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The combined method of LC-MS/MS is increasingly being
used to explore differences in the proteomic composition
of complex biological systems. The reliability and utility of
such comparative protein expression profiling studies is
critically dependent on an accurate and rigorous assess-
ment of quantitative changes in the relative abundance of
the myriad of proteins typically present in a biological
sample such as blood or tissue. In this review, we provide
an overview of key statistical and computational issues
relevant to bottom-up shotgun global proteomic analysis,
with an emphasis on methods that can be applied to
improve the dependability of biological inferences drawn
from large proteomic datasets. Focusing on a start-to-
finish approach, we address the following topics: 1) low-
level data processing steps, such as formation of a data
matrix, filtering, and baseline subtraction to minimize
noise, 2) mid-level processing steps, such as data normal-
ization, alignment in time, peak detection, peak quantifi-
cation, peak matching, and error models, to facilitate pro-
file comparisons; and, 3) high-level processing steps such
as sample classification and biomarker discovery, and
related topics such as significance testing, multiple test-
ing, and choice of feature space. We report on ap-
proaches that have recently been developed for these
steps, discussing their merits and limitations, and pro-
pose areas deserving of further research. Molecular &
Cellular Proteomics 4:419–434, 2005.

With the sequencing of the human genome largely com-
plete and publicly available, emphasis in molecular biology is
shifting away from DNA sequencing and related problems
toward a systematic evaluation of how the myriad of encoded
gene products operate together to mediate the biological
mechanisms that sustain life, and how these processes be-
come perturbed in response to disease. Comprehensive sys-
tems-wide biological studies have been greatly facilitated by
the advent of large-scale genomic, proteomic, and informatic
technologies, such as DNA microarrays, ultra-sensitive high-

throughput protein MS, and robust statistical and machine-
learning methods developed for very large datasets. Evalua-
tion, interpretation, and integration of data produced by these
respective platforms represent major ongoing challenges and
areas of active research.

The field of expression proteomics seeks to answer the
following questions: 1) which proteins and variant isoforms
are expressed during the lifecycle of an organism; 2) which
post-translational modifications occur in each of these pro-
teins; 3) how do these patterns differ in different cell types and
tissues and under different developmental, physiological, and
disease conditions; and 4) how can biologists make use of
this information to better understand the molecular basis for
fundamental biological processes as well as for monitoring
the course of disease so as to improve clinical diagnosis and
treatment (1–3). These questions are made all the more diffi-
cult by the complexity of most biological systems, which
increases exponentially as one goes downstream from DNA
sequence to mRNA intermediates to the protein end-prod-
ucts. While it appears there are likely far fewer genes coded
for by the human genome than first anticipated, it is estimated
that �60% of the �25,000 putative ORFs encode more than
one splice variant (often tens to hundreds), and these in turn
are frequently subject to post-translational modification (4, 5).
Moreover, because proteins typically function together as
components of dynamic multisubunit macromolecular com-
plexes, the final complexity of a biological system is enor-
mous; hence the search for interesting and relevant proteomic
patterns remains a challenging task.

Capillary-scale HPLC-MS/MS (LC-MS) is rapidly emerging
as a method of choice for large-scale proteomic analysis (1, 2,
6–12). State-of-the-art LC-MS systems can be used to iden-
tify and track the relative abundance of thousands of mole-
cules (6, 7). For standard bottom-up profiling experiments, the
molecules in question are peptides derived by proteolysis of
intact proteins. For very complex protein samples, such as
blood, the peptide mixtures are physically resolved by chro-
matographic separation prior to injection into the mass spec-
trometer so as to generate a more-richly informative map,
consisting of both the unique elution characteristics (column
retention times) as well as m/z (mass-over-charge) ratios of
individual peptides. Discrete peptides of interest are subject
to collision-induced fragmentation followed by database
matching for the purpose of sequence identification, while the
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recorded pattern of precursor ion peak intensities can be used
to infer the relative quantities of the various proteins between
samples. Nevertheless, comparisons of large-scale multivari-
ate proteomic datasets are subject to a number of challenging
analytical issues, such as experimental noise, systematic vari-
ations between experimental runs, the extreme overall range
and dynamic nature of protein levels, and the huge number of
measured features (e.g. protein levels) of which many are
uncorrelated (or spuriously correlated) to the variables of
interest.

In this review, we discuss important computational and
statistical concepts that should be considered when perform-
ing comparative proteomic analyses and outline procedures
for processing MS data to achieve more reliable quantitative
analyses. As the broader domains of statistical and machine-
learning methods are beyond the scope of this review, we limit
our examination to studies applying these methods to shot-
gun profiling datasets. For more general information about
statistical learning models, a good reference is Ref. 13. For an
in-depth discussion of the technical nature of LC-MS, and the
relative merits of different MS platforms, the reader is directed
to other reviews present in this issue.

LC-MS-BASED PROTEOMIC PROFILING

LC-MS systems consists of: 1) a chromatography column,
which separates peptide mixtures based on one or more
physicochemical properties prior to MS; 2) an ionization
source, which converts eluting peptides into gas phase ions;
3) one or more mass analyzers, which separate ions on the
basis of m/z ratios; and 4) a detector, which registers the
relative abundance of ions at discrete m/z. In MS/MS, precur-
sor ions are recorded in full-scan mode (all m/z values), fol-
lowed by selective ion isolation and fragmentation for se-
quence identification. MS/MS instruments are operated in an
automated alternating scan mode. Two main ionization tech-
nologies used are ESI and MALDI (6). Because ESI generates
ions directly from solution, it is readily coupled to LC or
capillary electrophoresis. In a standard reverse-phase HPLC
setup, the column media differentially retards the migration of
peptides based on selective hydrophobic interaction affinities.
Peptides are then eluted with a gradient of organic solvent
and ionized just prior to introduction into the mass spectrom-
eter. LC is well-suited to examining complex biological sam-
ples because: 1) peptides with the same nominal m/z are less
likely to be introduced at the same time, reducing ambiguity;
and 2) with fewer competing ion species, fewer artifacts arise
due to ion suppression or ion-ion interference.

A non-LC-based MS platform commonly used in profiling
studies is SELDI (a refinement of MALDI), in which subsets of
proteins in samples are selectively pre-adsorbed onto various
proteomic chips (consisting of differing binding surfaces, such
as hydrophobic or metal-binding surfaces) (8, 9).

The quality of profiling studies is determined by the overall
sensitivity, detection coverage, dynamic range, fragmentation

efficiency, mass resolution, and accuracy (6). Femptomole or
better detection limits are commonly attained with LC-MS,
even with mixtures exceeding several thousand components
(7). With SELDI, much of the sample is discarded (not selectively
bound to the matrix), whereas LC-MS enables full sample
throughput, while providing the added opportunity for protein
identification and mapping of post-translation modifications.

PARADIGMS FOR INFORMATION EXTRACTION
FROM LC-MS DATASETS

High-throughput MS/MS offers a powerful means of ana-
lyzing biological samples. However, MS/MS is time consum-
ing, adding an order of magnitude in time to a profiling ex-
periment over full-scan precursor MS profiling. Much time is
wasted repeatedly resequencing the same peptides (even
with data-directed experiments) across different samples. Ad-
ditionally, due to the biased under-sampling nature of MS/MS
ion selection (15), it is impossible to sequence every peptide
in a sample in a single-pass analysis. In the context of a
comparative LC-MS profiling analysis of multiple samples,
such as serum profiling for disease biomarker discovery, one
can imagine avoiding some of the less-desirable properties
associated with MS/MS. For example, a reference database
of previously sequenced peptides ion species could be built
up. Given a new sample, one could imagine running LC-MS
alone (i.e. without performing CID), obtaining a global signa-
ture pattern of peptide ion abundance, and then scanning the
database for discrete pairs of time, m/z values to predict
peptide identity. In this way, the same peptides need not be
resequenced, experimental run-time is reduced, and differen-
tial expression can be more readily uncovered (1).

However, such an approach is complicated by a number of
factors: 1) the LC time axis needs to be corrected to account
for spurious deviations in peptide elution times across differ-
ent experiments; 2) there may be confounding overlap of
peptides across the (time, m/z) space; 3) LC-MS systems are
subject to considerable noise and variability that is not fully
characterized or accounted for; and 4) differences in overall
sample composition, leading to differential ion context, may
affect the apparent signal intensities recorded for peptides
common to multiple samples.

To address these issues, the following tasks need to be
resolved: 1) corrective alignment along the experimental LC
time axis so that times are comparable across experiments;
2) combining replicate experimental LC-MS datasets so as to
improve the overall signal-to-noise ratio; 3) developing statis-
tically sound methods for distinguishing signal from back-
ground; 4) systematically studying sources of variability and
signal characteristics inherent to LC-MS data and modeling
them so as to take them into account (for example, systematic
variation in peak amplitude and width, signal linearity, and
background artifacts should be investigated); 5) developing
algorithms to detect and quantify peptide ion peaks in LC-MS
data; and 6) developing probabilistic algorithms to uncover
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interesting peptide patterns and to match new patterns to
previously discovered ones.

In the aforementioned approach, peptide peaks are ex-
tracted and then identified, and only after these steps are
performed does one pose queries related to the particular
experiment at hand. An alternative approach to exploiting
LC-MS data is to take a signal processing perspective. For
instance, rather than starting with peak detection and pep-
tide identification to find disease biomarkers using LC-MS
patterns, the data could be treated as a signal matrix,
allowing the application of established methods in signal
processing, statistics, and machine learning (13, 16, 17) to tease
out interesting and relevant patterns from the data. Neverthe-
less, many of the previous tasks, such as time alignment, back-
ground detection and correction, and accounting for systematic
variations in signal amplitude, are relevant to this latter
approach.

