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An explicit goal of proteomics is the
identification and (if applicable) quantifica-
tion of proteins expressed in a cell or tissue
[1]. Apart from emerging technologies such as
protein chips [2] and the mass spectrometric
(MS) identification of intact proteins [3] 
(top-down proteomics), proteomic studies
frequently depend on MS analysis of peptides
generated by proteolysis of single purified
proteins or protein mixtures. Over the past
few years, analysis of complex protein mix-
tures by tandem MS (MS–MS) has become
widely used. In this method, complex protein
mixtures are digested with proteases and the
resulting peptide samples separated by one-
or multi-dimensional liquid chromatography
(LC) and analyzed by MS and MS–MS to se-
quence the peptides (Figure 1) [4]. If the pep-
tides are also encoded with a stable isotope
signature, relative protein abundance with
respect to a control sample can be accurately
determined using the same platform [5,6].
Each MS–MS spectrum is associated with the
amino acid sequence it best represents and
the data obtained from all the spectra in an
experiment are then used to infer the identity
and quantity of proteins in a sample mixture.
In a typical experiment of this type, thousands

of MS and MS–MS spectra are generated.
Sequence database searching of MS–MS spec-
tra to determine the sequence of the precur-
sor peptide is typically the first and often the
only analysis carried out with such data. It is
being increasingly recognized that more ex-
tensive analysis of proteomic data generated
by LC–MS–MS experiments is required if the
results generated from different experiments,
instruments and laboratories are to be pub-
lished and related to each other [7–9]. Here,
we discuss the need for statistical criteria for
the consistent analysis of large proteomics
datasets and summarize currently available
bioinformatics tools that support data analysis
and processing in high-throughput proteomics-
based LC–MS–MS.

Peptide identification
Analysis of proteomics datasets generated
using LC–MS–MS usually starts with identifi-
cation of the peptides that produce the ac-
quired MS–MS spectra. In high-throughput
studies, peptides are usually identified by
sequence database searching of uninterpreted
MS–MS spectra, and several algorithms have
been developed for this purpose [10–21]
(Table 1). In this approach, each acquired
MS–MS spectrum is compared with theoreti-
cal spectra obtained from a sequence data-
base. The search is typically restricted to only
those database peptides that have a calculated
mass within a small range of the measured
peptide mass. Expectation of certain peptide
properties with regard to the proteolytic en-
zyme specificity can be used as an additional
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constraint during the search. Theoretical spectra are calcu-
lated for each of the candidate peptides using common
peptide fragmentation rules and then the theoretical and
acquired MS–MS spectra are compared. Each acquired MS–MS
spectrum is thereby assigned the best matching database
peptide.

The main difference between database search programs
is the scoring function used to quantify the degree of simi-
larity between the compared spectra. Because the method
involves the identification of peptides and not proteins, all
types of sequence databases can be searched. These include
protein sequence databases (most commonly searched) as
well as genomic and expressed sequence tag (EST) databases
[22,23]. However, it should be noted that the database
search approach (in its straightforward use) only enables
identification of those peptides that are present in the
searched sequence database. It cannot therefore identify
peptides derived from post-translationally modified pro-
teins, sequence variants of known proteins, or proteins
from partially sequenced genomes. Searching genomic or

EST databases can potentially lead to
the identification of novel proteins or
novel splice variants of known pro-
teins. However, owing to their size,
searching such databases often takes a
significant amount of time. In addi-
tion, other factors such as frame-shifts,
incorrectly predicted open reading
frames and the poor quality of many
EST sequences further complicate the
search. In the future, more-refined se-
quence databases from ongoing bioin-
formatics efforts, such as the Alternative
Splicing Annotation Project [24] and
the Alternative Splicing Database Project
(http://www.ebi.ac.uk/asd/), might elim-
inate the need for searching MS–MS
data against genomic databases.

