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Statistical Issues in the Search for
Genes Affecting Quantitative Traits
in Experimental Populations
R. W. Doerge, Z-B. Zeng and B. S. Weir

Abstract. This article reviews key contributions in the area of statistics
as applied to the use of molecular marker technology and quantitative
genetics in the search for genes affecting quantitative traits responsible
for specific diseases and economically important agronomic traits. Since
an exhaustive literature review is not possible, the limited scope of this
work is to encourage further statistical work in this vast field by first
reviewing human and domestic species literature, and then concentrat-
ing on the statistical developments for experimental breeding popula-
tions. Substantial gains have been made over the years by both plant
and animal breeders toward a long-term goal of locating genes affect-
ing quantitative traits (quantitative trait loci, QTLs) for the eventual
characterization and manipulation of these genes in order to develop im-
proved agronomically important traits. Our main concern is that the care
and expense that are required in generating both genetic marker data
and quantitative trait data should be accompanied by equal care in the
statistical analysis of the data. Through an example using an F2 male
genetic map of mouse chromosome 10, and quantitative trait values mea-
sured on weight gain, we implement much of the reviewed methodology
for the purpose of detecting or locating a QTL having an effect on weight
gain.

Key words and phrases: Interval mapping; interval testing; multiple
markers; mixture distribution; QTL; single markers.

1. INTRODUCTION

One of the early benefits of the human genome
project has been the establishment of genetic maps
for human and many domestic species. For exam-
ple, in crop plants, maps have been established for
barley (Graner et al., 1991), brassica (Slocum et al.,
1990), corn (Coe, Hoisington and Nuffer, 1993), soy-
bean (Keim, Diers, Olson and Shoemaker, 1990),
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tomato and potato (Tanksley et al., 1992), and many
others. For animals, maps have been developed for
the cow (Barendse et al., 1994) and the mouse
(Copeland et al., 1993). The most recent account of
the human map was given by Schuler et al. (1996).
A compendium of genetic maps for many species is
provided by O’Brien (1993). These maps, consisting
of identifiable features or markers on the genome at
known locations, can be used in the search for genes
affecting traits of interest. Notable successes have
been in human diseases: cystic fibrosis (Kerem et
al., 1989), Huntington’s disease (Huntington’s Col-
laborative Group, 1992) and familial dysautomia
(Blumenfeld et al., 1993). Although methodologies
are still being developed, the accomplishments rep-
resented by these successes are substantial. They
were also the easiest in the sense that the traits
being studied were monogenic. By and large, there
was little ambiguity over which individuals had the
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disease. Discrete traits are also being mapped in
domestic animals (Georges et al., 1993).

In this discussion, we consider the much more dif-
ficult task of searching for genes affecting quantita-
tive, or continuous, traits. Many of the issues we
cover were treated by Doerge (1993). It is often the
case that these traits are controlled by more than
one gene, as well as by nongenetic causes, which
further complicates the searches. Most traits per-
taining to production in domestic species are quan-
titative, and substantial gains have been made over
the years by plant and animal breeders. The im-
mediate hope is that the possibility of implicating
specific portions of the genome will enhance breed-
ing programs. The long-term hope is that finding
the location of genes affecting quantitative traits (or
quantitative trait loci, QTLs), will lead to character-
ization and possible manipulation of these genes. It
will not even be necessary to use the species of con-
cern to perform the initial localization. The possibil-
ity of using genes mapped in animals to aid in the
study of human disease was illustrated by the lo-
cation of genes for elevated blood pressure in rats
(Hilbert et al., 1991; Jacob et al., 1991). Because of a
great deal of similarity, or synteny, between the rat
and human genomes, reflecting evolutionary relat-
edness, a gene found in rats is likely to be found at
the corresponding position in humans. Even though
success did not follow in this particular case (Jeune-
maitre et al., 1992), the basic strategy is sound. The
mapping of genes for fat deposition in pigs (Anders-
son et al., 1994), for example, may have implications
for understanding human obesity.

At this point it is necessary to distinguish be-
tween physical and genetic maps. The set of hered-
itary material transmitted from parent to offspring
is known as the genome, and it consists of molecules
of deoxyribonucleic acid (DNA) arranged in chromo-
somes. The DNA itself is characterized by its nu-
cleotide sequence—the sequence of bases A, C, G or
T that bind in complementary pairs A–T, C–G be-
tween the two strands of the DNA helical molecule.
DNA sequences therefore have lengths measured
in base pairs (bp). A physical map is an ordering
of features of interest along the chromosomes in
which the metric is the number of base pairs be-
tween features. This is the level of detail needed
for molecular studies, and there are several tech-
niques available for physical mapping of discrete
genetic markers or traits. In the present discussion,
however, we are concerned with genetic mapping
where the metric is itself a variable under genetic
control.

Genetic map distances depend on the level of
recombination expected between two points. An in-

dividual receives one copy of each heritable unit
(allele) from each parent at each location (locus)
of the genome. The combination of units (haplo-
type) at different locations (loci) that the individual
transmits to the next generation need not be one of
the parental sets. Recombination may have taken
place during the process of meiosis producing eggs
or sperm. That is, through crossing over events al-
leles in diploids may come from either of the two
parental chromosomes to form the haploid egg or
sperm. Recombination between two elements on the
same chromosome is more likely the further apart
are the elements, with a limiting value of 50%.
Although there is generally a monotonic relation
between physical and recombinational distances,
allowing genes to be ordered on the basis of recom-
bination distances between them, the relation is
not a simple one. The distance over which one re-
combinational event is expected to occur depends
on the region of the genome, as well as on genes
at other places in the genome. The most striking
evidence of variability in the genetic map metric is
provided by the human genetic maps for males and
females being of different lengths.

Genetic mapping of QTLs rests on the simple idea
that genetic markers which tend to be transmitted
together with specific values of the trait are likely
to be close to a gene affecting that trait. In other
words, an association is sought between marker
variants (genotypes) and trait values (phenotypes),
with higher levels of association suggesting closer
genetic map distance. Locating QTLs has a long
history, initially with physically observable charac-
teristics or visible markers. Recent progress rests
on the availability of an almost inexhaustible sup-
ply of molecular markers that was once a limiting
factor in genetic mapping research. “The main prac-
tical limitation of the technique seems to be the
availability of suitable markers” (Thoday, 1961).
Associations with molecular markers have already
been reported for yield, quality traits and insect
resistance in tomato (Nienhuis et al., 1987; Pa-
terson et al., 1991), and for yield, abiotic stress
and morphological characters in maize (Edwards,
Stuber and Wendel, 1987; Stuber, Edwards and
Wendel, 1987; Abler, Edwards and Stuber, 1991;
Reiter, Cors, Sussman and Gabelman, 1991). Milk
protein genes have been used as markers for dairy
cattle traits (Bovenhuis and Weller, 1994). Work
is even proceeding in the search for genes affect-
ing behavioral traits in mice (Plomin, McClearn
and Gora-Maslak, 1991). Evidently, these searches
for associations will be statistical, continuing the
long tradition of the use of statistics in quantitative
genetics.
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2. NOTATION

Genetic markers (often referred to as markers)
are generally neutral, having no effect on an indi-
vidual phenotype. Through molecular techniques,
these markers may be identified and arranged so
that each chromosome is represented by a lin-
ear arrangement of neutral markers. The markers
are then used as a genetic map of the organism’s
genome (genetic structure) for the purpose of detect-
ing regions of the genome associated with a specific
trait of interest. Genetic markers will be repre-
sented by letters M, N, L, : : : . Generally markers
will be used that have two or more variants (al-
leles), denoted by subscripts (e.g., M1;M2; : : :).
Traditional (experimental) mating designs for lo-
cating QTLs start with two parental lines differing
both in trait values and in the marker variants
they carry. Quantitative trait alleles are denoted
by Q1;Q2; : : : ; pairs of which denote the unknown
quantitative trait locus genotype. Our goal is to de-
tect the QTL by relying on the association between
the measured trait values recorded for each individ-
ual and the genetic map information. Without loss
of generality, suppose two pure-breeding (inbred)
lines of parents have homozygous marker geno-
types M1N1/M1N1 and M2N2/M2N2. Crossing
these lines produces an offspring, or F1, generation
that is heterozygous at both loci: M1N1/M2N2,
where the slash separates the contributions from
the two parents. Each F1 individual produces four
possible gametes, or marker allele combinations,
for transmission to the next generation. The pro-
portions of these four gametes can be expressed in
terms of the recombination fraction rMN between
the two markers,

1− rMN
2

M1N1 +
rMN

2
M1N2

+ rMN
2
M2N1 +

1− rMN
2

M2N2;

and this serves to define rMN. Unlinked markers,
those on different chromosomes, for example, recom-
bine freely so that all four gametes will be equally
frequent, illustrating that 0 ≤ rMN ≤ 0:5.

2.1 Recombination and Map Functions

For more than two markers, a simplifying as-
sumption is that recombination between any two
of them is independent of recombination between
any other nonoverlapping two. With this assump-
tion, called no interference, and a Poisson-process
assumption for the phenomenon of a single crossing
over between DNA strands, recombination fractions

r are related to genetic distances x by means of
Haldane’s mapping function (Haldane, 1919):

r = 1
2�1− e−2x�:

For the purpose of this paper, we assume that only
one crossover occurs between markers, that is to
say we are excluding double crossovers. Genetic dis-
tances are expressed in terms of centimorgans (cM),
with one morgan being the distance over which one
recombinational event is expected to occur, and
are sometimes preferred to recombination fraction
because genetic distances are additive, whereas re-
combination fractions are not. When recombination
events are not independent, interference exists and
the Kosambi map function (Kosambi, 1944) may
be appropriate. Further details on modeling in-
terference in genetic recombination are discussed
in Speed, McPeek and Evans (1992), McPeek and
Speed (1995), Zhao, McPeek and Speed (1995) and
Zhao, Speed and McPeek (1995).

2.2 Variation

Values for the measurable quantitative trait of in-
terest will be denoted by Y and, for genetically ho-
mogeneous populations, will be taken to be normally
distributed, possibly after transformation. Trait val-
ues contain genetic and environmental components
G and E, with the simplest model being

Y = G+E:

For uncorrelated genetic and environmental effects,
the total (phenotypic) variance of the trait can be
partitioned into genetic and environmental compo-
nents

VY = VG +VE:

For a trait affected by a single gene Q, the geno-
typic value G of an individual with genotype QuQv

can be expressed in terms of a mean (µ), additive (au
and av, respectively) and dominance (duv) effects:

Guv = µ+ au + av + duv:

Multilocus traits may include interactions between
the loci (epistasis).

