
Large-Scale Identification of Single-Feature
Polymorphisms in Complex Genomes
Justin O. Borevitz,1 David Liang,2 David Plouffe,2 Hur-Song Chang,3 Tong Zhu,3

Detlef Weigel,4 Charles C. Berry,5 Elizabeth Winzeler,2,6,8 and Joanne Chory1,7,8
1Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA; 2Genomics Institute of
the Novartis Research Foundation, San Diego, California 92121, USA; 3Torrey Mesa Research Institute, San Diego, California
92121, USA; 4Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen,
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We have developed a high-throughput genotyping platform by hybridizing genomic DNA from Arabidopsis
thaliana accessions to an RNA expression GeneChip (AtGenome1). Using newly developed analytical tools, a large
number of single-feature polymorphisms (SFPs) were identified. A comparison of two accessions, the reference
strain Columbia (Col) and the strain Landsberg erecta (Ler), identified nearly 4000 SFPs, which could be reliably
scored at a 5% error rate. Ler sequence was used to confirm 117 of 121 SFPs and to determine the sensitivity of
array hybridization. Features containing sequence repeats, as well as those from high copy genes, showed
greater polymorphism rates. A linear clustering algorithm was developed to identify clusters of SFPs
representing potential deletions in 111 genes at a 5% false discovery rate (FDR). Among the potential deletions
were transposons, disease resistance genes, and genes involved in secondary metabolism. The applicability of this
technique was demonstrated by genotyping a recombinant inbred line. Recombination break points could be
clearly defined, and in one case delimited to an interval of 29 kb. We further demonstrate that array
hybridization can be combined with bulk segregant analysis to quickly map mutations. The extension of these
tools to organisms with complex genomes, such as Arabidopsis, will greatly increase our ability to map and clone
quantitative trait loci (QTL).

[Supplemental material is available online at www.genome.org.]

Identifying the molecular basis of natural phenotypic varia-
tion will reveal answers to several long-standing evolutionary
questions, as well as many important practical problems, not
the least of which is the complex genetics of human disease.
With the genomics tools now available we have an increased
ability to identify functional variants responsible for pheno-
typic diversity. So far, most complete genome sequences are
from model organisms, usually represented by just a single
strain. As a consequence, tools such as microarrays are usually
designed for that single reference strain. To identify the causes
of intraspecific phenotypic variation, we must look beyond
reference strains at the whole genome level. By understanding
the molecular nature of this diversity we will gain insights
into the mechanisms of evolution and discover genes respon-
sible for natural variation. New genomics approaches, appli-
cable to all organisms and strains, need to be developed to
assess natural genetic variation at the whole-genome level,
allowing us to tap into the diversity that exists outside a hand-
ful of laboratory strains.

Variation in nature usually takes a continuous quantita-
tive form, contrary to discrete qualitative phenotypes that are

typical of laboratory mutations. Quantitative trait locus (QTL)
analysis has been used to dissect the polygenic nature of com-
plex traits (Mackay 2001; Mauricio 2001; Doerge 2002). To
perform QTL mapping, individuals must be genotyped along
all chromosomes. This is often times the limiting step. A
method to quickly genotype progeny at high resolution
would allow new genes to be mapped from new populations
in rapid fashion.

An attractive complement to QTL mapping of inbred
lines is linkage disequilibrium (LD) mapping. LDmapping ties
particular ancestral haplotypes to variation in quantitative
traits. To be able to recognize these haplotypes, substantial
disequilibrium must exist and a sufficient number of poly-
morphisms must be typed in order to reveal this disequilib-
rium. To perform whole genome LD mapping, many markers
at very high resolution must be identified from many differ-
ent individuals. LD mapping may identify much smaller in-
tervals as a result of the greater amount of historical recom-
bination than in experimental crosses; however, a disadvan-
tage is the many unknown population genetic parameters.

Once linkage between markers and quantitative traits is
found, either by QTL mapping or LD mapping, candidate
genes must be identified. A method to identify changes in
coding regions and insertion/deletion polymorphisms at the
whole genome level will improve the candidate gene selection
process, and provide a detailed characterization of within-
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species variation. Such an approach would complement glo-
bal transcription analysis, allowing variation at the DNA level
to be accounted for.

Both LD and QTL analyses have traditionally depended
on scoring markers such as amplified fragment length poly-
morphisms (Vos et al. 1995), simple sequence length poly-
morphisms (Bell and Ecker 1994), and single nucleotide poly-
morphisms (SNPs; Alderborn et al. 2000). These methods re-
quire individual markers to be amplified by polymerase chain
reaction (PCR) from individual progeny. The genotypes of
each amplified marker are then read serially, usually by gel
electrophoresis. New methods have been developed for geno-
typing hundreds to thousands of markers in parallel. Such
methods take advantage of oligonucleotide arrays (SNP ar-
rays), which contain hundreds of thousands of unique 25-
base pair (bp) oligonucleotides, termed features. Though an
improvement over conventional methods, the disadvantage
is that each marker needs to be PCR-amplified and prior
knowledge of the polymorphism is required before the SNP
array can be produced (Wang et al. 1998; Cho et al. 1999).
Variation detection arrays (VDAs), which tile every bp along
the chromosome, have also been used effectively to identify
and genotype variation, but in this case a vast number of
features are required (eight for each bp), making this ap-
proach enormously expensive in organisms with complex ge-
nomes (Halushka et al. 1999; Patil et al. 2001).