An alternative approach to peptide
identification is to determine peptide
sequences from MS–MS spectra directly
using de novo sequencing algorithms
[25–33]. Derived peptide sequences
can then be searched against a protein
sequence database using BLAST- or
FASTA-type sequence similarity search
algorithms to infer the identities of their
corresponding proteins [12,25,34].
However, currently available de novo
sequencing programs are computation-
ally intensive and require high quality

MS–MS data. Such programs are therefore rarely used 
in high-throughput studies. They are typically used after
database searching and applied only to a subset of the ac-
quired data (high quality MS–MS spectra that did not get
assigned a peptide with high confidence using the data-
base search approach). In addition to being a method of
primary peptide identification, de novo sequencing algo-
rithms can also be used to simply filter out low-quality
spectra or assist in validation of peptide assignments made
by the database search tools [25]. Hybrid approaches have
been described that combine the inference of short sequence
tags (partial sequences) from MS–MS spectra using de novo
sequencing-like algorithms with an error-tolerant database
search (i.e. a search that allows for one-or-more mis-
matches between the peptide represented by the MS–MS
spectra and the database sequence) [35–37]. A somewhat
different strategy that also involves extraction of sequence
tags has been recently proposed [18]. Another interesting
approach is based on pattern recognition of peptide se-
quence motifs in MS–MS spectra [38]. It is hoped that these

174

DDT Vol. 9, No. 4 February 2004reviews research focus

www.drugdiscoverytoday.com

Figure 1. Experimental procedures and flow of data in a typical analysis of a complex
protein mixture based on high-throughput liquid chromatography (LC) coupled with
tandem mass spectrometry (MS–MS). First, sample proteins are proteolytically cleaved
into small peptides. After separation using one- or multi-dimensional chromatography,
peptides are ionized and selected ions fragmented to produce MS–MS spectra.
Computational tools are used assign a peptide to each acquired MS–MS spectrum. The
next step is to determine which proteins are present in the original sample (A, B and C)
and which are false identifications (X1 and X2) corresponding to incorrect peptide
assignments (underlined peptide sequence). The process of inferring protein identities is
complicated by the presence of peptides corresponding to more than a single entry in
the protein sequence database (indicated by a question mark), which can also lead to
incorrect protein identifications.
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methods and the error-tolerant database search approach
[20] will eventually lead to the development of publicly
available computational tools for the identification of
post-translationally modified or mutated peptides that can
be automated for use in a high-throughput environment.
Nevertheless, direct database searching will probably
continue to be used as the primary peptide identification
method in most high-throughput LC–MS–MS-based studies.

Validation of peptides identified by database
searching
As with many other database search applications, the main
challenge is not finding the best match in the database but
rather how to determine whether this best match assign-
ment is correct [39–41]. If all spectra acquired in a typical
LC–MS–MS experiment are searched against a sequence
database, and the best match is assumed to be correct, then
(without further filtering) a large fraction of the assigned
peptides would be wrong [42]. This situation can arise be-
cause the scoring schemes used in current database search
tools are based on a simplified representation of the pep-
tide ion fragmentation process. In addition, the charge
state of the peptide ions selected for fragmentation is not
always known with high certainty, and many of the MS–MS

spectra are of low quality. Furthermore, a significant num-
ber of high-quality spectra are assigned a wrong peptide
because their true corresponding peptides are not present
in the searched sequence database.

The sensitivity and specificity of the peptide identifi-
cation process can be increased by several methods, includ-
ing additional processing of MS–MS spectra before database
searching [43], clustering of redundant spectra [44,45],
removal of low-quality spectra [46,47], and application of
automated charge-state determination algorithms [48–50].
In addition, the development of more-advanced scoring
schemes that incorporate additional knowledge of peptide
fragmentation chemistry [51,52] should result in further
improvements. Nevertheless, the problem of incorrect pep-
tide assignments can be only reduced and not completely
eliminated. Therefore, to derive meaningful information
from the data, significant effort has to be put into valida-
tion of peptide assignments produced by the database
search tools [7,8,39]. This applies not only to tools that
themselves provide no statistically computed confidence
measures for evaluation of the validity of peptide identifi-
cations (i.e. SEQUEST [10]), but also to probability-based
scoring tools such as MASCOT [11]. Manual validation of
database search results is time-consuming and simply not
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Table 1. Publicly available tools for assigning peptides to tandem mass spectrometry spectra and for
statistical validation of peptide and protein identifications