Several groups (1, 10, 18) have developed working systems
to address the main problems described above. The system
of Radulovic et al. (18) performs filtering, normalization, peak
detection, quantification and alignment, and then classifica-
tion; they also establish linearity in LC-MS peak signal with
peptide concentration. Although no algorithm details are pro-
vided, Kearney and Thibault (1) report a system for peptide
detection and data alignment, which identifies the m/z, reten-
tion time, charge state, and maximum intensity of the principle
peptide isotope. Wang et al. (10) performed baseline subtrac-
tion, peak detection, isotope detection, alignment, and quan-
tification and demonstrated a linear LC-MS peak signal re-
sponse to increasing peptide concentration in a complex
mixture over a fairly large dynamic range.

Several studies of LC-MS have focused on particular low/
mid-level data processing steps such as noise reduction,
error models (which model the variance of the peptide abun-
dance), or alignment in time, while other studies have been
devoted strictly to the use of MS signal for sample classifica-
tion. For studies attempting to cover the entire set of tasks, a
typical approach for information extraction from LC-MS data-
sets typically involves a sequence of operations as listed in
Table I, each treated in a largely independent manner from the
others. The optimal order in which these should be performed
so as to obtain the most information possible remains unclear.
For instance, one could align the signals before or after peak
detection, one could normalize before or after alignment, etc.
There are several sequences of operations that make intuitive

sense, but that differ significantly from one another. The op-
timal ordering depends in part on our ability to perform each
task. For example, if alignment can be performed optimally on
the raw data, without normalization or peak detection, then it
may be desirable to do this first, potentially allowing for better
normalization and peak detection. Alternatively, if one can not
align the raw signals well, then it may be desirable to normal-
ize and find peaks before alignment. Lastly, it may be desir-
able to approach some of these subtasks together, for exam-
ple as in the continuous profile model (CPM),1 which aligns
and normalizes abundance simultaneously, removing the ne-
cessity to choose one before the other (19).

LC-MS DATA PROCESSING

Operationally, low-level processing involves raw LC-MS
signal, while mid-level processing occurs after some basic
preprocessing, such as m/z quantization, filtering and back-
ground subtraction (i.e. low-level processing). In contrast,
high-level processing is applied to data that has been fully
massaged for use in conjunction with machine-learning tech-
niques or more traditional statistical techniques such as sig-
nificance testing of individual features (e.g. peptide abun-
dance). The substantial collection of methods developed for
processing nonchromatographic MS data (e.g. MALDI and
SELDI studies) is in many cases transferable to LC-MS data
(which can be viewed as a time series of static MS spectra).
Most of the low- and mid-level processing methods reported to
date, however, have been performed parenthetically as a means
to the larger goal of sample classification or biomarker discov-
ery and hence have not been rigorously studied.

LOW-LEVEL PROCESSING—QUANTIZATION OF M/Z VALUES

In its most raw form, the full-scan MS spectra obtained from
an LC-MS experiment generally consists of a table of values
consisting of: i) scan (spectra) number; ii) LC retention time; iii)
precursor ion m/z value; and iv) ion abundance. There is a
one-to-one mapping such that the scan number is simply an
enumeration of the ordered time points. For more easy data
manipulation, LC-MS datasets can be converted into a matrix
format, with columns representing m/z values and rows rep-
resenting time. Entries in the matrix represent the relative
abundance values at each combination of time and m/z bin.
This matrix formation involves binning nominal m/z values,
because retaining all possible values would lead to a huge,

1 The abbreviations used are: CPM, continuous profile model; GC,
gas-phase chromatography; PCA, principal component analysis; TIC,
total ion current; DP, dynamic programming; COW, correlated opti-
mized warping; BPC, base peak chromatogram; PARAFAC, parallel
factor analysis; HMM, hidden Markov model; DTW, dynamic time
warping; CV, coefficient of variation; FPR, false-positive rate; FDR,
false-discovery rate; ROC, receiver-operator characteristic; RF, ran-
dom forest; LDA, linear discriminant analysis; SVM, support vector
machine; QDA, quadratic discriminant analysis; PPC, peak probability
contrasts; NSC, nearest shrunken centroid; PLS, partial least
squares.

TABLE I
Sequence of operations for processing LC-MS datasets

1 Quantization of m/z values
2 Signal filtering and background subtraction
3 Amplitude normalization
4 Peak detection and quantification
5 Data transformations/error models
6 Alignment in time (and m/z)
7 Classification algorithms and biomarker discovery
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sparsely populated matrix, while time values can normally be
left unchanged because these are usually not too numerous
and because many m/z values typically correspond to a given
time point.

An issue to consider here is how to bin the m/z values. For
example, one could opt for evenly spaced bins in either native
or log m/z space. An optimal bin width would be large enough
to keep the matrix tractable and not too sparse, but small
enough that individual m/z values remain informative (i.e. not
collapsing the information too much); this trade-off depends
on the MS instrumentation used. For instance, Radulovic et al.
(18) decided to round m/z values to the nearest integer, con-
sistent with the nominal mass accuracy of the ion trap instru-
ments used in their study, while Wang et al. and Anderle et al.
(10, 20) used evenly spaced bins of width 0.2Th to exploit the
increased accuracy of their instruments. In a study of gas-
phase chromatography (GC)-MS data by Stein (21), bin widths
were chosen as a function of the measured mass accuracy
and resolution and increased linearly with m/z. In Ref. 22,
LC-MS peak-widths (ignoring time) were reported to be rea-
sonably constant in log m/z space by Tibshirani and co-
workers. No methods have been reported for evaluating op-
timal bin width, nor for determining the sensitivity of further
calculations to this parameter.

SIGNAL FILTERING AND BACKGROUND SUBTRACTION

Because LC-MS is subject to background chemical and
electronic noise, together with systemic contaminants in the
LC mobile phase (column solvent) (23, 24), methods for noise
reduction and signal enhancement are commonly used. Sig-
nal filtering is a mature field from which a variety of techniques
are applicable. The theory of digital signal processing is based
on the assumption that data were sampled at regular time
intervals, which is not necessarily the case for many LC-MS
experiments. Filtering may nevertheless be useful provided
extra care is taken to account for this. Conceptually, signal
filtering and baseline subtraction can each be performed in
both the time (scan header) and m/z domains. Two ap-
proaches applied to date include: i) subtracting a fitted, ad-
ditive baseline model; and ii) using digital filters to smooth and
enhance the MS signal. In certain cases, filtering is performed
first, and then a modeled baseline is subtracted (10).

Various filters for data smoothing along the LC time axis
have been implemented (25). These include simple “moving
average,” median, and moving geometric mean filters, and the
Savitzky-Golay filter, which preserves high-frequency content
by fitting a higher-order polynomial to the data over a local
window (26). For example, Wang et al. observed well-defined
peaks and baseline after applying the Savitsky-Golay filter to
LC-MS data (10). Data points belonging to the baseline were
then hand-picked, fit with a low-order polynomial, and sub-
tracted from the original data, together with a second appli-
cation of the Savitsky-Golay filter for added peak smoothing.
Nevertheless, manual delineation of background is a subjec-

tive, tedious, and error-prone process, and inconsistent with
high-throughput analysis.

Bylund et al. have noted that taking the second derivative of
raw MS signal, followed by matched filtering, whereby signal
(in this case the second derivative of the signal) is cross-
correlated with a Gaussian template, reduces background
noise and enhances peaks. This smoothing is similar to ap-
plication of a low-pass “top hat” filter, as is done on
SELDI-MS data along the m/z axis in (27) in which signal
frequencies above some threshold are thereby completely
removed from the data. Note that by taking the second de-
rivative of the signal, nonlinear noise is actually amplified (and
hence the need to filter afterward), while with matched filter-
ing, noise (specifically white noise) adjusts to the template
frequency, making it harder to identify. On the other hand,
Radulovic et al. (18) reported a two-step procedure for noise
reduction/binarization of LC-MS signal. First, a “moving aver-
age” filter (five-scan header width) is used to smooth the
dataset across discrete m/z bins. Then peak intensities ex-
ceeding a pre-defined threshold, T (related to the trimmed
mean or median intensity of one m/z bin across all scan
headers), for N consecutive scans are selected as being sig-
nal, with the rest of the intensities deemed to be noise. Proc-
essing of negative control spectra acquired during LC-MS
analysis of solvent alone revealed few false-positive peaks.
However, the number of missed genuine peptide peaks (false-
negatives) is quite sensitive to the selected processing pa-
rameters (values of T, N, or M), and peak detection efficiency
has not been fully optimized.2

Wagner et al. (10) have made use of an iterative, nonpara-
metric, local regression smoother (a robust loess smoother) to
model the baseline in MALDI-MS datasets. Because distinct
regions of m/z were different in nature, empirical selection of
the size of the smoothing window for each region was nec-
essary and ranged from 1% of the total number of m/z values
for regions with small m/z to 70% for regions with larger m/z
values. In contrast, Baggerly et al. found a single sinusoidal
baseline noise component in their MALDI dataset, which they
speculate was produced by use of an alternating current
power source (28). The noise frequency was estimated by
Fourier transform of a hand-selected data region, and then
eliminated by subtracting out a sinusoid of this frequency.
Following this procedure, the residual baseline was modeled
with a modified local minimum at each m/z value and them
removing the modeled baseline.