It is often not made explicit that the magnitudes
of the genetic components depend on the genetic
composition of the population. Suppose a population
has genotypic array

P11�Q1Q1� +P12�Q1Q2� +P22�Q2Q2�;

where Puv is the frequency of the QuQv genotype.
Fitting the mean, additive and dominance effects by
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least squares, under the constraints

�2P11 +P12�a1 + �P12 + 2P22�a2 = 0;

�2P11 +P12�d11 + �P12 + 2P22�d12 = 0;

�2P11 +P12�d12 + �P12 + 2P22�d22 = 0

provides

µ = P11G11 +P12G12 +P22G22;

a1 = �P11 +P12/2�G11 + �P12/2+P22�G12 − µ;
a2 = �P11 +P12/2�G12 + �P12/2+P22�G22 − µ;
duv = Guv − au − av − µ:

Although the genotypic values G depend only on
the genotype, the additive, dominance and epistatic
components depend on genotypic frequencies and
so are population-dependent. Partitioning the geno-
typic values leads to a partitioning of the genetic
variance into additive and dominance components:

VG = P11G
2
11 +P12G

2
12 +P11G

2
11 − µ2

= VA +VD:

Finally, the ratio of additive genetic variance to total
variance is termed the heritability (in the narrow
sense) h2 and quantifies the degree to which the
trait variance is attributable to the additive effects
of the genes.

3. NUMBERS OF LOCI AFFECTING A TRAIT

A preliminary investigation of how many loci af-
fect a quantitative trait may give some indication of
the chances of success in locating QTLs. It will be
easier to locate genes (QTLs) when only a few af-
fect the trait than when many genes are involved.
A simple approach was given by Wright (in Castle,
1921). If M loci affect a character, then Wright gave

M = �µ1 − µ2�2
8σ2

(1)

as a lower bound, where µ1 and µ2 are the means
of two parental populations and σ2 is the (F2) addi-
tive genetic variance stemming from differences in
allele frequencies of the parental populations. Equa-
tion (1) assumes additivity and equality of the ef-
fects of the M loci, as well as no linkage between
them. Complete fixation of alleles increasing or de-
creasing trait values in respective parental lines is
also assumed. Cockerham (1986) modified Wright’s
approach to accommodate bias in the estimated val-
ues of �µ1 − µ2�2. Lande (1981) extended the ap-
proach to heterogeneous populations, and Comstock
and Enfield (1981) modified the method for a multi-
plicative genetic model of gene action. Zeng (1992)

allowed for unequal gene effects and for linkage be-
tween the loci. However, Zeng, Houle and Cocker-
ham (1990) emphasized that caution should be ex-
ercised in interpreting estimation results.

4. QTL HYPOTHESES

The statement of appropriate hypotheses used in
QTL mapping is a key statistical issue in the anal-
ysis of experimental data for the detection or loca-
tion of QTL. Knott and Haley (1992) present some
discussion on the hypotheses used for these sorts
of analyses. In this section, we review three of the
most commonly used hypotheses.

Let us assume that we are attempting to detect
and/or locate a single QTL somewhere in a genome
that is made up of many chromosomes. Testing for
QTL can be done in a marker-by-marker framework,
where the test is one of detection (marker associa-
tion), or testing for QTL location can be performed
across the genome at various testing positions. In
either case, the null hypothesis must be considered
through two interpretations. The first interpreta-
tion says that there is no QTL anywhere in the
genome, H1

0: no QTL present. The second interpre-
tation states there is a QTL present in the genome,
but it is not linked to the position where the test
is being made in the genome, H2

0: QTL present and
unlinked to the testing position. Later in the paper
we explore the consequences of each null hypothe-
sis on the form of the likelihood used to construct
the test statistic. For H1

0 the distribution of the trait
values will follow a single normal distribution, while
underH2

0 the distribution of the trait values will fol-
low a mixture of normal distributions. The alterna-
tive hypothesis almost always used in the situation
of testing for a single QTL is that there is a QTL
present, HA: a QTL is present and is linked to the
testing position. The distribution of the trait values
under the alternative hypothesis is a mixture of nor-
mal distributions, where the mixing proportions de-
pend on the position in the genome relative to the
ordered genetic markers. Throughout the remain-
der of this review, the statistically oriented reader
should pay particular attention to the null hypoth-
esis being tested, the form of the likelihood and the
distribution of the test statistic. Mixture distribu-
tions may cause problems in the asymptotic distri-
bution of the many test statistics commonly used to
locate QTL.

5. SINGLE-MARKER, SINGLE-QTL ANALYSES

5.1 Comparison of Marker Means

The use of genetic markers to locate QTL is
well established (Sax, 1923; Thoday 1961; Elston
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Fig. 1. Standard backcross and F2 mating designs for marker M with alleles M1 and M2 and QTL Q with alleles Q1 and Q2: the
gametes are separated by a solidus �/�, and the assumption of normality on the traits values; given the known genotype of the QTL; is
imposed and denoted by N�µ;σ2�.

and Stewart, 1973; Soller, Brody and Genizi, 1976;
Edwards, Stuber and Wendel, 1987; Darvasi and
Weller, 1992). Investigations by Sax (1923) were ini-
tiated through the association of seed coat pattern
and pigmentation with the seed size differences in
the bean Phaseolus vulgaris. This study was one of
the initial demonstrations of linkage between major
genes and determinants of quantitative variation.
The findings of Sax showed color to be controlled by
a single gene.

Considerable attention has been paid to the case
of associations between a single marker and a quan-
titative trait (Weller, 1986; Beckman and Soller,
1988; Luo and Kearsey, 1989; Luo and Woolliams,
1993) and we now review the statistical issues.
Observations on marker genotype and trait value
are taken in order to test the hypothesis that the
marker is unlinked to the putative QTL, that is,
recombination fraction between them is 0.5. Rejec-
tion of this hypothesis has a dual implication. Not
only does it confirm a genetic basis for the trait, but
also it suggests that the trait is affected by a gene
(QTL) close to the marker.

Classical work is conducted within the two ex-
perimental mating designs shown in Figure 1. Two
inbred lines P1 and P2 are chosen as parents. Of-
ten these will have been selected in opposite di-
rections for the trait, to ensure that they differ in
trait values because they carry different alleles at
the trait locus. Similarly, markers are chosen with
different alleles in the two parents. Inbreeding of
P1;P2 means that these lines are homozygous at

trait and marker loci. The F1 generation can be ei-
ther backcrossed to P1 or P2, or mated among itself
(selfing or crossing) to produce the second filial, or
F2, generation. Observations on marker and trait
values for the backcross B1;B2, or F2, individuals
are used in tests of association. For the purpose of
notational development, we continue the statistical
derivation in terms of a backcross model. An F2
mating design will serve as an example of method-
ology later in the paper.

Under a completely additive model, the trait
mean for the F1 individuals is the average of the
two parental means. Since each of these three
groups, P1;P2;F1, is genetically uniform, they
are assigned the same trait variance σ2. Indi-
viduals within the backcross and F2 generations,
however, have mixtures of trait and marker geno-
types with the mixing proportions depending on the
recombination fraction between the two loci.

For the B1 design (see Appendix 1 for analogous
derivation of F2 design), the genotypic array is

1− rMQ
2

M1Q1/M1Q1 +
rMQ

2
M1Q1/M1Q2

+ rMQ
2
M1Q1/M2Q1 +

1− rMQ
2

M1Q1/M2Q2;

with a similar expression for B2 (see Figure 1). Only
the marker genotype can be directly observed, so the
B1 individuals can be separated into two observable
classes: marker types M1/M1 and M1/M2. The ex-
pected trait distributions within these two classes
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are

M1/M1 x �1− rMQ�N�µ1; σ
2� + rMQN�µ12; σ

2�;
M1/M2 x rMQN�µ1; σ

2� + �1− rMQ�N�µ12; σ
2�;

where N�µ;σ2� denotes a normal distribution with
mean µ and variance σ2. The means and variances
of these two mixture distributions are

µM1/M1
= �1− rMQ�µ1 + rMQµ12;

µM1/M2
= rMQµ1 + �1− rMQ�µ12;

σ2
M1/M1

= σ2
M1/M2

= σ2 + rMQ�1− rMQ��µ1 − µ12�2;
= σ2 + rMQ�1− rMQ�δ2:

This defines δ as the difference between the P1 and
F1 means. The expected difference in average trait
values between the two classes is

µM1/M1
− µM1/M2

= �1− 2rMQ�δ:(2)

Providing lines P1 and F1 have different mean
trait values (δ 6= 0), the hypothesis that trait and
marker loci are unlinked, rMQ = 0:5, is therefore
equivalent to the hypothesis that the two marker
classes in a backcross generation have equal means.
Since the original lines P1 and P2 were chosen be-
cause they differed for the trait, the condition δ 6= 0
will be satisfied unless allele Q1 is completely dom-
inant to Q2. The classic test appeals to the robust-
ness of the t-test and uses the test statistic

t =
µ̃M1/M1

− µ̃M1/M2√
s2�1/nM1/M1

+ 1/nM1/M2
�
;

where tildes denote sample means, the sample sizes
of the two marker classes are nM1/M1

; nM1/M2
, and

the pooled estimate of the variance within the two
classes is s2.

The issue could be raised as to the validity of
t-tests since the trait distributions within marker
classes are mixtures of normals rather than normals
themselves. In the backcross B1 population, the co-
efficients of skewness S and kurtosis K in the two
marker classes are

SM1/M1
= −SM1/M2

= 2rMQ�1− rMQ��1− 2rMQ�13

�1+ rMQ�1− rMQ�12�3/2 ;

KM1/M1
=KM1/M2

=
rMQ�1− rMQ��1− 6rMQ + 6r2

MQ�14

�1+ rMQ�1− rMQ�12�2 ;

where 1 = �µ1 − µ12�/σ = δ/σ is the standard-
ized difference between the P1 and F1 means.
The mixtures are therefore symmetric when the
trait locus is either completely linked (rMQ = 0)
or completely unlinked (rMQ = 0:5) to the marker

locus. Otherwise there is skewness that has maxi-
mum numerical value at a point depending on 1.
The mixtures have zero kurtosis for rMQ = 0;0:21
(Doerge, 1993). Both skewness and kurtosis, and
hence nonnormality, increase with 1. From work
of Eisenberger (1964), a sufficient condition that
the mixtures will be unimodal for all values of rMQ
is 1 < 1:84, whereas a sufficient condition that
there exists an rMQ value between 0 and 1 giving
bimodality is that 1 > 2. Departures from the nom-
inal distributions of the test statistic for the t-test
are therefore anticipated only for parental popu-
lations with large differences between means, but
this is the condition for which it is most likely there
will be departures from the null hypothesis. The
generally satisfactory nature of the t-test for large
samples when detecting linkage between a single
QTL and a single marker has been demonstrated
by simulation (Doerge, 1993).

5.2 Regression

In work that anticipates later multimarker ap-
proaches, we now consider regressing the trait value
on marker genotype. For the jth individual in back-
cross population B1, the model is

Yj = β0 + βYXXj + εj;(3)

where the indicator variable Xj takes the values 1
or 0 according to whether the individual has marker
genotype M1/M1 or M1/M2, and εj is a random
error term (not necessarily normally distributed).
The regression coefficient for Y on X

βYX = �1− 2rMQ�δ
is the expected difference between the trait values
in the two marker classes. The hypothesis of the
marker and trait loci being unlinked can be tested
by testing for a nonzero slope to the regression line
of trait value on marker indicator. This approach is
valid for all nontrivial partitions of the sample into
two marker classes, but it still assumes that the
trait values are distributed normally within each
marker class. Care should be taken in applying the
test: if δ is known to be positive (or negative) from
observations on the parents, then the alternative to
H0x βYX = 0 is H1x βYX > 0 (H1x βYX < 0) since
there is a biological constraint that �1−2rMQ� is not
negative.

