation of the post    e rior 
dis tribution is impossible. In these cases, posterior distri-
butions are usually obtained by using stochastic simulation 
methods. Put briefly, these methods involve repeatedly 
simulating the data under a range of parameter values, and 
then assessing how often the data are produced under the 
differing values of the parameter. We give a more detailed 
explanation in the following section.

Stochastic computation methods

Many approaches are available for constructing a pos-
terior distribution. The choice of the most appropriate 
algorithm is determined by factors such as the com-
plexity of the model and the size of the data set being 
considered. We now outline several of these common 
approaches. We also give some general guidelines regard-
ing the limitations of the methods, and the conditions 
under which each might be an appropriate choice for a 
given data set.

Rejection algorithms. We begin with the simplest of 
the methods: rejection algorithms. This approach 
uses repeated simulation of data under plausible 
evolutionary scenarios. In layman’s terms, a rejection 
algorithm repeatedly simulates data sets (D′) using 
values of the parameter that are randomly sampled 
from the prior distribution. For each D′ that is identi-
cal to the observed data D, the generating parameter 
values are stored (that is, that realization is ‘accepted’) 
and used to construct a posterior distribution for the 
parameters. 

The main advantage of rejection methods is that, 
for most complicated genetics settings, it is far easier 
to simulate than to calculate. Many realistic models 
of evolution lead to distributions for which direct 
calculation is impossible, but which, given the recent 
improvements in computational power, can be simulated 
relatively easily. This leads to the easy development of 
rejection algorithms, with realistic evolutionary mod-
els, for the purposes of inference. An example is given 
in BOX 4.

Rejection algorithms such as those outlined above are 
known to perform poorly when the prior and posterior 

Box 3 | Principles of model-based analysis

We demonstrate the principles of a model-based 
analysis using the example of estimating a mutation 
rate on the basis of a set of mitochondrial DNA 
(mtDNA) sequence data. As is common, the analysis is 
performed here in a Bayesian framework. The aim is to 
estimate the posterior distribution of a parameter, θ, in 
this case the DNA mutation rate, for a data set D. 

For this example, the coalescent will typically be a 
reasonable choice of model. Prior information 
regarding the parameters of interest is incorporated 
into the prior distribution π(θ). We then calculate the 
posterior distribution for the parameter θ that is 
proportional to the product of the prior distribution 
and likelihood, that is, ƒ(θ | D) ∝ ƒ(D|θ)π(θ), using one 
of the methods discussed in this article. 

This calculation is shown in the figure. The three 
components are the data D (illustrated here by 
sequence data for some region), the coalescent 
model and the prior distribution for θ. The model is 
used to calculate the likelihood, that is, the 
probability (P) of the data (the y-axis of the graphs) 
over the range of possible mutation rates (θ; the 
x-axis of the graphs). This is then combined with 
the prior distribution to calculate the posterior 
distribution for the mutation rate. 

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 7 | OCTOBER 2006 | 763

 F O C U S  O N  S TAT I S T I C A L  A N A LY S I S



© 2006 Nature Publishing Group 

 

T C C G C T C T G T C C C C G C C C T G T T C T T A

. . . . . . . C A . T . . . . T . . . . . . . . . .

. . . . . . . . A . T . . . . T . . . . . . . . . .

. . . . . . . . . . T . . . . T . . . . . . . . . .

. . . . . . . . . . T . . . . T . . . . . . . . C .

. T . A . . T . . . T . . . . . T . . A . . . . C .

. T . A . . . . . . T . . . . . . . . A . . . . C .
C T . A . . . . . . T . . T . . . . . A . . . . C .
. T . A . . . . . . T . . . . . T . . A . . . . C .
C T . . . . . . . . T . . . . . T . . A . . . . C .
. T . . . . . . . . T . . . . . T . . A . . . . C G
. T . . . . . . . . T . . . . . T . . A . . . . C .
. T . . . . . . . . . . . . . . T . . A . . . . C .

. T . . . . . . . . T . . . . T T . . A C . . . C .

. . . . . . . . . . T T . . . . . . . . . . T . C .

. . . . T . . . . . T . . . . . . . . . C . . . C .

. . . . T . . . . . T . . . . . . . . . . C . . C .