Program Refs Website

Database search tools

SEQUEST [10] http:/ /www.thermo.com

MASCOT [11] http:/ /www.matrixscience.coma

MS-Tag [12] http:/ /prospector.ucsf.edua

Sonar [13] http:/ /65.219.84.5/service/prowl/sonar.htmla

ProbID [21] http:/ /projects.systemsbiology.net/probidb

X! tandem [26] http:/ /www.proteome.ca/opensource.htmlb

XProteo http:/ /xproteo.com:2698a

De novo sequencing tools

Lutefisk [25] http:/ /www.hairyfatguy.com/Lutefiskb

De Novo [34] http:/ /hto-c.usc.edu:8000/msms/menu/denovo.htma

PEAKS [5] http:/ /www.bioinformaticssolutions.com/Software/peaks/index.phpa

Sequence tag approach

GutenTag [37] http:/ /fields.scripps.edu/GutenTag/

Integrated proteomics platform (multiple tools)

SpectrumMill http:/ /www.chem.agilent.com/

Statistical validation of peptide and protein identifications

PeptideProphet [39] http:/ /www.proteomecenter.org/software.phpb

ProteinProphet [40] http:/ /www.proteomecenter.org/software.phpb

aFree access via the web interface (functionality might be limited).
bFree distribution.



feasible for high-throughput analysis of large datasets con-
taining hundreds of thousands of spectra. Furthermore,
manual validation requires significant expertise in MS and
peptide fragmentation chemistry, which is often not avail-
able, and consistent and objective evaluation of the data
are difficult, even by experts.

As an alternative approach, or used in combination with
manual validation, researchers can separate correct from
incorrect peptide assignments by applying ad hoc filtering
criteria based upon database search scores and some prop-
erties of the assigned peptides. This task can be facilitated
by software tools such as INTERACT [53], DTASelect [54] 
or CHOMPER [55], all of which are compatible with both 
SEQUEST and MASCOT, the two most commonly used
database search tools. However, with few exceptions
[42,56], false identification error rates resulting from the
application of filtering criteria are not estimated and not
reported. Therefore, comparison of results from different
experiments or groups is virtually impossible. Such com-
parisons are further complicated by the use of different
database search tools for peptide assignment. Thus, consis-
tent and reliable interpretation of data to enable the com-
parison of results from different experimental groups will
require robust statistical methods to validate peptide as-
signments to MS–MS spectra. Similar advantages have been
already realized in other high-throughput fields. For example,
statistical models have been developed for the estimation
of errors in raw DNA sequences obtained using large-scale
DNA sequencing [57].

Several statistical methods for validating peptide assign-
ments to MS–MS spectra made by database search tools
have recently been described [39,58–61]. Fenyo and Beavis
[60] converted the scores reported by database search tools
into expectation values similar to those used in the sequence
similarity search algorithms [62]. If such an approach were
universally accepted, the problem of incompatibility
between scoring schemes in different search tools would
be eliminated. However, expectation values do not enable
the estimation of false-positive error rates resulting from
filtering of the data. Furthermore, this approach requires
significant modification of already existing tools, which is
unlikely to occur. Instead, peptide assignments can be vali-
dated using statistical programs developed on top of exist-
ing database search tools. This approach has the additional
advantage that, in principle, it can use any additional
information that discriminates between correct and incor-
rect peptide assignments but is not used as a part of the
database search scoring scheme. Such additional infor-
mation can be obtained directly from the sequences of
assigned peptides, for example, the observed frequency of
missed cleavage sites in the peptides sequences (internal

residues at which the protein was expected to be cleaved
by the proteolytic enzyme), or the separation coordinates
of a peptide based on reverse-phase elution time (reverse-
phase chromatography) [63] or pI value (isoelectric focus-
ing gels) [64]. Therefore, the peptide identification process
can itself be assisted by knowledge of the protein digestion
and peptide separation processes.