5.3 Likelihood

The fact that trait values have mixtures of normal
distributions within marker classes can be taken
into account properly with likelihood analyses. Es-
timates of the recombination fraction can also be
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derived in the likelihood framework. If Y1i and Y2i
are the trait values for the ith individuals in B1
marker classes M1/M1 and M1/M2, then the like-
lihood L for the parameters µ1; µ12; σ

2; rMQ is

L =
nM1/M1∏
i=1

[
1− rMQ√

2πσ2
exp

(−�Y1i − µ1�2
2σ2

)

+ rMQ√
2πσ2

exp
(−�Y1i − µ12�2

2σ2

)]

·
nM1/M2∏
i=1

[
rMQ√
2πσ2

exp
(−�Y2i − µ1�2

2σ2

)

+ 1− rMQ√
2πσ2

exp
(−�Y2i − µ12�2

2σ2

)]
:

The hypothesis of interest, H2
0, can be tested for

with the likelihood ratio statistic

λ = −2 ln
[
L�µ̂1; µ̂12; σ̂

2; rMQ = 0:5�
L�µ̂1; µ̂12; σ̂

2; r̂MQ�

]
;

with carets denoting maximum likelihood esti-
mates. The estimates for µ1, µ12 and σ2 will be
different in the numerator and denominator in this
and subsequent likelihood ratios. Although it raises
a statistical issue, the ratio is often assumed to be
distributed as a chi-square with one d.f. under the
null hypothesis rMQ = 0:5. The statistical problem
at hand is that null hypothesis places the param-
eter rMQ on the boundary of the parameter space
rMQ ∈ �0;0:5�, which causes problems since one or
more of the necessary regularity conditions are not
satisfied (Ghosh and Sen, 1985), and as a result
classical asymptotic theory does not apply.

Even at this simple level of a single marker and
single trait locus, the likelihood calculations are not
trivial. One possibility is to use prior estimates of
the trait means and variance µ1; µ2; σ

2, possibly
from the parental lines. Care would be needed to
check for consistency of nongenetic effects for the
three generations P;F1;B and a check that the
F1 had the postulated distribution of trait values
should be performed. Use of such prior estimates
reduces the likelihood to a function of a single pa-
rameter rMQ although iterative methods for solution
will still be necessary.

An alternative procedure is to evaluate the test
statistic over a grid of rMQ values, as is done in
human pedigree linkage studies (Ott, 1991; Morton,
1995). Following the convention for those analyses,
results are expressed in terms of the LOD score:

LOD = − log10

[
L�µ̂1; µ̂12; σ̂

2; rMQ = 0:5�
L�µ̂1; µ̂12; σ̂

2; rMQ�

]
:

The maximum LOD score indicates the grid value
rMQ closest to the maximum likelihood estimate
r̂QM. If a smooth curve is fitted to the set of LOD
values, an indication of precision is provided by the
2-LOD interval which is the range of values be-
tween those rMQ’s at which the LOD is two less
than its maximum value. Under the assumption
that the likelihood ratio (λ) follows a function of
a chi-square distribution with one d.f., the corre-
sponding 2-LOD interval (natural logs are taken)
is approximately a 95% confidence interval. Jansen
(1992) uses the EM algorithm (Dempster, Laird and
Rubin, 1977) to estimate the model parameters.
The same algorithm may be used for single-marker
regression situations.

6. GENETIC MAP

There exists an underlying complexity to the
search for QTLs which begins with the assigning of
genetic markers to chromosomes, for the eventual
representation of the entire genome. As mentioned
in the Introduction, it is generally the case that
many markers are available to use in the search for
loci affecting quantitative traits. Genetic markers
may be arranged in linear order along chromosomes
with the measure of distance between them being
either recombination or map distance (in centimor-
gans). The closer together two markers are, the
smaller their distance/recombination will be. When
recombination between pairs of markers is used
to order markers, this is called two-point analysis
(Ott, 1991; page 54). When all possible recombi-
nant classes are calculated, multipoint analysis
(Lathrop, Lalouel, Julier and Ott, 1985) may be
used to estimate a more accurate genetic map. The
genetic marker ordering problem is analogous to
the historic traveling salesman problem in which a
salesman is asked to travel between cities in the
shortest possible route. In the present case, maps of
shortest length are sought. Several useful methods
have been described for the purpose of estimating
genetic maps, including branch and bound methods
(Thompson, 1984), simulated annealing (Corana,
Marchesi, Martini and Ridella, 1987; Weeks and
Lange, 1987; Falk, 1992), seriation (Buetow and
Chakravarti, 1987a, b) and multipoint (Lander
and Green, 1987).

One issue worth noting is that of sample size
versus number of genetic markers. A reasonably
large number of individuals must be measured and
genotyped in order to assess the quantitative varia-
tion and phenotype–genotype association. However,
an acceptable number of genetic markers must be
used in order to cover the entire genome. Due to
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Table 1
Genotypic frequencies of trait and two marker loci in backcross population: markers are denoted M and N; each with two alleles; the

QTL is denoted Q with alleles Q1 and Q2y recombination between loci i and j is denoted by rij for QTL and/or marker

Marker class Genotype∗ QMN MQN∗∗ MNQ

M1Q1N1
1 M1Q1N1 �1− rMQ��1− rMN� �1− rMQ��1− rNQ� �1− rMN��1− rNQ�

M1Q1N1
M1Q2N1 rMQ�1− rMN� rMQrNQ �1− rMN�rNQ
M1Q1N1

2 M1Q1N2 �1− rMQ�rMN �1− rMQ�rNQ rMNrNQ
M1Q1N1
M1Q2N2 rMQrMN rMQ�1− rNQ� rMN�1− rNQ�
M1Q1N1

3 M2Q1N1 rMQrMN rMQ�1− rNQ� rMN�1− rNQ�
M1Q1N1
M2Q2N1 �1− rMQ�rMN �1− rMQ�rNQ rMNrNQ

M1Q1N1
4 M2Q1N2 rMQ�1− rMN� rMQrNQ �1− rMN�rNQ

M1Q1N1
M2Q2N2 �1− rMQ��1− rMN� �1− rMQ��1− rNQ� �1− rMN��1− rNQ�

∗The top gamete is from parent 1 (P1); the bottom gamete is from F1.
∗∗Twice the frequency if QTL is in the interval.

the cost of laboratory techniques, greenhouse space,
field plots, marker scoring and data entry, the ques-
tion of sample size versus genome coverage arises.
Often the sample size appears to be appropriately
large, but when one looks closely missing data pro-
portions may approach 20%. The missing data may
be genotypic, phenotypic or both, and is often un-
resolvable. The question becomes, is it better to
grow more individuals and score fewer markers or
to score more markers on fewer individuals? Ei-
ther way, missing data have the potential to impact
sample size severely. From the parameter estima-
tion standpoint large sample size with minimal
missing data points on a uniformly distributed ge-
netic map is sensible. Ideally, since the goal is to
locate QTL, a dense map (many markers) is pre-
ferred over a sparse map (fewer markers) since it
allows a greater precision of location. The true lim-
itation to the precision of mapping is the number
of observable recombination events. Saturating a
map beyond a certain (sample size dependent) point
provides no additional information about marker
location. In practice, one common approach is often
adopted in which an evenly spaced sparse map is
first used to detect significant chromosomal regions
to which more markers are subsequently saturated
for fine scale localization of QTL.

From this point forward we will assume that a
known genetic map has already been estimated.
Although it is certainly possible to apply single-
marker tests for each marker in turn, a more
efficient procedure is one in which the ordered

markers are used all together. This is the rationale
behind current multiple regression approaches, but
we first review the use of pairs of markers.

7. INTERVAL MAPPING

Any indication that the recombination fraction
rMQ is less than the value 0.5 from single-marker
analyses is confounded by the size of effects of locus
Q, since it is actually the product �1− 2rMQ�δ that
is being tested for departures from zero. A marker
close to a QTL of small effect will give the same sig-
nal as a marker some distance from a QTL of large
effect. Also, it will not be known whether the two
loci are in order QM or MQ on a genetic map. If
two markers M and N are used, however, it should
be possible to separate the recombination and size
of effect as well as to infer the position of Q rela-
tive to both. It is also expected that more precision
and power will follow simply from the use of the
extra information from a second marker. When two
markers are closely spaced (10 cM or less), little ad-
ditional power for locating QTL is gained.

7.1 Likelihood method

Two markers. Continuing the treatment of the
backcross mating scheme, suppose the two parental
lines have marker genotypes M1N1/M1N1 and
M2N2/M2N2. Backcrossing M1N1/M2N2 F1 indi-
viduals to P1 results in four distinguishable marker
classes (Tables 1 and 2), in expected proportions de-
pending on the recombination fraction rMN between
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Table 2
Marker classes and trait probabilities in backcross B1 population �ignoring double crossovers between markers� for marker M with alleles
M1 and M2; and marker N with alleles N1 and N2y the gametes are separated by a solidus �/�, and rij denotes recombination fractions

between loci i and j �marker or QTL�

Marker class Frequency Pr�Q1Q1�5 Pr�X∗5 1� E �Y�

M1N1/M1N1
1
2 �1− rMN�

�1− rMQ��1− rNQ�
�1− rMN�

≈ 1 µ1

M1N1/M1N2
1
2rMN

�1− rMQ�rNQ
rMN

≈ 1− rMQ

rMN
= 1− p �1− p�µ1 + pµ12

M1N1/M2N1
1
2rMN

rMQ�1− rNQ�
rMN

≈ rMQ

rMN
= p pµ1 + �1− p�µ12

M1N1/M2N2
1
2 �1− rMN�

rMQrNQ

�1− rMN�
≈ 0 µ12

the two markers:
1− rMN

2
M1N1/M1N1 +

rMN
2
M1N1/M1N2

+ rMN
2
M1N1/M2N1 +

1− rMN
2

M1N1/M2N2:

The trait distributions within each marker class
depend in the first place on whether the trait locus
is inside or outside the interval MN. For each of
the three possible orders of trait and marker loci,
the frequencies of the eight possible genotypes are
shown in Table 1.

Primary interest is in the order that places the
trait locus between the two markers. Under the
assumption of order being true, calculations are
performed by stepping along the marker interval
and assigning appropriate recombination values
rMQ; rNQ. Specifically, the likelihood of Q being
unlinked to both markers is compared to the like-
lihoods that it is at specific interior points in the
interval. An hypothesis testing approach would
instead use mutually exhaustive alternatives:

H0 x rMQ = rNQ = 0:5;

QTL unlinked to markers,

H1 x min�rMQ; rNQ� < 0:5;

QTL linked to markers;

or

H0 x min�rMQ; rNQ� > rMN;
QTL exterior to interval,

H1 x min�rMQ; rNQ� < rMN;
QTL interior to interval.