Bylund et al. developed a unique “orthogonal background
subtraction” approach for LC-MS baseline correction (25),
wherein principal component analysis (PCA) is applied to time
vectors (one vector per time point, over all m/z) from a region
in the dataset expected to consist solely of background. The
noise subspace was then characterized by taking the top
principal components, and noise is removed by subtracting

2 A. Emili, unpublished observations.
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the components of the data that lie in this subspace. While
such a model may prove useful, it is not clear whether it is
appropriate for LC-MS analysis; PCA operates in a global way
(across all time points in this case) and therefore does not
allow for noise characteristics to change over time.

Concerns have been raised about the suitability of data
filtering followed by parametric fitting (e.g. based on a peak
model) (29), and thus one must carefully consider the ultimate
goal of a LC-MS-profiling experiment when performing tasks
in sequence. To our knowledge, no systematic comparison of
the effects of various filtering/background subtraction tech-
niques on MS data integrity has yet been reported, and it is
advisable to investigate the consequences on downstream
analysis (e.g. classification, peak detection). Because the fil-
tering efforts published to date were performed on only one
data dimension (m/z), it will be interesting to see if filtering
independently in both axes (time and m/z) or simultaneously is
more beneficial.

MID-LEVEL PROCESSING—PEAK DETECTION AND QUANTIFICATION

In certain situations, it may be desirable to detect and
quantify two-dimensional peptide peaks in LC-MS signal for
use as input to classification algorithms, biomarker discovery,
or global proteomic comparisons using a unified reporting
schema. Extracting peaks from LC-MS signal both reduces
the dimensionality of the data, which can simplify downstream
analysis, and assigns intuitive meaning to data features. (Pos-
sible drawbacks of this approach are discussed further below.)

Radulovic et al. used an iterative coarse-to-fine strategy to
extract two-dimensional (in time and m/z) peaks from LC-MS
data (18). Neighboring points in the data matrix deemed to be
signal (rather than noise—see previous section on filtering)
were combined to form peaks at the coarsest level, and then
iteratively through each of the more refined levels, with a
bisection method used to avoid spurious peak mergers.
Peaks were quantified by summing individual grouped feature
intensities. On the other hand, Wang et al. detected LC-MS
peaks based on coinciding local signal maxima, in time and
m/z; local maxima are defined as an increase in ion abun-
dance greater than a prespecified threshold over a predefined
range (10). Peaks were then quantified either by summing
intensity over the component elution time or based on the
maximum peak height. Unfortunately, the authors do not de-
scribe how the component elution time was determined. Sim-
ilar techniques were used in Refs. 20 and 30.

Yasui et al. (31) defined peaks (in SELDI-MS data) as m/z
elements exhibiting higher intensity than the N nearest neigh-
bors, with N chosen empirically, with an added constraint that
peaks have a higher intensity than the “broader” neighbor-
hood as calculated by a local linear super-smoother method.
In an effort to reduce dataset misalignment problems, m/z
values within �0.2% of these peaks were further selected as
additional peaks. Although peak finding was not the emphasis
of the study of Tibshirani et al. (22), these authors used a

similar routine to scan for m/z peaks in SELDI/MALDI datasets
exhibiting a higher intensity than a prespecified number of
closest neighbors. In contrast, Randolf et al. made use of
multiscale wavelet decomposition to detect peaks in
MALDI-MS data (32), trying to avoid ad hoc decisions pertain-
ing to thresholds and filter parameters. The wavelet decom-
position provides a breakdown of the signal according to
scale (and location), and by taking the derivative at each scale
these authors detected scale-specific peaks. In a histogram
of peak locations extracted in this way from many samples,
locations with high counts were considered as evidence of
true peaks, although the authors did not offer a method for
choosing an optimal scale.

Instead of attempting to find peaks, Idborg et al. applied a
curve resolution approach developed by the Chemometrics
community for processing GC-MS profiles (see Ref. 33 for an
overview of Chemometrics analysis techniques) to extract the
major spectral components in LC-MS profiling of urine (34,
35), a notably simpler mixture than tissue or serum. In this
manner, a data matrix, X, defining a single LC-MS experiment,
with rows corresponding to time points and columns to m/z
values, was resolved into a set of “pure” spectral profiles.
These profiles were stored as column vectors of length m in
the matrix, S, with the complete set of profiles approximately
spanning the entire space of all m/z spectra generated across
the various time points. The relative amount of each spectral
profile present at a given time point was then estimated in the
“pure” concentration profiles, stored as t row vectors of
length a in the matrix C. Unexplained variation was repre-
sented by matrix E, and X � CST � E. An iterative method was
used to solve for C and S, starting from an initial set of “key”
spectra and using constraints related to the non-negativity of
the concentrations (i.e. related to the fact that one can only
add in physical components, not remove them), to update the
spectral profiles. However, Idborg et al. do not describe how
to select the number of spectral profiles, although various
approaches to this problem are provided in Ref. 33, as well as
other algorithms used for spectral resolution. Because use of
these techniques has been largely restricted to relatively sim-
ple mixtures, it is not clear how well these methods will scale
to more complex proteomic samples.

Overall, peak detection has generally been performed in a
rather ad hoc manner, with little evaluation of the effective-
ness of the various methods or parameter choices. The algo-
rithms employed to date make no use of a priori or learned
information with regards to peak shape, along either the time
or m/z dimensions, and in some cases ion intensity values are
only exploited very indirectly. Rather than retaining abun-
dance information, peaks are frequently binarized (18, 31).
Radulovic et al. do not motivate this decision, while Yasui et
al. state that it helps to overcome noise in the signal. Such a
step is lossy and is likely suboptimal for downstream analysis.
Incorporating richer information would likely improve analyti-
cal performance, albeit at the cost of more computation. The
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underlying methodologies of machine learning and statistical
techniques are intended to account for random variation
caused by noise, and their performance is likely deteriorated
by using them with binarized MS data. A less-extreme ap-
proach, and one retaining more information, would be to
apply filtering and/or baseline subtraction as well as intensity
normalization rather than binarization. It has been suggested
that at present LC-MS is still not generally a quantitative
science (36). Peak detection and quantification, even if done
optimally, does not guarantee linearity of peak signal relative
to analyte concentration due to possible ion suppression ef-
fects, although compelling evidence of linearity of extracted
LC-MS peak intensities, at least for spiked reference proteins,
has been established using certain data-processing methods
and technological platforms (10, 18).

DE-ISOTOPING, CHARGE DECONVOLUTION, AND PEAK MATCHING

Additional considerations relevant to LC-MS proteomic
analysis are the charge spread on the ions, and also stable
isotope variants. ESI results in variable net positive (or nega-
tive) charge. Multiply charged molecules are observed, with
signal spread out along the m/z axis in a charge state enve-
lope. Under typical conditions, mixtures of singly, doubly, and
even triply protonated precursor ions are commonly observed
with tryptic peptides. If the sample analyzed is simple, it is
possible to deduce related m/z peaks. Charge deconvolution
relies on determination of isotope shoulders, resulting from the
presence of heavy isotope variants of carbon and other atoms.
Roughly �1% of naturally occurring carbon exists with seven
(as opposed to the more common six) neutrons (13C versus
12C); this signature dominates other isotopes because �50% of
the mass of a typical peptide is carbon (37). Although isotope
variants are chemically identical, the heavier isotope sister ion
peaks exhibit greater apparent m/z than the predominant mono-
isotopic peak (all 12C). Based on the mass differential, one can
deduce the charge state of multiply charged ions.

Wang et al. and Anderle et al. applied a de-isotoping step
(to assign isotope patterns) before peak quantification (10,
20). Though few details are provided, the algorithms were
apparently based on cross-correlating the observed peak en-
velopes to reference isotopic tables, with the highest-scoring
match identifying the most probable isotope shoulders. One
can imagine that probabilistic modeling techniques, such as
hidden Markov models (HMMs), may significantly improve
upon this template-matching scheme. In contrast, Tibshirani
et al. opted to smooth MALDI/SELDI data along the m/z axis
as a simpler alternative to deconvolution (22). Extremely com-
plex samples may prove to be less amenable to full
de-isotoping.

Peak matching is another related topic relevant to quanti-
tative proteomic comparisons. To measure reproducibility of
peptide signal, experimental peaks must be matched across
LC-MS datasets. Naive methods, based on simple proximity
(in time or m/z space), are reported to be effective (10, 20, 39).

For instance, Radulovic et al. used MS/MS-derived sequence
identities to verify the correct matching of �200 putative
peptides across multiple samples (18). However, given that
MS/MS targets prominent peaks, this assessment is likely
biased. Anderle et al. (20), on the other hand, found it neces-
sary to remove �2% of data points—presumed outliers
thought to be attributable to mismatching (20). Incorporation
of prior knowledge of peak shape, instrument m/z drift, and a
more-probabilistic formulation might significantly improve the
effectiveness of peak detection, quantification, and matching.