. . T . . . . . . . T . . . . . . T . . . C . . C .

. . . . . C . . . . T . . . A . . . . . . C . . C .

. . . . . . . . . . T . . . . . . . . . . C . . C .

. T . . . . . . A . . . . . . . T . . A . . . . C .

. T . . . . . . . . T . . . . T T . . A . . . . C .

C . . . . . . . . . T . . . . . . . . . . C . . . .

. . . . . . . . . . T . . . . . . . C . . C T . . .

. . . . . . . . . . T T . . . . . . C . . C T C . .

. . . . . . . . . . . T . . . . . . C . . C T C . .

. . . . . . . C . C . . . . . . . . . . . . . . . .

. . . . . . . . . . T T . . . . . . C . . C . . . .

. . . . . . . C . C . . T . . . . . . . . . . . . .

Nucleotide position in the control region

ID:
1
2
3
4
5
6
7
8
9

11
12

15
16
17
18
19
20
21

24
25
26
27

13
14

22
23

28

10

9 8 1 6 4 9 2 6 0 4 0 9 3 7 1 5 7 1 5 6 1 2 4 9 9 4
6 8 9 0 2 4 6 6 9 9 0 1 3 4 5 5 6 7 7 9 0 0 0 1 3 4

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

Coverage 
The range of values for 

which the probability is 

non-zero.

Summary statistics
A statistic that tries to 

capture a complicated data set 

in a simpler way. An example is 

the use of the number of 

segregating sites as a surrogate 

for a set of DNA fragments.

distributions are markedly different, in particular when 
the degree of overlap in their coverage is small. Intuitively 
speaking, we spend a lot of time generating parameter 
values from the prior distribution, only to discover 
that they rarely lead to data that are anything like the 
observed D. For this reason, we pay close attention to 
the ‘acceptance rate’ of such algorithms: if the acceptance 
rate is so low that it takes an unreasonable amount of 
time to collect a large set of accepted parameter values, 
we use alternative methods. 

As the quantity and, more importantly, complex-
ity of biological data grows, any particular data set is, 
by nature of its complexity, unlikely. If we repeatedly 
simulate from a model under identical conditions 
the outcomes would be different to some degree. So, 
the probability of simulating D′ data that are equal to D 

is very small. This has led to the adoption of more 
approximate methods. For example, we use summary 

statistics, as discussed in BOX 4 and the later section on 
approximate Bayesian computation. 

It is worth noting that rejection algorithms can also 
be used for classical maximum-likelihood estimation, as 
opposed to the Bayesian approach that is described in BOX 4. 
One way to do this is to simulate observations with a 
uniform, or ‘uninformative’, prior distribution; because 
the likelihood is proportional to the posterior distribu-
tion in this case, the mode of the posterior distribution 
gives the maximum-likelihood estimator. An alterna-
tive is to use repeated simulation of data for a range 
of parameter values to approximate the likelihood36. 
Yet another approach is to use importance sampling, 
which is described in the next section.

Box 4 | Rejection algorithms

Basic features 
Rejection methods use repeated simulation of the data 
as a method of inference. Loosely speaking, data are 
simulated under a range of values of the parameter η. 
At each step, if the data that are produced match the 
observed data, D, the parameter value that is being 
generated is ‘accepted’. The set of accepted parameter 
values is then used to approximate the posterior 
distribution.

Details
A standard rejection algorithm would involve carrying out 
the following sequence of iterative steps: 
Step 1. Sample the parameter η randomly from its prior 
distribution. 
Step 2. Simulate data D′ using the model with 
parameter η.
Step 3. Accept η if simulated data D′ = D. Return to step 1.
The set of accepted η values is a random sample from the 
required posterior distribution47.

Example application
The application of a rejection algorithm is illustrated here 
using the data of Ward et al.6 Mitochondrial sequence data 
were collected for a sample of 63 members of the Nuu 
Chah Nulth tribe. The data consisted of 360 bp from 
hypervariable region I of the mitochondrial control region. 

As shown in the figure, there were 28 distinct sequences 
observed, and 26 base positions showed variation within the sample. Dots indicate sequence identity with respect to the 
sequence shown at the top.