The three recombination fractions rMQ; rNQ; rMN
are related. Under the assumption of no interfer-
ence mentioned earlier, and when Q is interior to
MN, the event of no recombination between M and

N is equivalent to no recombination in both inter-
vals MQ and QN or to recombination in both inter-
vals:

�1− rMN� = �1− rMQ��1− rNQ� + rMQrNQ;
rMN = rMQ + rNQ − 2rMQrNQ;

�1− 2rMN� = �1− 2rMQ��1− 2rNQ�:
(Note that neither rMQ nor rNQ can equal 0.5 when
rMN < 0:5.) For the order QMN, the relationship
becomes

�1− 2rNQ� = �1− 2rMQ��1− 2rMN�:
It is taken that rMN is known, so that there is only
one independent unknown recombination fraction.

The mixture distributions for the four marker
classes can be written as

M1N1/M1N1 x c11N�µ1; σ
2�

+ �1− c11�N�µ12; σ
2�;

M1N1/M1N2 x c12N�µ1; σ
2�

+ �1− c12�N�µ12; σ
2�;

M1N1/M2N1 x c21N�µ1; σ
2�

+ �1− c21�N�µ12; σ
2�;

M1N1/M2N2 x c22N�µ1; σ
2�

+ �1− c22�N�µ12; σ
2�:

For the F2 design, there are nine distinguishable
marker classes, each having a mixture of three nor-
mals for the trait distribution.

From Table 1, the backcross mixing proportions
for the MQN order are

c11 = 1− c22 =
�1− rMQ��1− rNQ�
�1− rMN�

;

c21 = 1− c12 =
rMQ�1− rNQ�

rMN
:
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The four marker-class trait means cannot be equal.
For the order QMN, the mixing proportions are

c11 = c12 = 1− c21 = 1− c22 = 1− rMQ;

so that the distributions are the same for the
M1N1/M1N1 and M1N1/M1N2 classes and there
is no need to record the N type. No additional in-
formation is provided from outside the working
interval. Similarly, for order MNQ,

c11 = c12 = 1− c21 = 1− c22 = 1− rNQ
and there is no need to record the M type. Outside
the marker interval, calculations reduce to those for
one marker (the nearest) and are based on only two
marker classes. In either of these two cases of a QTL
outside the marker interval, the two marker class
means are equal if and only if rMQ = rNQ = 0:5,
suggesting that the first of the pairs of hypotheses
above be addressed by a t-test on marker class ob-
servations. Certainly rejection of the hypothesis of
equal marker class means would imply that Q was
linked to either or both of M and N, although it
would not necessarily place Q between M and N.

It is straightforward to evaluate the likelihood
L from observations on the two or four marker
classes, although computationally demanding if the
parameters µ1; µ12; σ

2 have to be estimated. Mat-
ters are simplified by assigning values to rMQ; rNQ.
This means specifying a map position for the QTL,
relative to the marker interval, and invoking a
mapping function to provide the two recombination
fractions. For positions to the left (or right) of the
interval MN, the one-marker LOD scores can be
evaluated using marker M (or N). For positions in-
side the interval, it is usual to use the two-marker
LOD score evaluated for the four marker classes

LOD = − log10

[
L�µ̂1; µ̂12; σ̂

2; rMQ = rNQ = 0:5�
L�µ̂1; µ̂12; σ̂

2; rMQ; rNQ�

]
;

even though the denominator is not the uncon-
strained likelihood over all possible recombination
values. It is important to recognize that the LOD
score does not provide a test for the presence of a
QTL between the two markers and so is not leading
to a true interval test. Instead the LOD compares
the likelihood of the QTL being at the position
characterized by recombination fractions rMQ; rNQ
against the likelihood that it is at some position un-
linked to the interval. Of course, the map position
at which the LOD score is greatest is likely to be
close to the location of the QTL. The LOD scores at
the interval boundaries are the same whether they
result from setting rMQ = 0 in the analysis using

only marker M, or from setting rMQ = 0, rNQ = rMN
in the analysis using both markers.

Lander and Botstein. One of the most influen-
tial papers of the late 1980s pertaining to locating
a single QTL can be credited to Lander and Bot-
stein (1989). Working from a known genetic map,
the Lander–Botstein interval mapping method em-
ploys a simple linear regression model similar to
the one defined in (3). Since the distance between
each pair of genetic markers is known, the method
steps through intervals in specified increments, us-
ing a map function, and then estimates the model
parameters at each analysis point. The likelihood
equation is calculated under the estimated param-
eters, and then again under the null hypothesis of
βXY = 0 (no QTL present). The ratio of the two
likelihood evaluations is calculated in the form of a
LOD score for each analysis point in the genome.
The maximum LOD score over all analysis points
is indication of a single QTL if the maximum LOD
score is larger than some specified threshold value.
We will discuss the implications of multiple tests
and the distribution of the trait values on the dis-
tribution of the test statistic in a later section of this
paper. The essence of the Lander–Botstein approach
is that trait loci are postulated to occur at a series
of positions within a set of adjacent marker inter-
vals, and the trait observed value (the phenotype)
is regressed on the number of F1 trait alleles (the
genotype). The regression approach was expanded
upon by Martinez and Curnow (1992), as well as
many others.

Many markers. Martinez and Curnow (1992) con-
sidered the four marker classes for the case of two
markers in a backcross. Within each marker class
they regressed trait value on the probability that an
individual had the F1 trait genotype. As this proba-
bility depends on the unknown recombination frac-
tions between trait and marker loci, they performed
the regressions at a series of specified recombination
values. They then formed a residual sum of squares
of differences between trait observations and fitted
values, summing over all four marker classes, and
took the minimum to indicate the best estimate of
the position of the trait locus. This approach allows
an analytical treatment whereas likelihood methods
do not.

The usual procedure for interval mapping is to
calculate LOD scores at interior points of a series
of adjacent marker intervals. For markers L, M, N,
for example, there will be two intervals LM and
MN. The maximum value of the curve fitted to the
LOD scores indicates the probable position of the
QTL, and 2-LOD intervals can be constructed (Lan-
der and Botstein, 1989). As in the single-interval
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case, the LOD scores at each marker are the same
whether the marker is at the left or the right of
an interval. If there is a QTL in one interval, ad-
jacent intervals may also show peaks with “signifi-
cant” likelihood ratios, often called ghosting effects
(Knapp, Bridges and Birkes, 1990; Martinez and
Curnow, 1992; Jansen, 1994).

Ghost effects. Ghosting effects occur when a QTL
is located in one genetic marker interval and ad-
jacent intervals also exhibit significant test statis-
tics. A problem with traditional interval mapping
is that it does not take account of all markers at
once, but uses them only two at a time so that it
is difficult to discriminate between actual QTL ef-
fects and ghost QTL effects that exist simply be-
cause of the relative density of the genetic map
being used. Martinez and Curnow (1992) illustrate
numerically that “ghosting” can occur—if there are
trait loci Q1 and Q2 in nonadjacent intervals M1;M2
and M3;M4, there will be spurious indications of a
trait locus in the intervening interval M2;M3. Ha-
ley and Knott (1992) also drew attention to the bi-
ases resulting from linked trait loci. The same phe-
nomenon is expected for the traditional LOD-score
approach of Lander and Botstein (1989). The “ghost-
ing” shown numerically by Martinez and Curnow is
a phenomenon similar to that anticipated by Pa-
terson et al. (1991): “If a QTL is actually present
in one interval, the hypothesis of a QTL in an ad-
jacent interval will still fit the data better than the
hypothesis of no QTL at all [sic], and the more likely
position of a QTL in this adjacent interval will of-
ten be near the middle of the interval (since this
position is furthest from any potentially conflicting
data at the observed markers). Accordingly, multi-
ple peaks correctly reflect the shape of the likeli-
hood surface but need not indicate multiple QTLs.”
The authors meant to contrast the cases of linked
or unlinked QTLs, rather than the presence of ab-
sence of QTLs. The fact that P1;P2;F1 have dif-
ferent trait values means that there are QTLs. The
detection of “ghosts” was also a concern of McMillan
and Robertson (1974) in their important discussion
of methods for detecting loci affecting quantitative
traits in Drosophila. They referred to two errors:
“(i) The detection of loci which do not exist. (ii) The
magnification of the estimated effect of those ma-
jor loci which do exist by accumulating to their ef-
fect those of undetected loci close to them on the
chromosome.” Zeng (1993, 1994) has demonstrated
ghosting effects by showing that interval mapping
gives results that can be confounded by the pres-
ence of additional QTLs outside the interval being
considered. Zeng’s method (which will be discussed
later) shows evidence of a QTL in the two intervals

M1;M3 and M2;M4 and would avoid the problem if
there were three markers between the QTL.

7.2 Regression Methods

There has been a growing realization that the
appropriate way to relate quantitative traits to
information on many markers is by multiple re-
gression (Wright and Mowers, 1994; Kearsey and
Hyne, 1994; Wu and Li, 1994). Moreno-Gonzalez
(1992a, b) set up a regression model containing ad-
ditive, dominance and epistasis terms for putative
QTLs associated with several marked chromo-
some segments. A more extensive discussion of
the theoretical issues for regression on additive
and dominance effects was given by Jansen (1992,
1993). Jansen (1992) presents a general mixture
model which deals with previously described issues
of nonnormality of trait distribution, as well as is-
sues of both missing phenotypic and genotypic data.
Jansen (1992) employs the EM algorithm (Demp-
ster, Laird and Rubin, 1977) for the purpose of
parameter estimation within the mixture context.
Essentially, the estimation problem is dissected
into two components, each of which is manageable
independent of the issues presented by the mix-
ture distribution. It is interesting to note that the
components of this decomposition are quite natu-
ral; genetic linkage and regression of phenotype on
genotype. In an extension to this idea, Jansen and
Stam (1994) have included parental and F1 infor-
mation in their multiple regression analyses of F2
and other crosses.

Regression on marker genotypes. For any pair of
linked markers M and N, the trait value Yj for
individual j can be regressed on indicator variables
Xij. For example, if the first (i = 1) marker M for
individual j has the P1 genotype, then X1j = 1.
Otherwise, if M has the F1 genotype, X1j = 0. The
model for any pair of linked markers is

Yj = β0 + βYX1·X2
X1j + βYX2·X1

X2j + εj;

where βYX1·X2
is the coefficient of partial regression

of Y on X1 conditional on the value of X2.
Partial regression coefficients are particularly

useful in this situation since they reflect the partial
effect of one indicator variable while other indica-
tor variable(s) are included in the model, yet held
constant. The partial regression coefficients for
the trait on one marker, holding the other marker
constant, do not depend on the marker ordering.
Regressing on the indicator for M, holding con-
stant the other indicator variable and invoking
the relationships among the recombination values
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rMN; rMQ; rNQ when there is no interference gives:

βYX1·X2

=





�1− 2rMQ�δ; order QMN,

rNQ�1− rNQ��1− 2rMQ�
rMN�1− rMN�

δ; order MQN,

0; order MNQ.