DATASET ALIGNMENT AND COMPARISON

While the accuracy of m/z measurements obtained with
properly calibrated instruments is typically very good, LC
fractionation is inherently variable (i.e. considerable disper-
sion in peptide retention times). Elution patterns can become
distorted (locally compressed and/or expanded in complex,
nonlinear ways) by differences in chromatography perform-
ance due to changes in ambient pressure and temperature.
Even under ideal conditions, MS duty cycles are finite and
sampling is not necessarily constant, resulting in spectral
capture at different time points across an eluting peak even
between repeat analyses. This variation can affect peak dis-
crimination and global proteomic comparisons. Thus, to max-
imize the benefits of LC-MS, one needs to deal with the
inherent variability in the time axis (i.e. recorded retention time
or scan headers). In certain cases drift may occur along the
m/z axis as well, although this is far less of a problem than
variations in time. Time and m/z axes can be aligned inde-
pendently or simultaneously, though the latter has not been
reported in the literature and would be more easily applied
after peak detection. Furthermore, if aligning in time only, one
may wish to use scalar time series rather than the vector time
series most readily available from the data (e.g. total ion
current (TIC) as scalar time series versus a vector of all m/z
values at each time point), or even more general representa-
tion schemes, such as a reduced-dimensionality vector time
series as obtainable for example by PCA.

Alignment algorithms typically involve either: i) maximizing
some objective function over a parametric set of transforma-
tions (usually linear); or ii) nonparametric alignment, by way of
dynamic programming (DP); or iii) some combination of these
methods (e.g. piecewise linear transformations). Some of the
main differences among algorithms are: i) whether alignment
is performed before or after peak detection (i.e. using either
continuous signal or peaks); ii) whether or not signal amplitude
is used; and iii) whether or not changes in scale are corrected for
(i.e. allowing for interplay between these two types of correc-
tions). Most algorithms used to date require a template, speci-
fied a priori, to which all time series are pre-aligned. Because
suboptimal template choice could result in poor alignments, it
may be desirable to avoid this.

Nielsen et al.’s correlated optimized warping (COW) algo-
rithm (40) and modifications of it were used by Bylund et al.
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(41) to align chromatographic data by dividing the time axis
into segments, and then performing a linear warp within each
segment to optimize overlap while constraining segment
boundaries to maintain agreement. An objective function de-
fined the optimal set of transformations based on the sum of
correlation coefficients or covariance between data segments
in pairs of samples, and it was maximized by way of DP. COW
can be applied to both scalar and vector time series by
defining the correlation or covariance appropriately. Use of
more than one data vector component (e.g. multiple m/z bins
rather than the TIC) produced more stable alignments with
respect to variation of free parameters such as maximum
allowable warp (40). Nielsen et al. established visually using
artificial chromatograms that COW is robust to varying peak
numbers, heights, and widths, and is superior to a global
linear warp (40). An interesting evaluation is provided in Ref.
41, where PCA was performed on the base peak chromato-
grams (BPC). The amount of variance explained by the top
two principal components was 70% before alignment and
98% afterward. Similarly, explained variance went from 60 to
97% with a seven-component parallel factor analysis
(PARAFAC—a generalization of PCA to three-way data), indi-
cating a reduction in the major sources of sample variation.

Radulovic et al. (18) approach to alignment in time used
binarized data and one alignment per data block. The data
matrix was divided into five equal m/z partitions and six equal
time partitions, creating 30 blocks. One experimental dataset
was warped to match the other by applying a linear transfor-
mation with offset to each block and constraining neighboring
blocks to have similar transformations. Monte Carlo maximi-
zation was used to find the optimal set of linear transforma-
tions as defined by a “data overlap” objective function. Finally,
a post hoc “wobble” of peaks in time was applied to com-
pensate for residual peak drift. Empirical assessment of fea-
ture-wise overlap of the datasets implied a considerably im-
proved alignment (18), although the authors did not use an
objective measure because their evaluation was based on the
function being optimized. Another drawback of the proposed
method is that it works only with binarized data, and is there-
fore sensitive to choice of binarization threshold, and does not
exploit signal amplitude, which ultimately may be more
informative.

Randolf et al. used coarse scale-specific peaks, extracted
by multiscale wavelet decomposition, to align MALDI data
along the m/z axis (32). Dominant peaks (above some thresh-
old) were used to compute a single optimal shift for all peaks,
and thus the alignment is not very flexible as it does not allow
for even a simple linear stretch or compression. It is also not
clear whether or not features detected at different scales
should be aligned differently or could leverage one another in
alignment. In contrast, Idborg et al. do not explicitly align their
datasets, but compare detected components derived by
curve resolution, using cross-correlation, and shifting individ-
ual components to account for constant time shifts between

experiments. Components correlating above some threshold
are said to be identical (34, 35).

We have recently developed the CPM, an HMM-based
model to do multiple alignments of time series (for continu-
ous-valued output, such as the abundances in an MS exper-
iment) using LC-MS TIC traces (19). In the context of the
CPM, one can think of the HMM (42, 43) as containing a series
of hidden states, each of which represents some underlying
“true”’ or canonical time, to which each scan header in the TIC
is ultimately assigned. The alignment in time is dictated by
which scan header gets (probabilistically) mapped to which
hidden state. The states are called “hidden” because until the
algorithm is run on the data (i.e. until the model is trained), we
do not know which scan headers map to which states. In
addition to the hidden time states mentioned, hidden states
are also augmented by “scale” states, which allow scaling of
the TIC amplitudes locally in time. Use of the model after
training provides a mapping to both time and scale states,
thereby performing alignment and normalization concurrently.
Training, whereby the best parameters for the HMM are
found, is performed by maximum likelihood (i.e. the objective
function is defined to be the likelihood of the data under the
HMM probabilistic model framework) by way of Expectation-
Maximization (44). Both training and later use of the model (i.e.
deduction of which scan headers map to which hidden states)
are performed efficiently in HMMs by use of DP. The CPM has
the advantages that no template is required, all experimental
TICs are aligned simultaneously (leveraging the information
across experiments), normalization local in time is concurrent
with alignment, and the model is probabilistically formulated.
As pointed out in Ref. 19, the algorithm can be extended to
use vector time series rather than TICs and also to allow
alignment of nonreplicate data (see end of this section).

The classical algorithm for aligning time series is dynamic
time warping (DTW), a DP-based approach that originated in
the speech recognition community as a robust distance met-
ric between pairs of time series (45). DTW aligns one time
series to a specified reference series. It is closely related to
COW, except instead of moving only nodes (time segment
boundaries) around, every data point can be moved; thus,
transformations are not restricted to piecewise linear. It is
likely that Bylund, Nielsen et al. avoided use of this less-
restrictive model in order to reduce computational costs and
avoid overfitting (40, 41). In contrast, Wang et al. used DTW on
LC-MS data, but constrained the analysis to no more than 200
m/z bins so as to make it computationally practicable (10).

Hierarchical clustering was used in a novel way by
Tibshirani et al. (22) to align MALDI/SELDI spectra along (log)
m/z space after peak detection. Input to the hierarchical clus-
tering algorithm is a list of putative candidate extracted peaks
as well as the Euclidean distance between peaks in log m/z
space. After clustering was completed, the dendogram was
cut off at an empirically determined level, with the mean m/z
of each cluster defining an individual peak.
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A brief description is given for an alignment in m/z space for
SELDI data by Sauve et al. (27) who used a tree, built for
example by hierarchical clustering of samples, to guide the
progressive warping of related experiments together. Al-
though few details were reported, presumably the algorithm
starts by aligning the two closest samples, forming a single
pseudo-sample, to which the next closest sample is aligned,
etc. Such a method removes the need for a prespecified
template, but is likely adversely affected by the fact that the
distances between spectra are measured before alignment,
and hence are largely meaningless. It is also not clear that
starting with the two closest spectra is any less arbitrary or
more effective than other approaches.

As one moves from a local alignment perspective to a
global one, a bias-variance trade-off comes into effect. That
is, with more data constraining the transformation, more sta-
ble alignments result. The optimal trade off is determined by
the informativeness of the LC-MS signal used and the type of
misalignments present. In terms of what data are best for use
in alignment, there are a number of choices. To date, these
have largely been limited to the TIC, BPC, and to individual (or
sets of) extracted m/z ion chromatograms. In practice, one
could select ion chromatograms based on the highest ion
count, or highest sum of second derivatives along the m/z
axis, or rather use some dynamic binning of m/z such that the
ion signal is evenly distributed to attempt to extract a smaller
number of informative m/z bins rather than simply choosing
evenly spaced ones. Alternatively, one could apply a dimen-
sionality reduction technique, such as PCA, on the m/z space,
with the aim of using a smaller number of features that are still
informative (in this case, the features would be “eigen-m/z,”
that is, pseudo-m/z bins made up of linear combinations of
the original m/z bins).

Whether one uses piecewise linear transformations in small
regions, such as in Refs. 18 and 41, or more flexible alignment
schemes, such as in Refs. 10 and 19, ultimately may have little
importance, so long as the overall transformation is not re-
stricted to a global linear warp. Incorporating local scaling
simultaneously with alignment may also prove to be advan-
tageous, as reported in Ref. 19. Another issue to consider is
whether to align m/z bins individually, together, or somewhere
in between (i.e. in a smoothly varying way). The issue of
whether one should do alignments before or after peak de-
tection has not been clearly answered. Assuming it were
possible to correct the LC time axis before peak detection,
one could better leverage the information encoded across
aligned datasets to achieve more reliable and sensitive peak
detection. Historically, with LC-MS data, researchers have
concentrated on correcting the time axis, ignoring the m/z
axis. However, corrections are commonly performed along
the m/z axis in SELDI/MALDI experiments, suggesting it may
be desirable to do so with LC-MS data (though this may be
instrument-dependent). Alignment algorithms are typically
formulated to work on datasets that are very similar to each

other. However, if one knows a prior that the samples may
differ significantly in a few (unknown) locations (by an un-
known amount), for example in comparisons of cancer and
noncancer serum, then this should be incorporated into the
model, as suggested in Ref. 19. This should improve the
overall performance of alignment algorithms and may be a
fruitful direction to pursue.