We demonstrate the use of rejection algorithms using the posterior distribution of the mutation rate, θ, and the time 
to the most recent common ancestor (TMRCA; see BOX 2), τ, of the data of Ward et al.6

. We let η = (θ,τ) denote both the 
mutation rate for each 360 bp region and the TMRCA. For simplicity, rather than applying the rejection algorithm to 
the entire data set D, we use the number of segregating sites, κ , as a summary statistic of the data.

We proceed according to an iterative scheme.
Step 1. Sample the mutation rate θ from its prior distribution.
Step 2. Simulate a coalescent tree and superimpose mutations according to an appropriate mutation model. Count the 
number of segregating sites, κ ′, and record the height, τ, of the tree.
Step 3. Accept θ and τ if κ ′=κ .

In this example we use a prior distribution for θ that is uniform over the range 0 to 100, and a standard coalescent model. 
The median of the prior distribution of the TMRCA is 1.71 and the median mutation rate is 50. The resulting posterior 
distribution for θ has a median of 7.2, whereas the posterior distribution for the TMRCA has a median of 1.55 on 
the coalescent timescale70. This shows a marked change in the mutation rate that is supported by the data, whereas the 
estimate of the TMRCA is only slightly reduced. We contrast these results with an analysis using the full data in BOX 6.

There are a number of variations of the rejection algorithm that is presented here; for examples, see REFS 32,70. 

Figure modified with permission from REF. 6 © (1991) National Academy of Sciences.
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Markov process 
One in which the probability 

of the next state depends 

solely on the previous state, 

and not on the sequence of 

states before it.

Importance sampling. Importance sampling is best used 
when we have some a priori idea of the nature of the pos-
terior distribution. For example, one might have an idea of 
the range of reasonable parameter values. We then exploit 
this knowledge, which is framed in terms of an ‘importance 
distribution’, to improve computational efficiency. 

In a Bayesian setting, importance sampling samples 
parameter values, which we denote by η, from an impor-
tance distribution ξ(η), rather than the prior distribution 
π(η). The simplest form of importance sampling proceeds 
in a similar way to rejection algorithms: each parameter 
value that is sampled from the importance distribution is 
accepted or rejected as before. However, because we are 
generating η from ξ(η) rather than π(η), we weight the 
accepted η values to compensate. Whereas in standard 
rejection methods each accepted η contributes a mass 
of weight 1 to the posterior distribution, it now contrib-
utes a mass proportional to π(η)/ξ(η). For example, if 
ξ(η) > π(η), we are sampling η more often than we would 
using the prior distribution, and we therefore down-
weight the mass we give to each accepted use of η. If the 
importance-sampling distribution is well chosen (that 
is, sufficiently close to the (unknown) posterior), this 
strategy leads to a reduction in the variance between the 
estimated and actual summary statistics of the posterior 
distribution37. An example is shown in BOX 5.

Importance sampling is also used to evaluate the 
likelihood of the data, as a step towards calculating 
maximum-likelihood estimators. Such algorithms 
gained popularity in the population genetics field for 
estimating mutation and recombination rates. Griffiths 
and Tavaré developed importance-sampling algorithms 

that sampled from the collection of coalescent trees that 
might lead to a given data set38–42. These methods have 
been steadily improved by ensuring that the sampling is 
carried out according to an importance-sampling 
scheme that preferentially samples trees that are more 
likely to have resulted in the data43–45, and have been 
generalized to a variety of other applications46–51. The 
Genetree software of Griffiths et al. (see online links) is 
widely used in this context.

If the importance-sampling distribution is well cho-
sen, the algorithm will perform well, otherwise, it will 
perform poorly. Unfortunately, unless we have a good 
idea of the correct answer from some alternative source, 
it is not obvious whether the algorithm is working well. 
Once again there is significant scope for intuition when 
choosing the importance-sampling distribution48. The 
method is as much art as science. 