If a test of the hypothesis that this coefficient is
zero is not rejected, there is support for Q either be-
ing unlinked to M, or coincident with N, or to the
side of N away from M. If the tests for both βYX1·X2

and βYX2·X1
indicate nonzero values, then the QTL

is placed within the marker interval. Testing pro-
cedures are given, for example, by Stuart and Ord
(1991). A flow chart for interval mapping of many
QTLs is given by Jansen (1993).

When a series of markers are available there is
a straightforward expansion of the previous regres-
sion equation. In a further extension, Zeng (1993,
1994) explicitly allows for several QTLs affecting
the trait. If dominance and epistasis are ignored,
the genetic model for the trait is

G = µ+
∑
k

�aku + akv�

for individuals with genotype QkuQkv at the kth
QTL Qk, where u and v denote allele number. With
several QTLs, B1 individuals have a range of trait
genotypes with frequencies depending on the recom-
bination between trait loci. If m QTLs are named
according to their order, the B1 genotypic array is

2m−1
(

1
2
Q11 +

1
2
Q12

)

·
m∏
k=2

(1− rQk−1;Qk

2
Qk1 +

rQk−1;Qk

2
Qk2

)

and the genetic variance of this array is

σ2
G = 1

4

m∑
k=1

δ2
k + 1

4

m∑
k; k′=1yk6=k′

�1− 2rQk;Qk′ �δkδk′;

where the recombination fractions between non-
adjacent loci follow from the no-interference ar-
guments shown above. The products of effects at
different loci affect the variance only for linked loci
in this additive model.

If we denote m ordered markers as M1;M2; : : : ;
Mi−;Mi;Mi+; : : : ;Mm, the partial regression coeffi-
cient βYXi·Si of the trait on the indicator variable
for the ith marker Mi, conditional on the set Si of
all other markers, depends only on those QTLs in
the two marker intervals �Mi−;Mi�, �Mi;Mi+� that

have marker Mi as a common boundary

βYMi·Si =
∑

i−<k≤i

rMi−Qk
�1− rMi−Qk

�
rMi−Mi

�1− rMi−Mi
��1− 2rQkMi

�δk

+
∑

i<k<i+

rQkMi+
�1− rQkMi+

�
rMiMi+

�1− rMiMi+
��1− 2rMiQk

�δk:

In other words, the partial regression coefficient of
trait value on the indicator variable for marker Mi

is nonzero only when there are QTLs in either or
both of the two marker intervals with Mi as a com-
mon boundary. The logic of this, as well as the alge-
braic details, reduce correctly to those given above
for two markers and one QTL. Partial regression
therefore leads to a test for the presence of QTLs
in the marker interval �Mi−;Mi+� only, regardless
of the presence of other QTLs in the genome.

8. COMPOSITE INTERVAL MAPPING

Zeng (1993, 1994) set up a model involving re-
gression both on QTL within an interval and on
marker loci outside that interval. Inference is made
by maximum likelihood. This method is essentially
a combination of interval mapping (Lander and Bot-
stein, 1989) and multiple regression, and a similar
strategy was adopted by Jansen (1993). We present
Zeng’s (linear) model

Yj = β0 + β∗X∗j +
∑
k

βkXkj + εj;(4)

where X∗j refers to a QTL in the interval between
adjacent markers Mi and Mi+ (recall previous no-
tation), and Xkj refers to all markers Mk except
these two. If there is no QTL in the interval, β∗ = 0,
since the effects of all other QTLs are removed by
the βk terms. The model is designed to detect QTLs
only within the interval Mi;Mi+ , and a test for the
presence of such QTLs is a test of the hypothesis
H0x β∗ = 0.

Other QTLs affecting the trait may be scat-
tered throughout the genome. The effects of these
other QTLs are removed through the regressions
on markers outside the interval. The regression co-
efficients β0; β

∗; �βk� reflect the effects of all the
QTLs, and replace the previous µ1; µ12 parameters.
When X∗j = 1, the trait is normally distributed with
mean β0+β∗+

�
k βkXkj and variance σ2 and when

X∗j = 0, the mean is β0 +
�
k βkXkj. (We write the

density functions of these two normal distributions
as φ1�Y� and φ0�Y�, respectively.) For convenience,
X0j is defined as 1 and the sum β0 +

�
kXkjβk

written as Xjβ. When a total of m markers are
used in the analysis, and two markers flank the in-
terval of interest, the quantity β is a column vector
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(b) with m − 1 components and Xj a row vector of
the matrix X with m − 1 components. Trait values
are contained in the vector Y.

If the sample sizes in each of four marker classes
are written as nl, l = 1;2;3;4, the likelihood func-
tion for the composite interval model is

L�β0; β
∗; �βk�; σ2�

=
n1∏
j=1

�φ1�Y1j��
n2∏
j=1

��1−p�φ1�Y2j�+pφ0�Y2j��

·
n3∏
j=1

�pφ1�Y3j� + �1− p�φ0�Y3j��

·
n4∏
j=1

�φ0�Y4j��:

(5)

The quantity p = rMQ/rMN is assumed known. It
is relatively straightforward to find the maximum
likelihood estimates of the various parameters (see
Appendix 2).

The ratio of maximum likelihoods for the test that
β∗ = 0 requires the parameters to be also estimated
under the null hypothesis. Using a zero subscript for
these estimates evaluated under the null hypothe-
sis:

β̂0 = �X′X�−1X′Y;

σ̂2
0 = �Y − Xβ̂0�′�Y − Xβ̂0�/n:

The only potential for false indications of QTLs
with the composite interval approach arises if there
are QTLs in the intervals immediately adjacent to
the interval being studied. Many statistical issues
involved with this approach were discussed in detail
by Zeng (1994).

8.1 MQM Mapping

Jansen (1993, 1994) presents MQM (multiple
QTL models or marker–QTL–marker) mapping
which, like composite interval mapping, combines
the utility of interval mapping with the strength of
multiple regression. In addition, MQM implements
exact models for multiple QTLs by simultaneously
estimating QTL position. Some regard “exact” sta-
tistical models as not feasible for describing the
inheritance of complex quantitative traits. MQM
also incorporates a means of estimating missing
data, whether missing genotypic data or incomplete
data from not knowing the “true” genotype of the
QTL. Incomplete data is essentially “completed” by
calculating conditional probabilities of the observed
data given the phenotypic data in an EM algorithm
setting which in turns allows maximum likelihood
estimation of the model parameters. For a review of

this procedure see Lander and Botstein (1989) and
Jansen and Stam (1994).

The general MQM model presented by Jansen
(1994) is a classical linear regression model used
by Lander and Botstein (1989) and many others.
The environmental error distribution is assumed to
follow a normal distribution. The normal error re-
gression model allows parameter estimates to be ob-
tained by maximum likelihood for use in interval
estimates and statistical tests. Jansen’s analysis is
EM algorithm based and relies on preselected mark-
ers as cofactors in a multiple regression framework.
Through extensive simulation work Jansen (1994)
demonstrates the power of MQM mapping over in-
terval mapping through the control of Type I and
Type II errors.

9. THRESHOLD VALUES

Each methodology discussed in this review is
based on the assumption of normality either on the
quantitative trait distribution or on the error term
of the model. Since the actual genotype of the QTL
is unknown, within each known genotypic marker
class one must consider each possibility for the QTL
genotypes, which gives rise to the mixture distri-
butions described previously. It is well known that
deviations from the normal distribution assumption
will greatly affect the distribution of the test statis-
tic used (in this case to detect or locate the QTL),
and in fact it is further known that LR tests based
on mixture distributions fail to follow a function of a
standard distribution (Ghosh and Sen, 1985; Harti-
gan, 1985; Self and Liang, 1987; Feng, 1990). Some
researchers (Lander and Botstein, 1989; Darvasi et
al., 1993; Jansen, 1994; Rebaı̈, Goffinet and Man-
gin, 1994) have relied on simulations to derive the
distribution of the test statistic (often a LOD score)
for the purpose of gaining a threshold value which
represents a desired level of significance. Analytical
work has also been provided by Lander and Bot-
stein (1989, 1994), Feingold, Brown and Siegmund
(1993), Rebaı̈, Goffinet and Mangin (1994), and
Dupuis (1994) in order to lend asymptotic support
to this issue. Nonparametric permutation methods
(Fisher, 1935; Good, 1994) have also been applied
to the problem of estimating empirical threshold
values (Churchill and Doerge, 1994; Doerge and
Churchill, 1996), as well as Wilcoxon rank–sum
(Kruglyak and Lander, 1995). An alternative is to
permute the trait values of the sample and then
simply compare marker class means. Repeated per-
mutations lead to a distribution of the difference
of means under the hypothesis of no association of
trait and marker loci.
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There are many benefits to each of the above
mentioned approaches, and while no one estimated
threshold value is the true value, each if used in
an informed manner may provide an appropri-
ate threshold value against which to compare test
statistics for significant QTL location. The simula-
tion threshold values are model dependent, and if
the correct model is used, the threshold values will
be appropriate. Unfortunately, simulation thresh-
old values do little to include the effect of missing
data patterns and ghost QTLs. Analytical thresh-
old values accurately reflect the sample size and
map density of the experiment. Since environmen-
tal variation plays a large role in any experimental
system, one would expect permutation methods to
provide an accurate reflection of sample size, miss-
ing data patterns, environment, as well as multiple
testing issues. The computational intensity of the
permutation methods is a limiting factor in its ap-
plication. For a desired significance level of 5% at
least 1,000 permutations of the trait data must be
performed, more if a smaller significance level is
desired.

10. SOFTWARE

One of the major issues in the proper location of
quantitative trait loci is the availability of software
to do the analysis. While many of the procedures
covered in this review are available from stan-
dard statistical packages (e.g., SAS, MINITAB etc.),
many of the more complicated procedures require
statistical expertise. Therefore, appropriate soft-
ware must be developed and distributed so that the
correct analyses may be performed.

There are several QTL mapping software pack-
ages currently available. MAPMAKER/EXP (Lan-
der and Green, 1987; Lincoln, Daly and Lander,
1992a) is publicly available software for construct-
ing genetic marker linkage maps from experimental
populations and also from some human pedigrees.
Its companion software, MAPMAKER/QTL (Lin-
coln, Daly and Lander, 1992b) is for mapping QTL
using interval mapping. MAPMAKER/QTL is capa-
ble of analyzing backcross, F2, recombinant inbred
populations and can treat missing marker data.
QTL CARTOGRAPHER (Basten, Weir and Zeng,
1995–1996) is another publicly available software
package for QTL mapping. It can perform single-
marker, interval mapping and composite interval
mapping analyses, can treat missing and dominant
markers, and applies to backcross, Ft (t > 1) ei-
ther by selfing or random mating, double haploid,
and recombinant inbred populations. QTL CAR-
TOGRAPHER can perform permutation tests to

generate empirical threshold values for a genome-
wide search for QTL, and can also perform jack
knife resampling analyses to estimate sampling
variances of estimates. MAPQTL (Van Ooijen and
Maliepaard, 1996) is software for mapping QTL us-
ing MQM methods (Jansen, 1993, 1994). It applies
to inbred line derived crosses.