DATA NORMALIZATION

MS signals are frequently corrupted by either systematic or
sporadic changes in abundance measurements. That is, over-
all peak amplitudes measured in one replicate may be ele-
vated with respect to another, and may also have systematic
changes within an experiment, across time, due to a change
in column or ESI performance. In such cases, the data need to
be normalized to make the experiments comparable. The
simplest approach would be to multiply all abundance values
in one experiment by some constant factor, but in general it
may be necessary to perform more detailed corrections. Nor-
malization of MS data can be performed either by coercing
m/z intensity values to be comparable across experiments
(low-level processing), or by altering peak abundance to be
comparable (mid-level processing). In general, one aims to
normalize not only replicates, but also experimental data of
distinct biological origin, such as serum profiles from cancer
patients and healthy case controls. The underlying assump-
tion behind normalization is that the overall MS abundance of
either all features (peaks or time-m/z pairs), or subset(s) of
these, should be equal across different experiments. Given
this assumption, one can determine the ratio of overall abun-
dance of a chosen set of features between two experiments
for use as a multiplicative correction factor, and then normal-
ize an entire set of experiments by arbitrarily choosing one of
them as a reference to which all others are normalized.

Global normalization refers to cases where all features are
simultaneously used to determine a single normalization fac-
tor between two experiments, while local normalization refers
to cases where a subset of features are used at a time
(different subsets for different parts of the data). Locality can
be defined by, say, similarity in m/z values, time (scan head-
ers), or abundance (peak intensity) levels. For example, in an
abundance-dependent, local normalization, peaks of similar
abundance within the same MS experiment would be scaled
in a similar way, while peaks of different abundance are
scaled in a different way. If the mean of all features is made to
agree across all experiments, it is referred to as a global mean
normalization, as for example used by Sauve et al. (27). By
plotting the point-wise log ratio of matched features between
datasets versus either m/z or abundance, Sauve et al. (27)
visually established that no trend existed along either the m/z
or intensity axes (27) and hence that the normalization method
need not take these factors into account. While several
groups have opted for global abundance normalization, in the
case of LC-MS data it may be necessary to normalize locally
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in time (19), because chromatography can produce irregular
fluctuations in signal.

Many of the normalization techniques applicable to LC-MS
data have also been applied to the results of microarray
experiments (46). With gene expression profiles, the genes
used for normalization have sometimes been restricted to
so-called “housekeeping” genes presumed to remain con-
stant across the experimental conditions. An analogous con-
cept was applied to LC-MS data by Wang et al. (10), whereby
a constant intensity ratio between pairs of experiments was
computed based on reference peaks. These authors noted,
however, that the use of all detected peaks provided similar
results. Baggerly et al. likewise considered using “housekeep-
ing” peaks to normalize, but stated that they were unable to
find stable peaks across experiments (28).

Anderle et al. (20) opted to normalize multiple LC-MS sam-
ples to a single reference dataset, using median global nor-
malization over pairs of matched peaks, while Wagner et al.
and Baggerly et al. (28, 39) chose global mean normalization
for processing MALDI data. Radulovic et al. also used global
normalization, with each dataset multiplied by K, such that the
total number of intensity values exceeding some predefined
threshold was set to equal the somewhat arbitrarily chosen
value 100 (18). In contrast, Tibshirani et al. (22) normalized
their MALDI/SELDI spectra by mapping the 10th and 90th
percentiles to 0 and 1, respectively (linearly interpolated
between). In our own recent study (19), TIC traces were nor-
malized collectively in conjunction with dataset alignment,
leveraging information contained across all experiments
simultaneously. Normalization was done locally at each scan
header (but globally across m/z), with the constraint that
neighboring scan headers have similar scaling factors.

Normalization is often evaluated by calculating the coeffi-
cient of variation (CV) between peaks across different exper-
iments after normalization. While reasonable CVs (e.g. �30%)
are commonly reported, a comparison to CVs from prenor-
malized data is often not provided. Moreover, because no
systematic comparison of these various normalization tech-
niques has been reported, it is difficult to assess their relative
merits. While Sauve et al. reported no abundance-dependent
artifacts with SELDI data (27), it will be interesting to see if this
holds more generally across data sets, and also for LC-MS
data.

DATA TRANSFORMATIONS AND ERROR MODELS

One ultimate goal of many profiling studies is to find pro-
teomic patterns that can discriminate between different bio-
logical conditions. In order to properly assign statistical
significance to candidate biomarkers, or any changes in
apparent protein abundance, it is important to understand the
patterns of variability, such as how the variance of measure-
ments correlates with abundance level. When using traditional
statistical approaches, such as a t test or related measure,
one needs to estimate the variance, which can be difficult to

do if few replicates are available (as is typical of many LC-MS
studies). Error models can be devised that leverage the vari-
ance estimates across abundance levels (20) and can be
incorporated in the development of machine-learning algo-
rithms for sample classification, possibly leading to improved
performance. The log transformation of peak intensities is
frequently taken, with some underlying, unarticulated consen-
sus that the log transformation is a good thing (27, 28, 34, 47).
Error models can help us to understand why this may (or may
not) be the case. Indeed, log transformation converts multi-
plicative error into additive error and therefore stabilizes vari-
ance (20). Nevertheless, Satten et al. (48) offered that taking
the log of MALDI spectra makes it almost impossible to visu-
ally discern peaks and harder to tease apart noise from back-
ground, albeit without a statistical basis for this assertion.

To examine patterns of variation and to deduce the varia-
tion attributable to sample preparation, Anderle et al. con-
ducted a well-controlled LC-MS study, borrowing established
parametric models of heteroscedasticity (i.e. unequal vari-
ance, in this case, across peaks with different abundance
levels) from the microarray community. Human serum was
fractionated into 40 samples (after removal of the most-abun-
dant proteins and following tryptic digestion), with half of
these analyzed directly by LC-MS, and the other half recom-
bined and again resplit before analysis. The variation in the
amplitude of matched peak intensities formed the basis of
their study. A variance model, �2

x � ��2 � ��, was fit to the
observed intensity values (with true mean abundance � and
constants � and �) and observed visually to be appropriate.
The quadratic term dominates at higher-intensity levels result-
ing in a constant CV. Fitting the pooled and individual data-
sets to this model, it was shown that the pooled samples
exhibited a CV of 11%, while the individually processed sam-
ples had a CV of 20%, suggesting much variation is attribut-
able to sample preparation. Anderle et al. also report that
application of this error model to two randomly divided sub-
sets of individually processed data, in conjunction with t tests
on each of the matched peaks between the groups, resulted
in far fewer false-positives as compared with no data trans-
formation. The number of false-negatives was not assessed,
however, and could be high. Moreover, it would be beneficial
to evaluate this model with other LC-MS datasets to ensure
that the patterns of variability are generally valid.

Satten et al. (48), on the other hand, take the view that “all
identification should be made using only features that well
exceed a noise threshold, to ensure that the resulting classi-
fication algorithm has scientific validity.” While these con-
cerns are warranted, the emphasis appears to be in the wrong
place. Classification algorithms, when used properly, for ex-
ample in the context of Bayesian methods, or using cross-
validation (with feature selection inside the cross-validation
loop (49)), will not assign any importance to random structure
in the data. Conversely, the approach offered by Satten et al.
(48) can cause loss of small, but significant signals, reducing
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the efficacy of profiling. They also state that “the goal of
analysis [is] to show that standardization and de-noising al-
gorithms retain sufficient information to allow categorization.”
We counter that data processing should improve information
availability. Otherwise, faced with more challenging tasks,
unnecessarily conservative processing steps may obscure
the answers we seek.

Stein et al. mention that event-counting detectors, such as
electron multipliers, generate signals with “average random
deviation” proportional to the square root of signal intensity
(23). The proportionality constant was determined empirically
(for GC-MS) and was invariant to m/z across a variety of MS
platforms except at lower signal strengths where background
noise becomes dominant. Assuming “average random devi-
ation” refers to mean standard deviation, these results match
closely to those of Anderle et al. (20).

We would conclude, largely on the basis of the Anderle
study (20), that log transformation of MS data is appropriate,
and that the error model they presented can be used to
properly stabilize the variance of low-intensity peaks, or to
obtain robust estimates of variance. It would also be interest-
ing to find out whether these transformations could be applied
directly to a raw data matrix rather than to extracted peak
abundances.

HIGH-LEVEL PROCESSING

With high-level processing, MS data is harnessed to tackle
the ultimate goals of profiling, such as:

1. Sample classification (e.g. using proteomic profiles to
distinguish chemotherapy-resistant and -sensitive
tumors).

2. Low-level biomarker discovery: discerning which data
points or peaks are responsible for pattern differences
between classes.

3. High-level biomarker discovery: discerning which pro-
teins or peptides correspond to biomarkers found in
low-level biomarker discovery.