Several supervised classification methods for post-data-
base search validation of peptide assignments have re-
cently been described, with underlying statistical methods
based on linear discriminant analysis [39], support vector
machines [59] and non-linear function optimization [61].
However, it should be noted that fully supervised classifi-
cation algorithms might not produce accurate results when
applied to datasets that are significantly different from
those used for training. This limits the realistic applicabil-
ity of such methods in a high-throughput environment
owing to variations in the quality of acquired MS–MS spec-
tra, complexity of the analyzed samples, and differences in
the experimental protocols, among other factors. Thus,
rather than being relied upon exclusively, training datasets
should be used to determine the features that discriminate
between correct and incorrect peptide assignments from
the data itself [39].

One statistical model used in the software tool
PeptideProphet is based upon use of the expectation maxi-
mization algorithm to derive a mixture model of correct
and incorrect peptide assignments from the data [39]. It
uses the observed information about each assigned peptide
in the dataset, learns to distinguish correct from incorrect
peptide assignments and, finally, computes a probability
for each assignment being correct. Peptide assignment
information used by the model typically includes database
search scores, the difference between measured and
theoretical peptide mass, the number of termini consistent
with the type of enzymatic cleavage used, and the number
of missed cleavage sites. If the database search tool outputs
more than a single score useful for distinguishing correct
from incorrect peptide assignments, all such scores are
combined into a single score (discriminant score) in such a
way that correct and incorrect peptide assignments are op-
timally discriminated for in every type of mass spectrome-
ter. The model also uses additional information where
available, such as the presence of a specific amino acid or
sequence motif. For example, the presence of cysteine
confers avidin-affinity-purification of peptides containing
biotinylated cysteines [41], and the sequence motif N-X-S/T
discriminates peptides containing N-linked glycosylation
sites [65]. This can also be extended to include peptide 
separation coordinates such as elution time [63] or pI value
[64]. Finally, because this method learns from the data, 
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it can handle variations in sample complexity, data quality
and proteolytic digest efficiency, among other factors.

The advantage of using probabilities as confidence mea-
sures to accompany peptide identifications is that they
can be used to estimate both the total number of correct
identifications and the false-positive error rates resulting
from data filtering using a minimum computed proba-
bility as the filtering criteria [39]. This facilitates the com-
parison of different types of mass spectrometers or the
benchmarking of various mass spectrometer settings and
experimental procedures to identify those that maximize
the number of correct peptide identifications per sample
or per unit time. More importantly, computed peptide
probabilities enable statistical estimations of the presence
of proteins that correspond to those peptides in the original
sample.

Validation of protein identification
The goal of a high-throughput proteomics approach is to de-
termine the identity of the proteins present in the original
sample. However, because MS–MS spectra are produced from
peptides and not proteins, all conclusions drawn about the
protein content of the original sample are based upon the
identification of peptides. The connectivity between
peptides and proteins is usually quite straightforward when
based on the digestion of purified proteins. This is the case
in most studies in which proteins extracted from 2D gels are
analyzed. However, this connectivity is lost when complex
protein samples are digested [40,66]. As a result, inferring
protein identities from the set of identified peptides
becomes a major challenge (Figure 1). As a first step, peptide
assignments must be grouped according to their correspond-
ing entries in the protein sequence database. Next, for each
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Figure 2. Identification of peptides whose sequence is present in more than one entry in the protein sequence database makes it difficult to
infer the particular corresponding protein(s) in the sample. In this example (dataset from Ref. [41]), a total of three peptides were identified
corresponding to five entries in the searched protein sequences database. There are no peptides corresponding to only one of the entries
in the group and not another. Manual examination reveals that three of the five entries are redundant (partial sequences of the
RHOA_HUMAN protein) and should be excluded from consideration. Between the remaining two entries, RHOA_HUMAN corresponds to
all three peptides, whereas RHOC_HUMAN corresponds to only two peptides. RHOA_HUMAN is therefore the most probable candidate as
its presence in the sample is necessary to explain all observed peptides. The data do not provide conclusive evidence for the presence of
RHOC_HUMAN in the sample.
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protein, the combined peptide evidence is used to estimate
the likelihood of its presence in the sample.