Wide-scale application of any computer package
is always accompanied by the possibility that the
underlying methodology, and especially its assump-
tions, are not understood by the user. In this case,
Luo and Kearsey (1992) stated “the approaches and
the relevant program have been widely considered
by plant/animal breeders as being difficult to under-
stand and this has hindered the efficient use of the
method.” These authors elaborated on the discus-
sion given in Lander and Botstein (1989) and gave
details for the F2 design. In the following section,
we analyze a real data set using publicly available
computer packages: MAPMAKER/EXP (Lander and
Green, 1987; Lincoln, Daly and Lander, 1992a, b);
MAPMAKER/QTL (Paterson et al., 1988; Lincoln,
Daly and Lander, 1992a, b); and QTL CARTOGRA-
PHER (Basten, Weir and Zeng, 1995–1996).

11. EXAMPLE

As a working example for this review, we use an
F2 mouse data set (Horvat and Medrano, 1995)
based on 190 male individuals, scored at 9 genetic
markers (microsatellites) with average spacing
3.85 cM. The goal of this published research was to
locate the high growth (hg) locus (QTL), a region in
the mouse genome that increases both weight gain
and body size of mature mice. Energy metabolism
is affected by the hg locus, with no apparent phys-
ical malformation to the body composition. The
long-range goal of such work is to rely on the syn-
tenic relationship between mouse, humans and
domestic species to advance analogous research in
human studies, as well as economically important
livestock traits. As a result of previous work in this
area, the search for the hg locus (Medrano, Pomp,
Taylor and Bradford, 1992) is restricted to chromo-
some 10. Localization of QTLs in specific regions of
a genome is referred to as fine scale mapping. The
measurable trait of interest in this application is
weight gain from 14 to 63 days of age.

We first review the quality of the data set and
then present the estimated genetic map. The anal-
yses are presented in the order that the topics were
discussed. Finally, the results of each analysis are
compared with the published findings.

Data. We summarize the quality of the data by
assessing the amount of missing marker and trait



STATISTICAL ISSUES IN SEARCHING FOR QTL 209

Fig. 2. Histogram of weight gain from 14 to 63 days of age for the F2 mouse data set �Horvat and Medrano; 1995� containing 190
male individuals.

D10Mit31 H H H H B A H H B H · · · H H H H A H A A B B
D10Mit42 H B H H B H H H B H · · · H H B H A H A A H B

Igf1 H B H H B H H H B H · · · H H B B A H A A H B
D10Mit9 H B H H B H H H B H · · · A H B B A H A A H B
D10Mit10 H B H H B H H H B H · · · A H B B A H A A H B
D10Mit41 H B H H B H H H B H · · · A H B B A H A A H B
D10Mit12 H B H H B H H H B H · · · A H B B A H A A H B
D10Nds2 H B H H B H H H B H · · · A H B B A H A A H B
D10Mit14 H B A A B H H H B H · · · A H B B A H A A H B

weight 12.1 15.6 14.0 14.6 13.5 13.2 17.3 13.0 16.0 11.6 18.4
· · · 17.8 14.6 12.0 10.3 11.2 16.0 19.2 20.8 13.3 11.8

Fig. 3. An example of the abbreviated genotypic and phenotypic data from Horvat and Medrano (1995): 190 F2 individuals scored for
9 genetic markers on chromosome 10 of the male mouse genome. Marker names are in map order at the beginning of each row. Genetic
markers are scored for each individual �columns�. Homozygous genotypes of the first parental type are denoted A; homozygous genotypes
of the second type are denoted B and heterozygotes are H. The measured trait data is weight gain from 14 to 63 days of age, and the
order of the individuals is the same for both genotypic and phenotypic data.

information. One individual trait measurement is
missing, while complete genetic marker data are
available on each of the nine markers. A histogram
of weight gain is shown in Figure 2, with the aver-
age trait value being 16.23 (variance 12.07). There
is a slight right-hand skew in the trait distribution,
having a skewness coefficient of 0.57 and kurtosis
of 3.17 (not centered). The quality of the data is ex-
ceptionally high. Traditionally (Lincoln, Daly and
Lander, 1992a), data showing this level of skewing
would be transformed (log10) to normality. However,

since the distribution of the trait values within the
genotypic marker classes follows a mixture distri-
bution, and the expectation that there is a single
QTL, the skewed distribution is anticipated. For the
purpose of illustration we will work with untrans-
formed data.

The data set is illustrated in Figure 3. Marker
names are listed as rows, and each individual’s score
for that marker is recorded in the appropriate col-
umn. An individual in thisF2 data set may have one
of three possible genotypes per marker. An “A” is ho-
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mozygous (parent 1), a “B” is homozygous (parent 2)
and an “H” is heterozygous. All marker information
is recorded and the measured trait information on
each individual follows (Figure 3).

Figure 4 displays the genetic map of chromosome
10. Map order and (cM) distance (Haldane mapping
function) were estimated using MAPMAKER/EXP.

Single-marker analyses. For each genetic marker
in this F2 experimental population there are three
possible genotypes. A single-factor analysis of vari-
ance (ANOVA) on each marker provides a test of
the hypothesis of equal trait means in each of the
three genotypic classes. Significant results will in-
dicate a difference in the trait means, an indication
of QTL action. If normality is assumed, a 5% sig-

Fig. 4. MAPMAKER/EXP estimated genetic map of Horvat and
Medrano �1995� data: 190 F2 individuals scored for 9 genetic
markers on chromosome 10 of the male mouse genome. Haldane
map function used to convert from recombination fraction to map
distance �cM�.

nificance level has a critical value of F2;186 ≈ 3:04.
Since multiple tests (one for each marker) will be
made, a correction (Lander and Botstein, 1989) to
the significance level may be appropriate, or one
can estimate a critical value by permuting the trait
data for the purpose of representing the data un-
der the null hypothesis. Empirical threshold values
(Churchill and Doerge, 1994) based on 1,000 per-
mutations were estimated for each marker and for
an overall critical value of 5%. Table 3 shows the
results of a single-factor ANOVA for each marker.
QTL CARTOGRAPHER uses a two d.f. F-test to
test that the marker is unlinked to the QTL. Based
upon a maximum test statistic of 24.950, marker
D10Mit12 displays the highest test statistic and ob-
viously shows a significant association since it ex-
ceeds the estimated 5% threshold value of 3.077
for that marker and 4.5453 for the entire chromo-
some. Since no information from the genetic map
(i.e., marker order) is used, and recombination and
QTL effect are confounded in the difference between
the genotypic class means, location of the QTL rel-
ative to D10Mit12 cannot be determined. D10Mit12
is simply the marker that displays the highest level
of genotype–phenotype association.

Single-marker regression. We continue with our
single-factor analyses by using a simple linear re-
gression model similar to (3). In an F2 mating de-
sign there are three possible genotypic classes for
each marker, therefore the regression model in (3)
is extended to allow the indicator variable (X) to
take on values 2, 1 and 0 for homozygous high, het-
erozygous and homozygous low genotypes, respec-
tively. Within the computer program QTL CARTOG-
RAPHER, the LRmapqtl (linear regression) option
was employed. For each marker the slope of the re-
gression equation was tested for equality to zero un-
der the null hypothesis. Table 3 gives the results of
this analysis. Marker D10Mit12 displays the high-
est level of association to a QTL, as expected.

Interval mapping. Using the computer program
MAPMAKER/QTL, interval mapping as described
by Lander and Botstein was employed for locating
a single QTL using the known fixed map (Fig-
ure 4). Figure 5 shows a typical QTL analysis
from MAPMAKER/QTL. QTL CARTOGRAPHER
also has a module capable of reproducing MAP-
MAKER/QTLs effort. For the sake of illustration
MAPMAKER/QTL is used for interval mapping
(2-cM increment). The original analysis by Hor-
vat and Medrano (1995) uses incremental values
of 0.5 cM. The interval D10Mit41–D10Mit12 (Fig-
ure 5) displays the highest LOD score (10.679) 2 cM
to the right of D10Mit41. Analysis at the marker
is equivalent to single-factor analysis since no ad-
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Table 3
Single-marker analyses of Horvat and Medrano �1995� data set: 190 F2 individuals scored for 9 genetic markers on chromosome 10 of
the male mouse genome; regression and F∗ calculations are from QTL CARTOGRAPHER; F0 are the observed F-values from ANOVA for
each single marker; the critical values are the 5% empirical threshold values calculated using methods of Churchill and Doerge �1994�
with 1;000 permutations of the original data; the 5% experimental empirical threshold value �for entire chromosome� using the F0 test

statistic is 4:5453

Marker b0
∗∗ b1

† LR‡ F∗§ F◦§§ Critical value¶

D10Mit31 14.820 1.291 12.198 12.466 7.390 3.060
D10Mit42 13.855 2.112 31.315 33.685 18.110 3.265
Igf1 13.827 2.166 32.993 35.651 18.058 3.235
D10Mit9 13.912 2.120 31.330 33.703 17.153 3.244
D10Mit10 13.870 2.169 33.473 36.218 18.683 3.201
D10Mit41 13.730 2.320 41.259 45.496 24.348 3.242
D10Mit12 13.674 2.349 42.207 46.765 24.950 3.077
D10Nds2 13.935 2.110 32.396 34.950 19.177 3.055
D10Mit14 14.654 1.422 15.691 16.185 9.563 2.976

∗∗Intercept of simple linear regression.
†Slope of simple linear regression.
‡Likelihood ratio −2 log�L0/L1�.
§F∗ statistic for testing that the marker is unlinked to the QTL by linear regression.
§§F◦ statistic for testing that there is no difference between the three genotypic class means.
¶Empirical threshold values (5%) for F◦.

ditional information is used from the map. The
estimated 5% empirical threshold value to be used
across the entire chromosome is 2.0590.

Composite interval mapping. Composite interval
mapping (4) was employed by implementing model
1 (Zeng, 1993) option of the Zmapqtl module of the
QTL CARTOGRAPHER computer program. Model
1 tests the current analysis point (increments of
2 cM) in an interval while conditioning on the re-
maining markers in the genome in order to con-
trol for genetic background (Table 4). Both additive
and dominance effects were tested using a likeli-
hood ratio test statistic. Since we are performing
multiple tests across the entire chromosome, the
5% empirical threshold value (Churchill and Do-
erge, 1994) was estimated (QTL CARTOGRAPHER)
based on 1,000 permutations of the original data.
The most significant region is within the D10Mit41–
D10Mit12 interval. This result is consistent with
previous findings and is well above the 9.680 em-
pirical threshold value.