4. Discerning the full set of proteins present in a sample,
and the levels these are expressed at.

These tasks are listed from most-to-least tractable, al-
though the latter two have not been fully addressed in the
literature.Buildingclassificationalgorithmstoteaseapartclass-
dependent data is often feasible. Determining the complete
set of features (i.e. peaks, peptides, or m/z scan header
tuples) responsible for pattern differences, however, in a sta-
tistically sound way, can be difficult. Frequently in machine-
learning methods, a feature selection step is used to auto-
matically select features thought to lead to a near-optimal
classifier—sometimes independently from learning the classi-
fication model (called filtering), or interactively with learning
(wrapper), or by way of the classification algorithm itself (e.g.
decision trees). Feature selection is an open, difficult research
question. Even if a theoretically optimal set of features for a

particular learning algorithm (in the sense of providing the
best generalization) can be found, not all statistically discrim-
inative features will necessarily be contained in this set (or
even only such features), because the optimal set of features
is heavily dependent on the mathematical framework of the
algorithm at hand. For example the optimal set of features in
a linear classifier would not contain important pairs of fea-
tures, which acted only together to provide discriminative
power (e.g. imagine two proteins, which, if the expression of
only one is known, provides no information, but when both are
known, they give perfect discrimination). These artifacts,
where features optimal for particular classifiers do not neces-
sarily correlate best with the classes, occur with virtually every
classifier, offering an explanation to biologists seeking to
know why different analyses of the same MS data often shed
light on different features, without there being an error or
problem in the analysis as has been suggested (9).

STATISTICAL ISSUES

Statisticians take a different view to finding discriminative
features. Typically, a test deemed appropriate (e.g. a t test) is
performed, generating a score reflecting how much a feature
discriminates between two classes. Then, under the assump-
tion that no features are discriminative, the distribution of
these test scores is modeled. From this null distribution, one
can calculate the probability (the p value) that an individual
feature would have a particular test value, or a more extreme
one, given that the feature is not discriminative. In the classi-
cal setting, these null distributions are theoretically devel-
oped, but are now more commonly simulated, for example by
permutation tests. An example of a permutation test would be
to remove sample labels (e.g. cancer and healthy) and then
randomly reassign labels so that only spurious correlation
exists, with the value of the test function computed for every
feature. By repeating this procedure many (e.g. 10,000) times,
one can obtain an approximation to the null distribution for
data with structure similar to that on hand. Permutation tests
are attractive because they require no assumptions about the
data, in contrast to most classical statistical tests.

Typically permutation tests are performed one feature at a
time, resulting in thousands of significance tests. In such
cases, the false-positive rate (FPR), which p value thresholds
seek to control, will be extremely large for commonly used
scientific p values (e.g. �0.01), and therefore some sort of
multiple hypothesis testing correction needs to be applied.
Many methods have been developed for this, including the
conservative Bonferroni factor, which controls the family-wise
error rate over all tests. However, as pointed out by Storey
and Tibshirani (17), in the context of biological experiments, it
is rather the false-discovery rate (FDR) one seeks to control.
Whereas the FPR predicts how many truly null features are
expected to be called significant, the FDR predicts how many
of the features called significant are in fact likely not to be. From
a practical standpoint, the FDR tells us how many “hits” (e.g.
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peaks putatively different between two classes) are likely false.
Storey and Tibshirani recently developed the q value, which

is similar to the p value, except that it controls for the FDR
(rather than FPR) and automatically accounts for multiple
testing (17). If one chooses a q value of 0.05, then one can
expect that 5% of all features deemed significant will in fact
not be. The q value is therefore a more appropriate statistical
measure for biomarker discovery in the context of complex,
multivariate datasets.

Permutation tests are sometimes used to test the validity of
a classification algorithm (28, 39); the classifier is retrained
using randomly permuted labels (with the number of samples
in each class maintained) and its predictive power assessed.
Such an analysis provides similar information to that obtained
from cross-validation, but in manner better suited to reporting
the p values typically seen in the biomedical literature (as
opposed to the machine-learning literature, which does not
commonly use p values).

Whether seeking discriminative features or aiming to build a
classifier, the type of features must be decided upon (e.g.
intensity values in time, m/z space, or peak abundance). If not
using peaks, then feature correlation, due for example to
isotope shoulders, system imperfection blurring m/z values,
and the fact that peptides do not elute instantaneously,
should be carefully considered. Thus it might be preferable to
use quantified peak abundances, combining ions belonging
to a single peptide, because these have a clear, intuitive
biological meaning. In a discussion concerning the validity of
classification using m/z values in a set of prostrate cancer
proteomic studies with different results, it was suggested that
only features with meaning, such as peaks, should be used in
biomarker discovery (36). Tibshirani et al. advocate the same
approach (22). However, it may be wiser to first perform
classification, and then look for peak evidence post hoc be-
cause imperfect peak detection can cause important informa-
tion to be missed, and because use of peaks over continuous
signal does not in fact afford any additional statistical rigor.
Assuming the proper methodology is used to validate the
classification algorithm, for example by cross-validation, spu-
rious signal should not be identified as a point of interest,
regardless of the features used.

MACHINE LEARNING AS APPLIED TO MS

Machine-learning techniques seek to semi-automatically
build and validate mathematical models of data that can then
be used for classification or regression and for examining
which parts of the data were relevant and in what way. A
glossary of a few common machine learning terms is provided
in Table II. Application of machine-learning techniques to a
dataset involves four steps: 1) positing a class of mathemat-
ical or statistical models appropriate for the data (the class to
choose is not known a priori—each model class can work well
or perform poorly in different contexts); 2) “learning” which
particular model in the class is most suitable for the data (this

typically involves a numerical optimization of some objective
function to produce a fixed set of parameters identifying a
specific model within the model class); and 3) validation of the
model by use of a test set, cross-validation, or similar method.
Then the fourth and final step can be performed: 4) application
of the final model to new data.

A classic MS prediction paper is the pioneering ovarian
cancer study of Petricoin et al. (8) in which a genetic algorithm
was used to find a good set of predictive SELDI m/z values.
The general idea was to evaluate feature subsets, each 20 m/z
values (out of �15,200 total), for the ability to discriminate
between cancer and healthy patient serum samples (evalu-
ated based on the ability of the selected features to form two
clusters with correct class membership), and then to combine
and change the best sets until perfect discriminating power
was obtained on the training data. The final model was built by
clustering the data with the chosen features, and classifying
new samples based on proximity to the class clusters. Be-
cause the final optimal set of features appears to be derived
from “fitter” subsets formed from new groups of m/z rather
than newly derived features, the final classifier is a linear
classifier in a subset of the original input space. As such, it can
be argued that it makes more sense to use a regularized linear
discriminant classifier such as nearest shrunken centroid (22,
50), considered by some to be more principled than a genetic
algorithm. After training, a holdout test set was evaluated
providing 100% specificity and 95% sensitivity. Baggerly et
al. applied a similar approach (28).

The Petricoin study has sparked an ongoing debate due to
the fact that the putative biomarkers discovered were not
conclusively proven to be proteins of interest, with those
arguing for the need for identification prior to use as a diag-
nostic and others suggesting that discriminating patterns
alone are sufficient (11, 36, 51). The ability to obtain near
perfect classification has since been widely reported in the
MS literature (8, 28, 48, 52, 53), but reproducibility of results
has been limited. There is speculation that improper experi-
mental methodology is to blame, and that the patterns ob-
served are not in fact related to disease state, but instead to
extraneous factors such as sample collection, preparation, or
storage (9, 11, 22, 36, 53). Thus, a major immediate goal is not
so much to develop new classification and biomarker discov-
ery algorithms, but instead to ensure that the datasets in use
are in fact representative of the biological problems one seeks
to address (an issue beyond the scope of this review).

Here, we briefly report on the major types of methods used
to date. We note, however, that it is difficult to empirically
judge these techniques as different sample sizes, error esti-
mates (e.g. bootstrap, n-fold cross-validation with varying n,
etc.), and MS platforms were used without recourse to a
reference “gold standard” dataset, and there is a paucity of
follow-up biological validation experiments.

Yasui et al. used boosted, single-feature, linear regression,
and an early stopping criterion based on sensitivity and spec-
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TABLE II
Glossary of useful statistical and machine-learning terms

1 Generative Model—A probabilistic model in which observed samples can be viewed as having been generated by a sequence of
events described by the model.

2 Hidden Markov Model (HMM)—A type of graphical model (see below) used to model sequence data (e.g. amino acid sequences,
continuous MS signal). The data is modeled as though it were generated by traversing through a sequence of “hidden” states
(hidden because they are unknown to the user). In each hidden state visited, a “symbol” (e.g., an amino acid) is emitted.
Efficient algorithms have been developed for HMMs that allow computations to be performed quickly.

3 Graphical Model—A formalism used to efficiently model joint probabilities (e.g., the joint probability over all measured protein
levels, cancer aggressiveness, age, and sex). Graphical models can be used for probabilistic supervised or unsupervised
machine learning, and naturally accommodate missing values, as well as latent variables.

4 Latent Variable—A variable in a model which is never directly observed. For example, the cluster number in a clustering algorithm
can be viewed as a latent variable. Though we never observe its value, positing its existence makes it easier to make sense of
the data. Its value is inferred (usually probabilistically) from the observed data.

5 Learning—The stage of machine learning in which parameters of a model class are fit to the data. Also called training. Learning
can be supervised or unsupervised.

6 Supervised Learning—Learning in the case where class labels are known. (e.g., which samples belong to cancerous versus
healthy people). For example, training a discriminative classifier uses supervised learning.

7 Unsupervised Learning—Learning in the case where class labels are unknown. For example, clustering is unsupervised because
no class labels are provided.

8 Classifier—A model of data whos intended use is to make class predictions of unseen data. Sometimes called a discriminant
model (because it discriminates between two classes).