Markov chain Monte Carlo methods. Another approach 
for constructing a posterior distribution, which is 
available when the explicit calculation of likelihoods 
is possible, is the Markov chain Monte Carlo (MCMC) 
approach. This method generates samples from the 
posterior distribution, but has the ability to learn 
from previous successes in the sense that, once a well-
supported posterior region for the parameter is found, the 
algorithm, being Markovian, performs a more thorough 
exploration of that area. Therefore, MCMC algorithms 
are likely to perform better than rejection methods when 
the prior and posterior distributions are different. We dis-
cuss the methodology behind one type of MCMC — the 
Metropolis–Hastings52,53 MCMC algorithm — in BOX 6.

Box 5 | Importance sampling

In brief, an importance sampling scheme is one in which the parameter values are sampled according to an 
importance distribution, rather than directly from the prior distribution. This importance distribution is chosen so 
as to make sampling more common at likely parameter values.

A simple example of the application of importance sampling is shown by using the same data set (the Nuu Chah 
Nulth data6) that was introduced in BOX 4. The results that have been obtained by two approaches (rejection 
algorithms and importance sampling) are compared. As in BOX 4, the aim is to construct a posterior distribution for 
the mutation rate θ and for the time to the most recent common ancestor (TMRCA) for a set of DNA sequences.

We begin by using a simple rejection method to create a benchmark to which we compare results. In this case, we 
assume a prior distribution for the total mutation rate θ across the 360 bp sequence. This is uniform on the interval 
[0,100] — in other words, all values of θ that lie within that range are assumed, a priori, to be equally likely; all values 
of θ that lie outside that range are assumed to have a probability of 0. On average, one θ value is accepted for 
every 34 randomly sampled values from the prior distribution. The results for θ and the TMRCA 
agree with those in BOX 4; for example, the median of the posterior distribution for the mutation rate is 7.2 for the 
entire region.

To demonstrate importance sampling, we now consider an analysis in which we use a prior distribution that is 
uniform in the range [18,28]. Using a rejection method, acceptances become rare, averaging one acceptance every 
32,000 iterations. This is because the observed number of segregating sites is extremely unlikely for mutation rates 
in this range (the mutation rate that was found in BOX 4 and by the benchmark assay above was 7.2). To mitigate this 
problem, we use an importance-sampling scheme in which we sample values of θ according to an exponential 
distribution, with values ranging from 18 upwards and with a mean of 20. Acceptances now become more common, 
averaging one acceptance every 10,500 iterations, and, as must be the case, the results agree with those that were 
obtained using the prior distribution that is uniform over the range [18,28].

This simple example demonstrates the general feature that importance sampling can be used to improve the 
performance (in terms of acceptance rate in this example) in a context in which rejection methods perform poorly. 
In general, identifying a useful importance-sampling distribution is difficult. The weights of accepted observations 
can be used to assess the adequacy of the proposal distribution. Ideally, we do not want too many rejections and 
the variance of the weights should be low. For an extended discussion, see REF. 48.
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Stationarity 
The state in which a process 

has become independent of its 

starting position and has 

settled into its long-term 

behaviour. In an MCMC 

context, the process is typically 

assumed to be stationary at 

the end of a ‘burn-in’ period.

Local maxima 
A local region in which a 

distribution takes a value that 

is higher than those taken at 

other nearby points, but which 

is lower than at least one value 

taken in some other, more 

distant region.

Although these algorithms have the advantage of pro-
ducing samples from the posterior distribution, and are 
therefore widely used, several issues make their use dif-
ficult. First, it is difficult to assess whether the chain has 
reached stationarity. Theoretical work54,55 has led to the 
introduction of several standard tool box diagnostics for 
this purpose, incorporated, for example, in the CODA 
package of Plummer et al. (see online links). Second, 
in direct contrast to rejection methods, consecutive 
para meter values are likely to be highly correlated; to 
overcome this limitation, the user will typically resort 
to sampling more widely spaced observations. This 
solution is not completely satisfactory because it is com-
putationally inefficient. Third, in many applications it can 
be time-consuming to code and test such an algorithm. 