Results. This data set illustrates a major single
QTL effect. Each method of analysis confirms the
published results of Horvat and Medrano (1995),
namely, that the hg locus is approximately in the
middle of the D10Mit41–D10Mit12. Physical map-
ping of hg is the next step in the long-term goal of
cloning hg (i.e., genetically engineering a replicate
of the DNA sequence responsible for the hg locus).
Cloning will allow functional definition of the hg lo-
cus, for the purpose of identifying similar loci in
human and domestic animal species.

Many experimental situations are not as neat and
straightforward as the one used here. Often multi-
ple QTLs are detected across the entire genome, in
which case the analysis becomes more complicated
since the model must reflect the correct genetic sit-
uation. Multiple QTL effects are sometimes inde-
pendent and their effects may be additive, but of-
ten QTLs interact (epistasis), and this too must be
added to the model. In addition, the sample size is
sometimes small, and the proportion of missing data
is large (genotypic and phenotypic) making the ac-
curacy of the parameter estimation questionable.

12. DISCUSSION

We have attempted to review a vast amount of
literature in a limited space. As a result of this
limitation relevant statistical issues have not been
discussed fully, yet are worthy of further discus-
sion. The topics not sufficiently covered are geno-
type by environment interaction, effects of missing
data and sample size, testing for incorrect marker
data (Ehm, Kimmel and Cottingham, 1996), nonlin-
ear model methods of QTL analysis, as well as ad-
ditional means by which parameter estimation may
be accomplished, and issues of statistical power.

When experiments to locate QTLs are conducted
in different environments, there is no guarantee
that the same results will be found (Paterson et al.,
1991; Stuber et al., 1992). This could be taken as ev-
idence for, or even used to elucidate, genotype by en-
vironment interaction, and so is of biological inter-
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POSa WEIGHTb DOMc %VARd LOG-LIKEe Significancef

D10Mit31-D10Mit42g 9.1 cMh

0.0 −1.202 −0.743 7.4% 3.140 ***********
2.0 −1.475 −0.907 11.0% 4.243 ***************
4.0 −1.683 −0.912 13.4% 5.260 ********************
6.0 −1.838 −0.845 15.0% 6.159 ***********************
8.0 −1.943 −0.769 16.0% 6.940 **************************

D10Mit42-Igf1 4.2 cM
0.0 −1.977 −0.733 16.3% 7.303 ****************************
2.0 −2.106 −0.571 17.3% 7.527 *****************************
4.0 −2.116 −0.383 16.5% 7.332 ****************************

Igf1-D10Mit9 1.3 cM
0.0 −2.108 −0.358 16.3% 7.282 ****************************

D10Mit9-D10Mit10 0.8 cM
0.0 −2.065 −0.395 15.6% 6.953 **************************

D10Mit10-D10Mit41 1.6 cM
0.0 −2.104 −0.509 16.8% 7.524 *****************************

D10Mit41-D10Mit12 3.3 cM
0.0 −2.241 −0.757 20.8% 9.552 ************************************
2.0 −2.392 −0.998 24.6% 10.679 ************************************

D10Mit12-D10Nds2 2.2 cM
0.0 −2.257 −0.757 21.2% 9.752 ************************************
2.0 −2.063 −0.815 18.0% 7.966 ******************************

D10Nds2-D10Mit14 8.3 cM
0.0 −2.005 −0.824 17.1% 7.693 *****************************
2.0 −1.971 −0.894 17.2% 7.163 ***************************
4.0 −1.851 −0.943 16.0% 6.364 ************************
6.0 −1.649 −0.956 13.6% 5.359 ********************
8.0 −1.372 −0.854 10.0% 4.220 ***************

atest position
bestimated additive effect
cestimated dominance effect
destimated percent total variance explained by QTL
eLOD score
fone star is printed at a LOD score over 2.0, 0.25 increments are denoted with additional stars
gmap interval
hmap distance between markers which define interval

Fig. 5. MAPMAKER/QTL interval mapping computer output of Horvat and Medrano �1995� data: 190 F2 individuals scored for 9
genetic markers on chromosome 10 of the male mouse genome. Haldane map function used to convert from recombination fraction to map
distance �cM�.

est. Caution is needed, however, to ensure that dif-
ferences in LOD curves, for example, do not simply
reflect sampling variation in these curves (Doerge,
1993). Genotype-by-environment �G×E� interaction
has been studied using ANOVA (Paterson et al.,
1988; Guffy, Stuber and Edwards, 1989; Zehr, 1990),
by recording the number of times a marker–QTL
association occurs in varying environments (Patter-
son et al., 1991; Stuber et al., 1992; Bubeck, Good-
man, Beavis and Grant, 1993), as well as by indirect
selection where the phenotypic correlation between
multiple environments is exploited to study indirect
response to selection given no correlation of error
effects among environments. G × E interaction pro-
duces varying results which may be an artifact of
the traits studied or simply because the number
of replicates within each environment is too small.
There are a number of exhaustive reviews that ad-

dress G × E interaction (Freeman, 1973, 1990; Fox
and Rosielle, 1982; Zobel, 1990; Bull et al., 1992;
Cooper and DeLacy, 1994; Kang and Gauch, 1996),
and even so a large amount of work remains in order
to gain complete understanding of this phenomenon.
Cooper and DeLacy (1994) put forth two important
questions. “The first is, are the aspects of G × E in-
teraction observed in the multienvironment experi-
ment repeatable? The second is, what is the nature
of the interaction and how relevant is it to the target
population of environments for which the breeding
program is responsible?” Recently, Jiang and Zeng
(1995) extended the composite interval mapping ap-
proach to multiple trait analysis for the purpose of
improving the power and precision of mapping mul-
tiple QTLs on multiple traits, and to facilitate tests
of a number of biologically interesting hypotheses,
including pleiotrophy (one gene being responsible
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Table 4
Composite interval mapping results for Horvat and Medrano
�1995� data using QTL CARTOGRAPHER: 190 F2 individu-
als scored for 9 genetic markers on chromosome 10 of the male
mouse genome; see composite interval mapping section of paper
for model specification; all markers are used to control for genetic
background; interval mapping is performed in approximate in-
crements of 2 cM using a likelihood ratio test statistic and the hy-
potheses H0x a = 0; d = 0; H1x a 6= 0; d = 0; H2x a = 0; d 6= 0;
and H3x a 6= 0; d 6= 0; 5% empirical threshold values were cal-
culated using 1;000 permutations of the original data; the 5%
experimental empirical threshold value �for entire chromosome�

is 9:680 as calculated by QTL CARTOGRAPHER �H0x H3�

Marker Test position∗ H0 xH3
∗∗ H1 xH3 H2 xH3

D10Mit31 0.0001 14.431 3.377 10.437
0.0201 18.984 4.220 14.508
0.0401 23.443 4.482 18.266
0.0601 27.612 4.398 21.644
0.0801 31.514 3.985 24.768

D10Mit42 0.0906 33.291 3.368 26.209
0.1106 33.151 2.788 28.413
0.1306 33.063 0.682 29.621

Igf1 0.1327 33.044 0.467 29.661
D10Mit9 0.1462 31.634 0.801 28.599
D10Mit10 0.1542 34.364 1.645 30.656
D10Mit41 0.1703 43.767 4.632 38.273

0.1903 47.568 9.749 42.045
D10Mit12 0.2036 44.557 4.459 38.498

0.2236 35.728 4.338 29.797
D10Nds2 0.2254 35.202 4.930 28.926

0.2454 31.449 5.120 25.147
0.2654 27.534 4.939 21.303
0.2854 23.506 4.754 17.676
0.3054 19.175 4.285 13.942

D10Mit14

∗Over total length of chromosome.
∗∗Likelihood ratio.

for many seemingly unrelated traits) and G × E in-
teraction. Kao and Zeng (1997) further extend the
concept of composite interval mapping to include
search, test and estimation of multiple QTLs simul-
taneously. In order to test and estimate multiple
linked and/or unlinked epistatic QTLs, a general
EM algorithm for likelihood analysis was derived
and can apply to an arbitrary number of marker in-
tervals for multiple QTLs simultaneously. This al-
gorithm and mapping strategy has some advantage
in increasing the power of locating QTL. The main
advantage is in facilitating the test and estimation
of QTL epistasis and estimation of the joint contri-
bution in the genetic variance due to multiple QTLs.
Formulae and algorithms for estimating aysmpotic
sampling variances of estimates of QTL positions
and effects were also derived.

Knapp, Bridges and Birkes (1990) address issues
of multiple QTLs (unlinked) using linear models
similar to those presented in this review. They also
consider linked QTLs. Using nonlinear theory, mul-

tiple linked QTLs models were developed for back-
cross, F2 and F3 experimental populations.

Several authors have presented heuristic algo-
rithms for determining estimates of QTL distri-
bution parameters and recombination fractions
between QTL and trait loci. In the case of one QTL
and one marker, Weller (1986) gave the likelihood
function for the F2 design. For specified values of
rMQ, he used first and second moments of trait val-
ues in each of the three marker classes to provide
moment estimators for the means and variances
of the P1;P2;F1 trait distributions. Estimates for
three parameters, the mean and variance of the
F1 type and the recombination fraction, were then
varied over grids in an attempt to maximize the
likelihood. Weller (1987) applied this method in a
study of some traits in tomato, but did not use in-
formation on the marker heterozygotes in the F2
population. In an even further departure from true
maximum likelihood methods, Luo and Kearsey
(1989) used the same six moment equations to as-
sign values to the trait distribution parameters as
functions of the single unknown rMQ. They substi-
tuted these expressions into the likelihood function
and then chose rMQ to maximize this expression.
Luo and Kearsey (1991) applied the same strategy
to other mating designs, including the backcross.
Darvasi and Weller (1992) then pointed out that
Luo and Kearsey were producing “pseudo” maxi-
mum likelihood estimates and showed numerical
differences between such values and values found
from a grid search of the full seven-parameter
space. Darvasi and Weller (1992) also claimed that
the EM-algorithmic approach of Lander and Bot-
stein (1989) did not give true maximum likelihood
estimates as it was based on likelihoods calculated
at a series of specified rMQ values. The debate has
not been characterized by rigorous statistical the-
ory and now seems to be moot in light of the current
regression approaches.

Finally, after methods have been established to
detect linkage between trait and marker loci, it is
of interest to determine sample size requirements.
One of the early discussions was that of Soller,
Brody and Genizi (1976). For the backcross de-
sign with a single trait locus and a single marker,
they approximated the t-statistic with a standard
normal and determined the (equal) sample sizes
needed in each marker class to have 90% power at a
5% significance level. Their treatment of the F2 sit-
uation was more approximate since they compared
only the two homozygous marker class means. They
suggest that sensitivity of the F2 design will be in-
creased by including the heterozygous marker class
in the analysis.
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Soller, Brody and Genizi (1979) considered how
likely it is to find QTLs linked to arbitrary markers
under a range of values assigned to marker spac-
ing and genotypic effects at the loci contributing
to a trait with specified heritability. Another exten-
sion from Soller and his colleagues was a treatment
of the case when the two parental lines are segre-
gating at the marker locus (Beckmann and Soller,
1988) rather than being fixed for alternative alleles.
Larger sample sizes are needed to attain the same
power as in the fixed-populations case.