9 Generalization—The ability of a learned model to generalize to new data (i.e. will it work well on unseen data).
10 Linear Discriminant Analysis (LDA)—A type of classifier in which feature values are linearly combined to obtain a class prediction.
11 Linearly Separable—A two-class data set is said to be linearly separable if in the input space, a line (or in two dimensions, a

plane, or in higher dimensions, a “hyper-plane”) can perfectly separate the two classes of data.
12 Support Vector Machine (SVM)—A class of models that extend the notion of simple linear classifiers to more complex classifiers

by projecting the input data into a user-selected, higher-dimensional space (the space is determined by the choice of “kernel”).
Even if the data is not linearly separable in the original input space, it may be separable in the kernel space. SVMs are said to
have good generalization bounds because of the principle of “margin maximization” at the core of their theoretical development;
this principle states that of all the linear classifiers that can separate the input data, one should choose the one that lies furthest
from all of the training points.

13 Decision Tree—A classifier in which a new sample is classified by making a series of (usually binary) decisions, which correspond
to a traversal through the nodes of the learned tree. The decision made by the tree amounts to following one of a fixed set of
rules, such as: If sex � female AND osteopontin_level � high AND noFamilyHistory THEN Class � 1 (healthy), where each part
of the rule corresponds to a node in the tree.

14 Decision Stumps—A decision tree with only one node.
15 Random Forest (RF)—A classifier consisting of many decision trees, each one trained with its own subset of the original data,

chosen by sampling from the whole training set (with replacement). Classification is performed by having the trees vote on a
new sample.

16 K-Nearest Neighbor—One of the simplest possible classifiers in which the model consists of “memorizing” all training cases, and
then predicting the class of a new sample to be the majority class of its k nearest neighbors.

17 Receiver-Operating Characteristics (ROC) Curve—A plot used to measure the sensitivity/specificity trade-offs for a particular
classifier. The area under the ROC curve is a measure of how well a classifier will perform over all possible sensitivities (or
specificities).

18 Boosting—A technique in which multiple instances (different parameter settings) of a simple classification model (e.g. a decision
stump) are used together to provide a much stronger model. Each model instance is weighted by an amount related to how well
it performed on a weighted subset of the training data. The data weights are in turn related to how well the previous combined
set of models performed collectively on the data.

19 Monte Carlo Methods—A general class of techniques whereby exact solutions are approximated by using randomly generated
samples.

20 Dynamic Programming (DP)—A class of algorithms used to solve certain kinds of optimization problems by storing the solution to
subsets of the overall problem, and then using properties of how the subset solutions relate to the overall solution in an
incremental way.

21 Expectation-Maximization (EM)—An algorithm used to perform numerical optimization in the context of latent variable models. One
iterates between estimating the value of the latent variables (in the E-Step), and fitting the model parameters (in the M-Step),
until convergence.

22 Dynamic Time Warping (DTW)—An algorithm used to align one sequence to another, using DP.
23 Overfitting—The phenomenon in which a model that has too many free parameters relative to the amount of data, ends up fitting

(after training) not only the true signal, but also noise and spurious correlations in the data. A model which has overfit will not
make good predictions on new, unseen data (i.e., it will not generalize well).

24 Regularization—A technique whereby constraints are added to the objective function so that the effective number of free
parameters is reduced, and thus the capacity for overfitting is likewise reduced. For example, one of the simplest methods
would be to force some of the free parameters to have the same value.

25 Objective Function—A function set up for training, and which, during training, is maximized (or minimized, depending on the type
of function). For example, a typical objective function might be amount of error produced by a classifier on the training
examples (data samples used during training), which would be minimized.

26 Shrinkage (e.g. Nearest Shrunken Centroid, NSC)—A type of regularization whereby class-specific centroids are “shrunk” toward
the overall (nonclass-specific) centroid. This has the effect of eliminating the influence of the most weakly correlated features,
thereby reducing the capacity to overfit.
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ificity in their SELDI-MS training set (31). From an initial pool of
�12,000 processed m/z values, the final classifier used 25
features (binarized m/z intensities).

Qu et al. applied boosted decision stumps on SELDI data to
obtain near-perfect classification results, with feature selec-
tion (m/z peaks) based on receiver-operator characteristic
(ROC) performance, although the type of classifier used to
generate the ROC curve is not stated (52).

Satten et al. used a random forest (RF) algorithm to classify
MALDI m/z values, while Lilien et al. used PCA followed by
linear discriminant analysis (LDA) on SELDI data, computing
feature importance by back-projecting the PCA hyperplane
onto the m/z space (3, 48).

Wagner et al. used each of: k-nearest-neighbor (k � 6,
Mahalanobis distance), support vector machine (SVM) with lin-
ear kernel, LDA, and quadratic discriminant analysis (QDA) to

TABLE II—continued

27 Lasso—A regularization method whereby the absolute value of the parameters is included in the objective function so as to
pressure the absolute value of the parameters to be small (this has been shown to encourage a reduced, effective number of
features).

28 Hierarchical Clustering—A clustering algorithm in which the two closest (as defined by some similarity measure) samples (e.g. one
sample might be all protein levels measured in serum from one patient) are merged to form a node. Progressively, the next two
samples (or nodes, or sample/node) are merged into a node, until all samples are in some node. The sequence in which
samples are merged into nodes defines a set of hierarchical clusters. By choosing a minimal level of similarity at which to cut
off the merging process, a single clustering of the data can be obtained.

29 Feature Selection—A step in machine-learning methods in which certain features are chosen to be included in a model, while
others are chosen to be omitted.

30 Wrapper—A feature selection technique in which features are selected in conjunction (and interactively) with the model being
trained. This allows the feature selection process to be tailored to the model at hand.

31 Filter (in the context of feature selection)—A feature selection technique in which features are selected before training of a model,
and independently of the model, for example using a t-test to rank features and then choosing the highest ranking N of them.
This is distinct from the meaning of filtering in signal processing where filtering refers to application of a digital filter to the data
in order to reduce noise or otherwise change the properties of the signal.

32 Principal Components Analysis (PCA)—A technique commonly used to reduce the dimensionality of data. This is accomplished by
finding a new space for the data to lie in, in which the new coordinates are linear combinations of the old ones, and in which
the new coordinates (called principal components or PCs) are ordered by the amount of variance for which they account in the
original data space. The first PC accounts for the most variation in the original data, and each next PC accounts for
progressively less. PCs near the bottom frequently account for almost no variance, and hence can be omitted, producing fewer
coordinates, and therefore a lower dimensionality. If one has a point in PCA space, one can “back-project” it to see what point
it corresponds to in the original space.

33 Unfolded PCA—In standard PCA, each sample is a vector of values. If one has a matrix of values (e.g. in the case of one LC-MS
data), one can “unfold” the matrix into a vector. This allows standard application of PCA, but throws away some of the
information conveyed by storage in a matrix.

34 Bayesian Methods—While many people consider Bayesian methods to be the integration of prior knowledge into the learning task
by way of Bayes’ Rule, a more complete description would be centered around the following: Whereas conventional training
methods seek to find the single best set of parameters that fit the training data, Bayesian methods seek to represent the
uncertainty about the relationships being learned. A practical implication of this, for instance, would be in making predictions
from a learned model. In non-Bayesian methods, after learning, one would use a single set of learned parameters to make
predictions, whereas in Bayesian prediction, one would integrate out over all possible sets of parameters, weighted by their
probabilities (where the probabilities are learned during training) �www.faqs.org/faqs/ai-faq/neural-nets/part3/section-7.html	.

35 Cross-validation—A method for making the most use of a dataset for both learning and validation. Rather than separating the data
into a single learning set (called the “training” set) and a single test set, n-fold cross-validation separates the data into n training
sets and n test sets. If n were equal to 5, cross-validation would work as follows: The entire dataset would be divided into five
equal-sized groups. The first four groups would be used as training data, and the fifth as test data. The second through to fifth
groups would then be used as training data and the first group as test data. This procedure is continued until each group has
been used as test data. The aggregate test results from all n � 5 phases of the cross-validation would be used to obtain a final
estimate of the predictive accuracy. Cross-validation provides an estimate of how a particular model might do on a new, unseen
data set drawn from the same statistical distribution.

36 Bootstrap—A technique to assess the variability of a classifier’s predictive ability (or other statistical quantities) by repeatedly
measuring the classifier’s predictive ability, using a different subset of the data (chosen by sampling uniformly from the original
data set, with replacement) each time.

37 Wavelet Decomposition—A transformation used in signal processing that breaks down a signal into both 1) local features (i.e.,
spanning only a few adjacent m/z values) and 2) frequencies.

38 F Statistic—A test statistic sometimes used to rank features for feature selection. It measures the ratio of between-class variance
to within-class variance. Higher F statistics indicate more class-informative features.

39 Coefficient of Variation (CV)—Defined to be the variance divided by the mean. This is useful if one is measuring how variable two
different features are when measured on different scales.

40 Mahalanobis Distance—A distance measure (as opposed to say a Euclidean distance), in which the variation (e.g. the noise or
scale) of each variable is taken into account, as well as the correlation between variables.

41 Genetic Algorithm—An algorithm in which many features subsets are chosen at random, and their predictive power assessed (in
the context of some model, for example, a linear discriminant). In a process of “natural selection,” those feature subsets
deemed good (or “fit”) are “mutated” and “crossed” (i.e. various operations are performed that change and combine good
feature subsets) to produce new feature subsets. This process is continued iteratively until some preset threshold, for example
the predictive power on the training set, is met.