Assembling peptides into proteins is not straightforward
(Figure 2). This challenge is analogous to that of shotgun frag-
ment assembly where overlapping short DNA segments must
be ordered to recreate the original sequence [67]. Determining
the correct sequence assembly is difficult owing to the
presence of repeats (identical stretches of the DNA sequence
present at different locations throughout the genome).
Similarly, the presence of degenerate peptides, that is,
peptides whose sequence is present in more than one entry in
the protein sequence database, makes it difficult to determine
the corresponding protein(s) present in the sample [40]. Such
cases often result from the presence of homologous proteins,
splicing variants, or redundant entries in the protein sequence
database, and are particularly abundant in large higher eu-
karyotic databases [66]. Unfortunately, this problem is often
overlooked, and the words ‘protein identification’ and
‘peptide identification’ are used almost interchangeably.

Another challenge arises from the non-random group-
ing of peptides according to their corresponding proteins
(Figure 3) [40]. Correct peptide identifications tend to
group into a relatively small number of proteins. By con-
trast, incorrect peptide assignments can be described as
random matches to entries in a very large protein sequence
database. Thus, almost every (high scoring) incorrect pep-
tide assignment results in one additional incorrect protein
identification. As a result, even a relatively small false-
positive identification error rate at the peptide level can
translate into a significant error rate at the protein level. It
also makes detection of correct protein identifications
based on a single peptide (often the case with low abun-
dance proteins) difficult because most of the incorrect
protein identifications only have one corresponding peptide
in the dataset.

Some database search tools (e.g. MASCOT) enable the
user to view the results in a format that groups peptides 
according to their corresponding proteins. However, most
large-scale studies generate multiple datasets of MS–MS
spectra that are acquired and processed at different times.
Thus, to derive a composite list of protein identifications,
peptide assignments from multiple experiments must be
combined using other means. The software tools INTERACT,
DTASelect and CHOMPER can be used to automate this
process. However, these tools do not compute any statisti-
cal confidence measures for protein identifications. Other
recently described programs compute some kind of proba-
bility-based scores [58,61,68] but do not use any statistical
models for resolving degenerate peptides.

The statistical model of Nesvizhskii et al. [40] used in
the software tool ProteinProphet addresses all of the diffi-
culties discussed previously. It computes a probability that
a protein is present in the sample by combining the
probabilities that corresponding peptides are correct.
Individual peptide probabilities are adjusted for observed
protein grouping information. Peptides corresponding to
single-hit proteins are penalized (but not excluded),
whereas those corresponding to multi-hit proteins are
rewarded. The amount of adjustment depends on the sam-
ple complexity and the number of acquired MS–MS spec-
tra, among other factors, and is learned from the data
using the expectation maximization algorithm. The
model handles degenerate peptides by sharing each such
peptide among all its corresponding proteins to derive a
minimal protein list sufficient to account for the identi-
fied peptides. The model reduces redundant database en-
tries into a single identification and groups together those
proteins that are impossible to differentiate on the basis
of identified peptides. The model produces accurate prob-
abilities of the presence of a protein, with high power to
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Figure 3. Non-random grouping of peptides according to 
their corresponding proteins. Ten tandem mass spectrometry
(MS–MS) spectra were searched against a protein sequence
database and each spectrum was assigned the best matching
peptide with nine out of ten assignments being correct. The
incorrect peptide assignment (black square) results in one
incorrect protein identification (X). Nine correct peptide
assignments (colored squares) correspond to only four correct
proteins (A, B, C and D). As a result, in this example, a 10%
false-positive identification error rate at the peptide level 
(nine out of ten peptide assignments are correct) translates into
a 20% error rate at the protein level (four out of five protein
identifications are correct).
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discriminate between correct and incorrect protein identi-
fications including identifications based on a single
peptide. Furthermore, computed probabilities can be used
to estimate false-positive error rates resulting from data
filtering. This model therefore provides a consistent
means of publishing large-scale datasets of protein identi-
fications [40,41].