The primary difficulty with MCMC algorithms, how-
ever, is the issue of mixing — that is, ensuring that the 
algorithm does not get ‘stuck’ in local maxima. Various 
solutions have been developed to deal with this problem. 
One of the simplest involves running several copies of 
the MCMC algorithm in parallel and starting from dif-
ferent points, with pairs of copies switching states from 
time-to-time56. Allowing copies to swap places occasion-
ally means that the parameter space can be explored 
more efficiently. Other schemes involve augmenting 
the ‘state–space’ of the process: we add another variable 

to the space of parameters in such a way that it is easier 
for the algorithm to accept new states. For example, a 
useful idea is to add a ‘temperature’ to the process. In 
practice, this might involve mixing a ‘hot’ chain, which 
takes more frequent jumps, and a ‘cool’ chain, in 
which jumps are rarer. The addition of temperature allows 
the process to explore the parameter space with less risk 
of getting stuck; however, this greater efficiency occurs 
at the cost of the requirement for a more complicated 
algorithm. In some settings, a single process is run; in 
others, multiple parallel chains are used48,57. Owing to the 
additional complexity involved, these schemes have yet to 
be widely embraced within the genetics community. 

Despite these caveats, MCMC algorithms are powerful 
and popular. In population genetics, a useful imple-
mentation is the LAMARC package of Kuhner et al. 
(see online links), which uses MCMC for maximum-
likelihood estimation of evolutionary parameters, in 
various contexts, packaged in a user-friendly suite of 
programs. There are also many other purpose-built 
applications58–66. 

In the context of the mtEve example, an MCMC 
scheme is appropriate for analysing data when the 
number of observed SNPs, for instance, is relatively 
small (allowing calculations to occur in reasonable time) 
and when we are willing to assume a reasonably simple 

Box 6 | An example of a Markov chain Monte Carlo method: the Metropolis–Hastings algorithm 

Markov chain Monte Carlo (MCMC) methods generate observations from a posterior distribution by constructing 
a Markov chain with a stationary distribution that is the required posterior distribution. Simulation of the Markov chain 
results in observations that eventually have the correct distribution. We demonstrate this method using the Metropolis–
Hastings algorithm, which is one of the simplest MCMC schemes. We use the mitochondrial sequence data of Ward et al.6 
(BOX 4) as an example. Once again, we aim to estimate the time to the most recent common ancestor (TMRCA) and the 
mutation rate.

The algorithm proceeds through a large number of iterations. At each iteration, the current configuration will consist of 
values for the parameters of interest (which, in this example, are the mutation rate and the coalescent tree topology) and a 
set of times of events on that topology. This time of events information is stored to help improve efficiency. At each 
iteration of the algorithm we propose a new set of parameter values, η′. In this example, we use η (or η′) to denote both 
the mutation rate and the current tree, and the proposed new state will consist of a change to the tree and/or a change 
to the mutation rate. We then accept this new state (that is, the mutation rate and tree) with a probability h, known as the 
Hastings ratio, and defined as:

h = min   1,
P(D | ′) ( ′)q( ′→ )
P(D | ) ( )q( → ′)

πη η η η
(1)πη ηη η

where q(η → η′) denotes the probability of proposing a new state η′ from the current state η; π is the prior distribution; 
D is the data set; P is the probability distribution; min is the minimum. If the new state is not accepted, the chain remains in 
the current state. The key to the efficient use of the MCMC scheme lies in the choice of the ‘proposal kernel’, q. 
If large changes are proposed, the data will typically be much less likely under the new state than under the existing state, 
and the proposed move will seldom be accepted (that is, the denominator will be greater than the numerator, and so the 
probability h of accepting a new state will be much less than 1). Therefore, changes are typically small, particularly with 
respect to the tree topology, in which one or two nodes of the tree are reconnected rather than changing the entire 
topology. Examples of how to do this can be found in REFS 60,79.

Subject to some conditions that ensure correct behaviour99, once the algorithm has reached stationarity (and this is a key 
point), samples from the chain of η values represent draws from the required posterior distribution, ƒ(η |D).