42 Fitness Function—The function that measures the “goodness” of particular feature subsets in the context of genetic algorithms.

Statistical and Computational Methods for Comparative Proteomic Profiling

Molecular & Cellular Proteomics 4.4 431

 by on S
eptem

ber 18, 2006 
w

w
w

.m
cponline.org

D
ow

nloaded from
 

http://www.mcponline.org


classify MALDI data (39), selecting the top 3–15 peaks as fea-
tures with an F statistic. They correctly state that their evaluation
is flawed in that some of the methods use the entire dataset for
training (e.g. to calculate the covariance matrix for the Mahal-
anobis distance), even though this was not necessary.

Li et al. selected 10 m/z values as features in three SELDI
datasets trying both a t-test filter and a genetic algorithm.
These were used in conjunction with an SVM classifier, where
the choice of kernel was reported to have little effect (settling
on a linear one) (54). Overall, the genetic algorithm performed
better than the t-test approach, suggesting that higher-order
interactions between features provide discriminative power,
or that the t-test is a less-ideal statistic in this scenario.

Wu et al. (47) compared the performance of LDA, QDA,
k-nearest neighbor (k � 1–3, Euclidean metric), bagging and
boosting classification trees, SVM (kernel not specified), and
RF on MALDI data, using both a t-test rank and the by-
product of the RF algorithm for m/z feature selection (15 and
25 features). Overall, no substantive differences in perform-
ance were reported, with QDA marginally best, although dif-
ferent error estimators (cross-validation or bootstrap) were
used for different classifiers, complicating interpretation.

Baggerly et al. undertook an unusual feature selection ap-
proach (28). After computation of over 60,000 t-tests on indi-
vidual MALDI m/z values, many of the most discriminative m/z
values appeared as nonpeaks (i.e. on the slope of a peak).
Dissatisfied with this, they reduce dimensionality by binning m/z
(bins growing smoothly in size with increasing m/z), retaining
only those bins (�1%) with detected signal in some minimal
number of samples. They note that this binning partially corrects
for the correlation between neighboring m/z values.

Tibshirani et al. set out to develop a classification algorithm,
peak probability contrasts (PPC), for MALDI/SELDI data that
provides a measure of discriminatory power for all features
using simple peak information (22). First, split-points for each
peak were found that most discriminate between the two
classes. Next, binary features were formed from the split-
points and then nearest shrunken centroid (NSC) was applied,
with importance assigned to each feature by: i) defining a test
statistic based on the difference in the shrunken class pro-
portions at each peak site; ii) using permutation tests to
estimate the FDR for different thresholds on the test statistic;
and iii) choosing a test-statistic threshold that provided a low
FDR (e.g. 5%). Using an artificial spike-in experiment, a non-
shrunken centroid method reportedly identified spiked fea-
tures better than the shrunken model, but at the expense of
more false-positives and worse classification. Lastly, they
compared their PPC algorithm to: i) LDA, using the same 15
features as PPC; ii) SVM (kernel not mentioned, using the
same 15 features from PPC and also all m/z; iii) binary peak
probability features with the Lasso3; iv) PPC, but using only

peak presence/absence as a feature (not using split-points);
and v) using six wavelet coefficients (spanning all m/z values)
as features with NSC. All-feature SVM performed slightly bet-
ter than standard PPC, which performed similarly to the
Lasso, while LDA, 15-feature SVM, the wavelet method, and
presence/absence PPC all performed worse. Note that al-
though the PPC classifier operates on binary data, it uses
intensity information by way of split-points (but not fully be-
cause split-point distance was not used). Better results might
be obtained if this information were incorporated.

Classification in the context of LC-MS data has been more
limited, with only a handful of articles (18, 34, 35). After
resolving and aligning LC-MS data matrix components (see
above), Idborg et al. used PCA, unfolded-PCA, partial least
squares (PLS), and PARAFAC to tease apart the proteomic
differences in the urine of normal mice and drug-administered
mice (34). The dimensionality of the classification problem
was kept reasonably small and tractable using the abundance
of each spectral component at each retention time rather than
the full data matrix. In contrast, Radulovic et al. performed
classification by simple plotting and visualization (18). Evalu-
ation of this approach was limited to only two training cases
per class and a single test sample (which can always be
perfectly classified by choosing the appropriate point on an
ROC curve). A comment was made that if two classes do not
sufficiently cluster in the input space, then virtually all classi-
fication algorithms will fail. But any nonlinear method can
potentially overcome this problem. Moreover, the key motiva-
tion for using kernel methods (e.g. SVMs) is the fact that even
if two classes are not linearly separable in the input space,
then one can project data vectors into a higher-dimensional
space into which they may become separable. Thus, inability
to perform classification in the original input space (or subset
of it) should not stop one from further exploration of classifi-
cation algorithms.

It is useful to ask how differences in the data generated by
chromatographic versus nonchromatographic MS affect clas-
sification and, in particular, if the preprocessing methods
reported for LC-MS data are good enough to allow compa-
rable classification results to those reported for MALDI/SELDI
(keeping in mind the fact that different peptides are often
detected by these platforms). The ability to perform effective
time alignments for LC-MS is far more crucial than the ability
to align MALDI/SELDI m/z values, because the latter problem
is less severe. If peak detection is not used prior to LC-MS
classification, then correlation across features needs to be
taken into account, especially in the time domain where peaks
are almost never instantaneous. Aside from these issues,
development and use of classification algorithms need not
differ between LC-MS and MALDI/SELDI.

An area not studied in any great detail is the use of less-
greedy feature selection. In the context of MS, most of the
algorithms cited above rank features on an individual basis,
using for example a t-test, and then greedily take the top n

3 A linear regression model with L1 norm penalty on the regression
coefficients.
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features. This completely ignores interaction between fea-
tures. While genetic algorithms are less greedy, many other
heuristics can be used to achieve a similar (or possibly better)
end and may be worth exploring.

EVALUATING CURRENT METHODS

We have described statistical and computational issues
and methods for MS proteomic profiling, without discussing
how to evaluate the merits of various techniques—an impor-
tant and difficult problem. In some studies, the CV is reported
as a measure of experimental quality, from start to peak
quantification. Several groups have reported CVs ranging
from 25 to 60% (the latter, before processing) (10, 18, 31).
While these values can be used to assess the contributions of
processing steps (for example, by comparing CVs before and
after alignment/normalization), they are not absolute meas-
ures of quality and certainly much less informative than in the
case of microarray data, where the number of features is
determined a priori by the chip. With MS, feature detection is
part of the analytical process, which makes interpretation of
CVs drastically different. Consider cases where one uses
conservative preprocessing steps, for example heavily
smoothing and then binarizing data, retaining only strong
signal. In such scenarios, the CV would only reflect dominant
peaks surviving preprocessing, which could have much lower
CVs than CVs resulting from another processing technique
preserving more MS information. Ultimately, what we are
interested in is performance on some final goal, such as
sample classification. If goal performance is measurable, as in
the case of classification, then such measures can provide a
more objective assessment of processing steps, as for exam-
ple is done by Listgarten et al. for microarray data to assess
normalization schemes (55). Clearly, a feedback loop with the
experimental laboratory is also desirable.

FUTURE PROSPECTS

While the application of computational and statistical meth-
ods to proteomic profiling is relatively new, it is rapidly gaining
interest. Hence, it is worthwhile suggesting fruitful avenues for
moving forward. It was suggested above that simultaneous
LC-MS data alignment and normalization may be beneficial
for comparative profiling. Pushing this further, one could at-
tempt to combine as many of the processing steps as possi-
ble into a single model. For example, the probabilistic, gen-
erative CPM (19), which takes into account the normalization
and alignment problems together, could be extended to also
model additive baseline patterns, as well as the error model
reported by Anderle et al. (20). By combining these steps into
a single, probabilistic model, these tasks could be performed
simultaneously with one another, across all samples. This is
important for two reasons. First, the interplay between various
processing steps is unclear, and the order of operation could
affect the results. Solving these simultaneously avoids this
problem. Second, shared, simultaneous processing across

multiple samples allows access to their common structure,
and therefore more information. Satten et al. emphasize that
their methods operate one sample at time (48), so that test
data can be treated independently. But it is also possible to
process all training data together, and test samples independ-
ently, allowing for maximal use of the available data. For
example, with the CPM, training data could be combined for
normalization and alignment, and then a single test sample
brought in and aligned to the model.

One can imagine building a classifier directly on top of the
CPM, in a fairly straightforward manner for SELDI/MALDI
data. For example, after extending the CPM to non-replicate
data, a latent trace could be obtained for each class. The
simplest classifier would involve finding the likelihood of a
sample for each of the class-specific latent traces and then
assigning the class label of the trace producing the highest
likelihood. Exploring differences between the latent traces
could also be used for biomarker discovery, and prior infor-
mation of expected differences (e.g. sparsity of differences
incorporated). A model of this type would provide a unified
framework in which preprocessing, classification, and bio-
marker discovery are systematically tackled, possibly provid-
ing better results than sequential, ad hoc approaches. We
anticipate that existing and emerging statistical and compu-
tational techniques, side-by-side with rigorous and system-
atic evaluation, will help to unleash the full biomedical poten-
tial of proteomic profiling.

� To whom correspondence should be addressed: CH Best Insti-
tute, 112 College St., Toronto, Ontario M5G 1L6, Canada. Tel.: 416-
946-7281; Fax: 416-978-8528; E-mail: andrew.emili@utoronto.ca.
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