Large-scale datasets: filtering and their publication
in the literature
Computational tools for the statistical validation of 
peptide and protein identifications are of significant value
to high-throughput proteomics. They avoid laborious 
manual data validation and provide a fast, consistent and 
transparent means to analyze data. As these tools become
widely available, and independently tested and understood
by researchers collecting and analyzing the data, they
could provide a standard for the publication and dissemi-
nation of large-scale protein identification datasets
[8,40,41]. When only the most confident identifications
are desired, such as in the submission of protein identifi-
cation data to (not yet existing) public databases, datasets
of protein identifications can be filtered using a high mini-
mum-probability threshold (e.g. 0.99). Researchers pub-
lishing large-scale datasets in scientific journals should be
encouraged to include extended lists of peptide and pro-
tein identifications (e.g. all identifications with a >0.5
probability of being correct) along with their correspond-
ing probabilities [41]. Ideally, publications should also 
include all supporting data, including MS–MS spectra, al-
though the practical aspects of storing and managing large
datasets by scientific journals have yet to be worked out. If
this protocol is followed, other researches will have access
to the most complete dataset possible to interpret or use
further at their discretion. For example, researchers access-
ing the published data might be interested in a particular
set of proteins, regardless of the statistically estimated level
of confidence for their presence in the sample. In such
cases, the raw MS–MS data can be further interrogated
using additional computational approaches such as those
based on de novo sequencing. Often, additional experi-
ments will be necessary to confirm the validity of some
protein identifications. However, time and cost considera-
tions mean that such experiments might only be possible
for a small number of proteins. Protein probabilities can
therefore serve as a guide for selection of the most interest-
ing candidates.

Computed protein probabilities should also enable the
user to compare different protein identification datasets
(e.g. those generated by different research groups studying
the same biological system) using the total number of 

correct protein identifications estimated by the model
[39–41]. Datasets can also be compared objectively by spec-
ifying a uniform error rate and applying to each dataset the
corresponding minimum probability threshold as the data
filter. Finally, published protein identifications accompa-
nied by accurate probabilities will provide maximal infor-
mation to higher level computational analyses based on
proteomic data, such as those concerned with the identifi-
cation of protein–protein interactions or metabolic pathway
reconstruction, provided that protein probabilities are taken
into account.

Concluding remarks
Significant progress in protein chemistry, separation meth-
ods and mass spectrometry in the past decade has enabled
datasets containing information about thousands of pro-
teins to be collected in a matter of weeks or even days.
However, the development of computational tools for vali-
dation, interpretation and extraction of biological knowl-
edge from such datasets has lagged behind. The process of
validating datasets of protein identifications obtained
using high-throughput LC–MS–MS traditionally relied upon
time-consuming and often subjective manual verification.
In the absence of data analysis standards, published large-
scale datasets are of little value to other researchers; even
the value of the interpreted data is unclear. Researchers
interrogating such datasets cannot easily compare or corre-
late the findings with those of their own. Fortunately, the
importance of data analysis using robust statistical criteria
is now being realized. Several computational tools have
been developed that enable the fast, consistent and trans-
parent analysis of large-scale proteomics datasets.

Clearly, it is unrealistic in the short term to expect dif-
ferent research groups to agree to use the same statistical
tools or approaches to analyze their data. However, it is
reasonable for the general research community, particu-
larly members of the editorial boards of scientific journals,
to request that researchers statistically validate their data
using only those tools that satisfy the following criteria.
First, important details of the underlying statistical models
should be made available. Second, accuracy of the models
should be tested extensively using reference datasets
(which can be created specifically for that purpose).
Finally, the software tools used should be made available
to the public. This could be achieved on a commercial basis
for a reasonable fee or, where possible, free-of-charge and
as open source programs. If widely accepted, together with
the development of MS data representation standards [69],
such an approach should facilitate the creation of central-
ized databases of peptide and protein identifications and
public repositories for storing acquired MS data. The idea
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of merging data from the same organisms – particularly 
humans – generated in different experiments is particularly
attractive. The combined results could be then applied to
the whole genome – eventually validating all genes that
are expressed on the protein level – or used to elucidate
global patterns (e.g. tissue specificity) of protein expression
that would otherwise be missed in analysis of a single ex-
periment. Finally, access to data stored in public reposito-
ries, especially raw data, will enable those with access to no
MS data to become involved in the development of more
advanced computational methods and software tools.
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