In our mitochondrial Eve example, described in BOXES 4,5, we construct the posterior distribution for the TMRCA of the 
sample, and the mutation rate, using the heights of the coalescent tree and the mutation rate at each iteration. 
The median of the posterior distribution of the TMRCA is 0.62. The median for the mutation rate is 14.4 for the entire 
mitochondrial DNA region61. Note the contrast with the results in BOX 4, in which the median of the posterior 
distribution of the TMRCA was 1.55 and the median for the mutation rate was 7.2. Here we are using the full data, and so 
obtain the exact posterior distribution; by contrast, in BOX 4 we were using an approach based on summary statistics. 
The difference in the results is attributable to the loss of information that arises from summarizing the data. We discuss 
this more fully in the section on approximate Bayesian computation in the main text.
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Sufficiency 
The statistic S is sufficient 

for the parameter η if the 

probability of the data, given S 

and η, does not depend on η.

mutation model (allowing calculation to be possible at 
all). Examples of such simple mutation models are those 
in which base pairs are assumed to mutate independ-
ently according to relatively simple mutation models. 
These might be, for example, that the mutant state 
is independent of the current state, or the new 
state at a base depends only on the current base at that 
position67,68. 

Approximate Bayesian computation

Each of the methods discussed so far can be compu-
tationally intensive. For example, rejection methods 
often fail because the acceptance rate is too low; this 
happens because (as explained above) it is difficult to 
simulate the observed data. In MCMC methods, the dif-
ficulty lies in evaluating the likelihood in a reasonable 
time. Considerations such as these motivate the use 
of more approximate methods. The approximation 
can occur in two areas. First, we no longer require an 
exact match between the observed and simulated data. 
Second, the underlying model can be simplified, but 
retain its key features.

First approximation: removing the need for an exact 
match between the simulated and observed data. In 
rejection methods, instead of requiring an exact match 

between the simulated and observed data, we accept 
the parameter values that correspond to any simulated 
data set that is sufficiently close to the observed data. 
Performance is now heavily dependent on the strin-
gency of the required match between the simulated and 
observed data. An early example of this approach used 
in a biological context involved the inference of demo-
graphic parameters using microsatellite data on human 
Y chromosomes69.

The comparison of simulated and observed data is 
often carried out using a set of summary statistics. An 
example is provided in BOX 4 in which the mitochon-
drial sequence data D were summarized by the number 
of segregating sites — an extremely simple summary. If 
the summary statistic S is sufficient for the parameter η 
then the posterior distribution of η given D is the same 
as its posterior distribution given S. Typically, S is of 
lower dimension than D, which makes the simulation 
methods much faster. 

In complex problems, a low-dimensional sufficient 
statistic for the parameter of interest is usually unknown. 
This represents perhaps the main stumbling block in 
implementing summary methods, and there is a press-
ing need for new theory. If S is not sufficient for η, the 
resulting posterior is an approximation of the true pos-
terior, and the closeness of the approximation is, a priori, 
unknown. The effects of summarizing the data can be 
hard to predict. Note the disparate estimates of TMRCA 
in BOXES 4,6: the MCMC method in BOX 6 used the full 
sequence data, whereas the rejection method in BOX 4, 
which summarized the data, produced a less accurate 
estimate. In the absence of a sufficient statistic, we rely 
on intuition to choose S, and then, perhaps, calibrate 
answers for a simpler form of the model from which we 
can find the exact posterior distribution69,70. 

In comparing summary statistics we might only 
accept iterations with exact matches between observed 
and simulated data. One alternative is to accept itera-
tions with summary statistics that are sufficiently close 
to the target (that is, the observed data), which increases 
the acceptance rate. Another is to use every iteration, and 
post-process the output using a weighted linear regres-
sion71. The weight of each η is related to the distance 
between the data that are generated in that iteration 
and the observed data. This method can improve the 
properties of posterior estimates71. These approximate 
methods have become popularly known as the approxi-
mate Bayesian computation (ABC)71. An example is 
given in BOX 7.

These ideas can be exploited to construct MCMC 
algorithms when likelihoods cannot be calculated70. 
This approach is an appropriate choice when the data 
set is sufficiently large (and the mutation model is suf-
ficiently complex) that explicit computation is slow or 
impossible, and when the posterior and prior distribu-
tions might be different. Although these ‘no-likelihood’ 
MCMC methods are new, and yet to be widely applied, 
they allow us to combine the ability of rejection meth-
ods to deal with intractable distributions with that of 
MCMC methods to explore local areas of high posterior 
probability with greater efficiency. Naturally, we also 

Box 7 | Approximate Bayesian computation methods

Approximate Bayesian computation (ABC) methods are motivated by a growing need to 
use more approximate models, or relatively simple summaries of full data sets, in order 
to keep the analysis tractable. They exist in a variety of forms, but here we focus on 
examples in which summaries of the data are used.