Oligonucleotide arrays designed for expression analysis
have been used to detect and score allelic variation in yeast
via direct hybridization of labeled genomic DNA (Winzeler et
al. 1998). A QTL for high temperature growth in yeast was
recently fine-mapped and cloned using this procedure (Stein-
metz et al. 2002). Many expression-level polymorphisms were
also mapped subsequent to expression array genotyping in
yeast (Brem et al. 2002). Whether such a simple method could
be used to detect and score allelic variation in a more complex
genome has been a matter of debate. Here, we show that even
though the 120-Mb Arabidopsis genome is ten times more
complex than the S. cerevisiae genome, we are still able to
identify 3806 SFPs with high confidence between two acces-
sions using direct genomic DNA hybridization. In addition,
we use this method for genome-wide genotyping of an RIL
and for mapping of a morphological mutation via bulk seg-
regant analysis. Finally, a linear cluster algorithm was used to
identify potential deletions in 111 genes, which, along with
coding region SFPs, define excellent candidate genes for
causes of natural phenotypic variation.

RESULTS

Arabidopsis Expression Array Feature Analysis
The AtGenome1 array, manufactured by Affymetrix, was de-
signed for gene expression monitoring before completion of
the Arabidopsis thaliana genome sequence. Features are clus-
tered at the 3� end of known and predicted genes. This array,
contains 285,186 PM (perfect match) and MM (mismatch)
features, 103,860 of which are specific to a single region of the
genome with high stringency. Due to overlap in the array
design, 92,924 of these features map to unique positions sepa-
rated by at least 4 bp (Suppl. Table 1 and Methods).

In order to determine whether or not such an array could
be used to detect allelic variation in Arabidopsis, DNA was
isolated independently from three Col and three Ler (Ler)
plants, fragmented, end-labeled, and hybridized to six AtGe-
nome1 arrays (see Methods). Since A. thaliana has a high self-
ing rate, most of the variation is expected to be between Col
and Ler with very little variation within accessions. The arrays
were scanned and mean intensity of each feature was calcu-
lated from raw pixel data using Affymetrix MicroArray Suite
software version 4. We occasionally noticed sporadic regions
on an array with generally faint signals due to causes other
than specific feature hybridization signal. A smudge, for ex-
ample, could reduce the signal in a general area, but not com-
pletely mask the signal from an individual feature below the
smudge. To systematically account for spatial artifacts, we cal-
culated the mean intensity of sliding windows (see Methods)
along the array. A false color image of the spatial correction
from three independent replicate arrays is shown in Figure 1.
Applying the spatial correction always improved the correla-
tion between replicates and, importantly, increased the dif-
ference between genotypes. This need for spatial correction is
recognized in the computation of gene expression indices. For
example, the program dChip (Li and Wong 2001) accounts
for spatial artifacts by excluding potential problem areas from
further analysis or allowing the user to identify regions to be
corrected (Schadt et al. 2000, 2001).

After the spatial correction was applied, data from the
three replicates of Col were compared to three replicates of Ler
using a modified t-test to index the relative difference for each
feature (see Methods). Our procedure is quite similar to that
used in Significance Analysis of Microarrays (SAM) where the
difference between the mean feature intensity of Col and Ler
is divided by the pooled variance within the three Col and
three Ler replicates. In addition, a small constant is added to

Figure 1 Spatial correction of hybridization signals. The spatial correction applied to three replicate arrays is shown in false color (A–C). Some
prominent spatial artifacts can be seen. Pairwise scatter plots (D) compare the log intensity of each feature between replicate arrays. Before spatial
correction (bottom left three scatter plots), a shoulder can be seen mainly due to the large smudge on rep.2. After spatial correction (top right three
scatter plots), this shoulder is almost completely removed, increasing the replicate correlation.
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the variance (Tusher et al. 2001). Ranked t-statistics for the
Col/Ler comparison are plotted in Figure 2. For each of the
92,924 features, a separate t-statistic was calculated. We
needed a method to evaluate the overall significance that
would account for the large number of comparisons and the
specifics of our experiment. Thus permutation testing was ap-
plied according to SAM; three replicates and two genotypes
allow 20 possible permutations. This includes the original test
of three Col versus three Ler arrays and the reverse test switch-
ing all three Ler arrays for Col arrays. The 92,924 scores from
each permutation were sorted and averaged to obtain an ex-
pected null distribution of t-statistics. The distribution of the
nonpermuted (original) data was then compared to the ex-
pected null distribution (Fig. 2). A FDR was calculated by di-
viding the average number of features exceeding the thresh-
old for each permutation by the number of features exceeding
the threshold in the nonpermuted data at different thresholds
(Table 1). Using this procedure, 3806 SFPs were identified at a
5% FDR. In this study, we only consider SFPs where the Col
(reference genome) allele has higher hybridization intensity,
thereby insuring the correct genomic location of each SFP. An
interactive chromosome browser containing positions of all
SFPs can be found at http://naturalvariation.org/sfp.