All work described in this review has been based
on crosses of inbred lines. For many species this is
not practicable but crosses can be made between
outbred lines. Haley, Knott and Elsen (1994) use
least-squares methods to regress trait phenotypes
onto additive and dominance effects of putative
QTLs in marker intervals. The work is for the situ-
ation of crosses between outbred lines in which the
trait loci are segregating but in which the markers
used are fixed for alternative alleles.

Although a substantial amount of work has been
done, somewhat less attention has been paid to
issues of statistical power. Carbonell, Berig, Bal-
ansard and Asins (1992) looked at power in analyses
involving single marker intervals in F2 populations
and found higher power for F-tests than for LOD-
score tests, although this came at the expense of
higher Type I errors. Rebaı̈, Goffinet and Mangin
(1995) compared likelihood methods and analysis
of variance for interval mapping in a backcross
population. They were able to provide approximate
analytical expressions for both critical values and
power, and demonstrated the superiority of likeli-
hood methods. Recently, Doerge and Rebaı̈ (1996)
compared critical values based on analytic expres-
sions to empirically derived critical values over a
range of simulated conditions, as well as for a real
data set. They found little difference between the
analytical and empirical threshold values for sim-
ulated data. However, for real experimental data,
empirical threshold values were less conservative
than analytically derived threshold values. Haley
and Knott (1992) compare regression and maxi-
mum likelihood and made the point that regression
provides a simple alternative to maximum likeli-
hood for single intervals without the computational
complexity.

As technology advances and the collective scien-
tific community is able to generate even more molec-
ular based data for the investigation of genetically
formed phenomena, methods of proper QTL anal-
ysis must be available. The fields of quantitative
genetics and statistics have a long history of ex-
cellence, and in this forum (QTL mapping) have

the potential to continue as “vital to the welfare
of the nation and world” (Bailar, 1995). We close
with two dynamic examples of QTL research, the
first in plant breeding, the second dealing with the
synteny between mouse and human. Mutschler et
al. (1996) present a QTL analysis of the production
of acylsugar responsible for pest resistance in wild
tomato. The aim of this work is to identify regions in
the wild type tomato genome associated with acyl-
sugar production as related to pest control, and to
incorporate these regions into crop species for the
purpose of reducing reliance on synthetic pesticides.
Horvat and Medrano (1995) demonstrate similar ad-
vances in the use of molecular technology and anal-
ysis for the location of the high growth (hg) locus in
mouse (previous example). Molecular characteriza-
tion of the hg locus has potential to direct similar
studies in both human and domestic species. The
impact of mouse work may be seen in future human
diabetes, obesity and heart disease studies. Under
growing concerns about health and environmental
issues associated with the use of environmental and
chemical stimuli, quantitative genetics and “molec-
ular” plant (animal) breeding (Rafalski and Tingey,
1993) coupled with proper statistical development
has huge potential for the general improvement of
human health issues, as well as economically im-
portant food sources.

As a final word, the purpose of this review is
to summarize the vast amount of work that has
been done in statistical development of methodolo-
gies which facilitate the exciting advances in molec-
ular and quantitative genetics as applied to herita-
ble functions. It is our hope that this review will
pique interest in the interdisciplinary field of sta-
tistical genetics by pointing out the statistical nu-
ances of the field, review past and current work and
encourage further involvement from the statistical
community.

APPENDIX 1

We develop the specifics of the F2 generation for
single marker analysis considerations. The F2 gen-
eration has 10 trait-marker genotypes contributing
to the genotypic array

�1− rMQ�2
4

[
M1Q1/M1Q1 +M2Q2/M2Q2

]

+ �1− rMQ�
2

2
M1Q1/M2Q2

+ rMQ�1− rMQ�
2

[
M1Q1/M1Q2 +M2Q1/M2Q2

+M1Q1/M2Q1 +M1Q2/M2Q2
]
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+
r2
MQ

4

[
M1Q2/M1Q2 +M2Q1/M2Q1

]

+
r2
MQ

2
M2Q1/M1Q2:

The mixture distributions for the three distinguish-
able marker classes are

M1M1 x �1− rMQ�2N�µ1; σ
2�

+ 2rMQ�1− rMQ�N�µ12; σ
2�

+ r2
MQN�µ2; σ

2�;
M1M2 x rMQ�1− rMQ�N�µ1; σ

2�
+ �r2

MQ + �1− rMQ�2�N�µ12; σ
2�

+ rMQ�1− rMQ�N�µ2; σ
2�;

M2M2 x r2
MQN�µ1; σ

2�
+ 2rMQ�1− rMQ�N�µ12; σ

2�
+ �1− rMQ�2N�µ2; σ

2�;

with means

µM1M1
= �1− rMQ�2µ1+2rMQ�1− rMQ�µ12+ r2

MQµ2;

µM1M2
= rMQ�1− rMQ�µ1+�r2

MQ+�1− rMQ�2�µ12

+ rMQ�1− rMQ�µ2;

µM2M2
= r2

MQµ1+2rMQ�1− rMQ�µ12+�1− rMQ�2µ2

and variances

σ2
M1M1

= σ2 + 2rMQ�1− rMQ�
· ��µ1 − µ12� − rMQ�µ1 + µ2 − 2µ12��2

+ r2
MQ�1− rMQ�2�µ1 + µ2 − 2µ12�2;

σ2
M1M2

= σ2 + rMQ�1− rMQ�
· ��µ1 − µ12�2 + �µ2 − µ12�2�
− r2

MQ�1− rMQ�2�µ1 + µ2 − 2µ12�2;
σ2
M2M2

= σ2 + 2rMQ�1− rMQ�
· ��µ2 − µ12� − rMQ�µ1 + µ2 − 2µ12��2

+ r2
MQ�1− rMQ�2�µ1 + µ2 − 2µ12�2:

The variances are equal, in general, only for an ad-
ditive trait (no interaction) and in that case reduce
to

σ2
M1M1

= σ2
M1M2

= σ2
M2M2

= σ2 + 2rMQ�1− rMQ�δ2

with δ2 = �µ1−µ12�2 = �µ2−µ12�2. Once again, the
hypothesis of no linkage between marker and trait

loci can be tested by comparing the three marker
class means, this time by an analysis of variance.
Under this hypothesis, the three marker means and
variances will be equal regardless of the degree of
dominance. Conversely, equality of all three means
implies that the hypothesis is true for all degrees
of dominance, providing only that the two parental
lines have unequal means. Edwards, Stuber and
Wendel (1987) pointed out that comparisons of the
three marker class means allow statements to be
made about the relative magnitudes of additive and
dominance effects in F2 populations.

APPENDIX 2

We derive the maximum likelihood estimates of
the various parameters involved in composite inter-
val mapping (Zeng, 1993). The likelihood equation
is defined in (5), β∗ is estimated in the following
manner:

∂ lnL
∂β∗

=
n1∑
j=1

Y1j − β∗ −Xjβ

σ2

+
n2∑
j=1

�1− p�φ1�Y2j��Y2j − β∗ −Xjβ�/σ2

�1− p�φ1�Y2j� + pφ0�Y2j�

+
n3∑
j=1

pφ1�Y3j��Y3j − β∗ −Xjβ�/σ2

pφ1�Y3j� + �1− p�φ0�Y3j�
:

Setting this derivative to zero provides

4∑
l=1

nl∑
j=1

Plj�Ylj − β∗ −Xjβ� = 0;

where

P1j = 1;

P2j = �1−p�φ1�Y2j�/��1−p�φ1�Y2j�+pφ0�Y2j��;
P3j = pφ1�Y3j�/�pφ1�Y3j� + �1− p�φ0�Y3j��;
P4j = 0:

This leads to the solution given by Zeng (1994) as

β∗ =
4∑
l=1

nl∑
j=1

Plj�Ylj −Xjβ�
/ 4∑

l=1

nl∑
j=1

Plj:

Differentiating the log-likelihood with respect to β:

∂ lnL/∂β =
n1∑
j=1

X′j�Y1j − β∗ −Xjβ�/σ2

+
n2∑
j=1

[
P2jX

′
j�Y2j − β∗ −Xjβ�

+ �1−P2j�X′j�Y2j −Xjβ�
]
/σ2
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+
n3∑
j=1

[
P3jX

′
j�Y3j − β∗ −Xjβ�

+ �1−P3j�X′j�Y3j −Xjβ�
]
/σ2

+
n4∑
j=1

X′j�Y4j −Xjβ�/σ2:

The equation ∂ lnL/∂β = 0 is most easily expressed
in matrix notation as

X′�Y − Xβ̂ � = X′Pβ∗;

β̂ = X′X−1X′�Y −Pβ∗�;
where Y is the n× 1 vector of all n = n1+n2+n3+
n4 observations, X is the n × �m − 1� matrix with
elementsXkj, P is the n×1 vector with elements Plj
(from P11 to P4n4

) and β is the �m − 1� × 1 vector
with elements β0; �βk�. The same notation allows
the expression

β∗ = �Y − Xβ�′P/c
if c represents the sum of all the elements of vec-
tor P.

Differentiating the log-likelihood with respect
to σ2:

∂ lnL
∂σ2

=
n1∑
j=1

�Y1j − β∗ −Xjβ�2
2σ4

+
n2∑
j=1

[
P2j
�Y2j − β∗ −Xjβ�2

2σ4

+ �1−P2j�
�Y2j −Xjβ�2

2σ4

]

+
n3∑
j=1

[
P3j
�Y3j − β∗ −Xjβ�2

2σ4

+ �1−P3j�
�Y3j −Xjβ�2

2σ4

]

+
n4∑
j=1

�Y4j −Xjβ�2
2σ4

− n

2σ2
:

Setting this derivative to zero leads to the solution

nσ̂2 = �Y − Xβ̂ �′�Y − Xβ̂ � − c�β̂∗�2:
So far, these solutions have been derived under the
assumption that p was known. If it is regarded as
being unknown, then the maximum likelihood esti-
mate follows from

∂ lnL
∂p

=
n2∑
j=1

−φ1�Y2j� +φ0�Y2j�
�1− p�φ1�Y2j� + pφ0�Y2j�

+
n3∑
j=1

φ1�Y3j� −φ0�Y3j�
pφ1�Y3j� + �1− p�φ0�Y3j�

=
n2∑
j=1

[
− P2j

1− p +
1−P2j

p

]

+
n3∑
j=1

[
P3j

p
− 1−P3j

1− p

]
;

so that

p̂ =
n2 −

�n2
j=1 P̂2j −

�n3
j=1 P̂3j

n2 + n3
;

with carets on the Plj values indicating that they
are evaluated at the estimated regression and vari-
ance values. An iterative procedure is required: esti-
mates of the regression coefficients and σ2 are found
for a specified p-value; then this value is updated
by the last equation and the process is repeated.
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