An example application
We return to the problem that is discussed in BOX 4. There we summarized the genetic 
variation in a sample of mitochondrial DNA sequences (the data) using the number of 
segregating sites as our summary statistic S. We saw that, using a rejection algorithm, the 
estimated time to the most recent common ancestor (TMRCA) had a median of 1.55, 
substantially different from the value of 0.62 that was obtained using the exact Markov 
chain Monte Carlo (MCMC) approach in BOX 6. Is this a consequence of the choice of 
summary statistic? To answer this, suppose that we summarize the data using both the 
number of segregating sites and the number of haplotypes. A rejection algorithm that 
tries to match both statistics has an acceptance rate of zero! 

To overcome this limitation, we can relax the need for an exact match between the 
simulated and observed data using an ABC approach. Instead of trying to match both 
summary statistics, we could accept any iteration in which both statistics are within 2 of 
their values in the observed data. This leads to an acceptance rate of 1 in 10,000; the 
median estimate of TMRCA is now 0.64, close to the true answer of 0.62 that was 
obtained from the MCMC method given in BOX 6. To see whether this behaviour is 
representative, we need to consider an analysis in which an exact match is required. 
One approach is to use MCMC without likelihoods.

MCMC without likelihoods 
In these methods, the step in BOX 6 that involved calculating the Hastings ratio, h, is 
replaced by two steps. In the first of these we simulate data. If the simulated and 
observed data are not identical we reject the current proposal. If the simulated data does 
match the observed data we proceed to the second step, which involves calculation of a 
simpler version of h (REF. 70). As with traditional MCMC, consecutive samples are 
correlated, so the caveats that apply to that method also apply here. 

Applying this algorithm70 results in a posterior median estimate for TMRCA of 0.55. 
Although this is closer to the truth than the answer that is obtained when using just 
S (TMRCA = 1.55), it is farther from the truth than when using the exact MCMC approach 
(TMRCA = 0.62) (BOX 5). This exemplifies the unintended effects that are possible when 
using summaries of the data.
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Haplotype 
The sequence of bases along 

a single copy of (typically, part 

of) a chromosome.

combine the disadvantages, in that we are seldom sure 
how close the estimated posterior is to the true posterior, 
and we no longer obtain independent draws from that 
posterior. Furthermore, preliminary experience with 
these methods suggests that they can have poor mixing 
properties. 

There is, most definitely, no such thing as a free lunch 
in this field. Further work is now beginning to emerge72. 
ABC schemes allow the use of more complex and realistic 
evolutionary models. 

Second approximation: simplifying the models. An 
example of approximating by simplifying the model 
occurs when simulating coalescent data with recomb-
ination. When simulating haplotype data over relatively 
short regions (of the order of 100 kb, for instance) it 
has been traditional to use the coalescent to simulate 
the ancestry of the sample. As recombination rates 
increase, lines of ancestry split many times until the 
size of the graph prevents it from being stored in com-
puter memory. McVean and Cardin24 introduced an 
approximation to the coalescent that efficiently simu-
lates data in a genome-wide context. Their method 
builds on a clever ‘along the chromosome’ construction 
of the coalescent, attributable to Wiuf and Hein73,74, in 
which the full coalescent graph is constructed as a set of 

simple coalescent trees as we move from one end of the 
chromosome to the other. This approach avoids some 
of the complexities that are inherent in the construc-
tion of the full graph, and has itself been refined and 
implemented as distributable code by Marjoram 
and Wall25. 

Discussion and further perspectives

A wide variety of computational methods have been 
developed for the analysis of genetic data. We have 
focused on model-based approaches and in BOX 8 we 
show a summary of the properties of those we have 
discussed. We conclude with some comments on where 
these approaches are headed.

What are models for? As George Box noted: “All models 
are wrong, some are useful.”75 The main utility of mod-
els in population genetics is to support an intuition 
about the influence of different forces on the struc-
ture of the genetic variation that is observed in the 
population. Models also provide a way of assessing 
the properties of estimators of parameters of interest. 
For example, it was noted early on27,28 that estimators 
of mutation parameters typically have a much larger 
variance than would be expected using ‘standard’ sta-
tistical theory. This reflects the dependence between 
observations that is attributable to the shared common 
ancestry of the sample. The fact that all individuals 
share ancestry with each other means that the prop-
erties of sample members are correlated, and this 
increases the variance of the estimators (compared 
with a set of independent observations of equal size). 
The coalescent can be used to quantify the extent of 
this correlation. 

What will be the role of models in the future? In response 
to increases in the quantity and complexity of molec-
ular data, more detailed biological models will be 
developed. Such models will explicitly describe the 
details of the molecular processes that produce 
the data. From the perspective of inference, precise 
formal analysis of such models is likely to be extremely 
difficult, and the focus is likely to change in two related 
ways: through the development of simpler models that 
capture the essential features (such as the effects of 
dependence) of the more complicated ones, and through 
the development of simpler methods of analysis, 
such as ABC. 

A related issue is ‘goodness of fit’. Do the data pro-
duced by the model look like the observed data? This 
is a question that is seldom addressed clearly. It is likely 
that, as data become richer, the relatively simplistic 
models that have commonly been used to date will be 
shown to be inadequate. Some effort will be required 
to develop more complex models that remain tractable, 
or to find a combination of parameters that can accu-
rately simulate data at this new, higher degree of detail. 
An example of this is found in REF. 76, in which the 
authors find parameter values for a coalescent model 
that reflect key features of observed variation in the 
human genome.

Box 8 | Summary of model-based analysis methods

The table shows a summary of the requirements and properties of each method we 
have discussed. Specifically, we show whether the method requires one to be able to 
calculate explicitly the probability of the data given the current configuration of the 
process; if this is the case, then the use of the method will be restricted to cases in which 
simple and potentially unrealistic models of mutation can reasonably be used. 

We also indicate whether consecutive iterations of the process have the property of 
being independent, or whether there is correlation between such outputs. In the 
second case, one typically subsamples from consecutive outputs in an attempt to 
recover independence. 

In this context, we note that although rejection and no-likelihood methods produce 
independent outputs, one might wait a long time for the next such output (as not 
every proposed new state is accepted; see BOXES 4,6). We also indicate whether the 
method gives exact samples from the required posterior distribution or whether it 
results in approximations to the same, and whether one has to wait until a ‘burn-in’ 
period has expired before sampling from the algorithm. 

Finally, we indicate whether the algorithm has the ability to learn from the 
potential parameter values it has already explored, or whether it continues to 
sample from the same distribution throughout the course of the algorithm. For 
importance sampling, the answer to three of these questions depends on the 
particular form of algorithm that is used.

Properties or 
requirements of 
each method

Rejection Importance 
sampling

Markov 
chain Monte 
Carlo 

No-
likelihood 

Need to calculate 
likelihood

No Maybe Yes No

Uses complex 
mutation models

Yes Maybe No Yes

Independent samples Yes Maybe No No

‘Exact’ answer Yes Yes Yes No (typically)

‘Burn-in’ period No No Yes Yes

Ability to learn No No Yes Yes

R E V I E W S

768 | OCTOBER 2006 | VOLUME 7  www.nature.com/reviews/genetics

R E V I E W S



© 2006 Nature Publishing Group 

 

Conclusion

In this review we have given a necessarily selective 
overview of the computational methods that are used 
in population genetics. In particular, we have described 
only the simplest methods. In practice, different stochastic 
computational techniques are often combined to address a 
given problem. There are numerous generalizations of the 
methods we have described. Liu48 and Robert and Casella77 
provide comprehensive coverage of the general area.

For any problem, it is generally the case that many 
of the methods could be applied. The devil is in the 

details, and it is those details that determine which 
method is the most appropriate choice. These meth-
ods are generally applied to more complex problems 
than those discussed here. Although there are several 
standard tools available to facilitate standard applica-
tions of these methods78, the complexity of population 
genetics models means that it is rarely practical to use 
these tools. Combining the intuition that is provided 
by complex stochastic models with the judicious use 
of simulation methods for inference will dominate the 
field from now on. 
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