Sequence Confirmation
To further confirm the SFPs, we compared our results to avail-
able sequence data in public databases. The sequenced refer-
ence strain of Arabidopsis thaliana is Col (The Arabidopsis Ge-
nome Initiative 2000). Two shotgun sequencing projects have
released data on Ler sequence. The Institute for Genome Re-
search (TIGR) has made available the sequence of 4300 short
contigs. Alignment of TIGR Ler sequence and AtGenome1 fea-
ture sequences to the full Col genome identified 477 features
that were not polymorphic between Col and Ler. A more ex-
tensive Ler shotgun sequence project, by Cereon Genomics,
has released 55,921 candidate polymorphisms. Upon align-
ment, 358 AtGenome1 features overlapped the Cereon can-
didate polymorphisms (Methods and Table 2).

The TIGR and Cereon data sets allowed us to indepen-
dently estimate the FDR, in a manner analogous to sequence
confirming randomly chosen SFPs. Of the 3806 SFPs that we
had identified, sequence information was available for 121 of
them. All but four were found to be polymorphic by sequence
analysis (Table 2). This indicates a 3% FDR, which is similar to
that obtained by permutation testing (5%), and suggests that
a permutation distribution can be used to set a reasonable
threshold in the absence of sequence data.

The Cereon candidate polymorphism data also allowed
us to ask an alternative question that could not be addressed
had we just sequenced some SFPs. That is, of the potential
polymorphisms identified by sequence analysis, how many

Table 2. SFP and Sequence Polymorphism Comparison

Independent SFP false discovery rates were determined at differ-
ent SAM thresholds by comparison with available sequence data.
Sensitivity rates were calculated using Cereon candidate polymor-
phisms, assuming different levels of accuracy (see Results and
Methods). False Discovery Rate (FDR), Chi square test statistic
(Chisq).

Figure 2 Distribution of t-statistics. The 92924 Col/Ler observed
t-statistics are plotted against the expected “null” distribution (thick
line). The dotted line represents a 5% FDR threshold. The dashed line
represents an 18% FDR threshold.

Table 1. SAM Threshold and False Discovery Rate

SAM
threshold

Original
data

Permuted
data Difference FDR

0.10 13,113 3757 9356 28.6%
0.13 10,627 1894 8733 17.8%
0.15 9191 1300 7891 14.1%
0.20 7088 718 6370 10.1%
0.30 4837 294 4543 6.1%
0.40 3806 179 3627 4.7%
0.50 3170 129 3041 4.1%

The number of features exceeding a given threshold in the origi-
nal data and the average number of features exceeding the
threshold in the permuted data set is shown. This is used to cal-
culate the difference and the false discovery rate (FDR) at different
thresholds according to SAM (Tusher et al. 2001).
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did we detect on the array? This question addresses the sen-
sitivity and estimates how many of the total SFPs are detect-
able using this technology. In this analysis, we were limited
by the quality of the candidate polymorphisms, since se-
quence errors cause the prediction of polymorphisms that
cannot be detected by array hybridization. We identified 117
SFPs out of 340 candidate polymorphisms (Table 2). Some
identifiable SFPs were likely missed at this threshold because
we required a low FDR. Table 2 also shows that 197 of the
potential Cereon polymorphisms can be identified at a less
stringent threshold (18% FDR). A second explanation for the
low sensitivity is that some of the candidate polymorphisms
are incorrect. We calculated sensitivities for our array geno-
typing method allowing different accuracies for Cereon mark-
ers (see Methods). Better sensitivities were obtained (Table 2).
A third explanation is that the position of the polymorphism
within the 25 bp is important. Cereon candidate polymor-
phism data was again used for this analysis. Suppl. Figure 1
shows that polymorphisms near the central base are more
often detected as SFPs than polymorphisms near the edge of
the 25 bp feature. Of course with our method, a simple and
straightforward way to improve both the sensitivity and FDR
is to increase the number of replicate arrays.

We also evaluated whether the data from the MM feature
was useful in predicting SFPs. A perfect match–mismatch
(PM–MM) model, a MM alone model, and a PM together with
MM model were evaluated (Suppl. Table 2 and description).
Each model was effective at detecting SFPs, but none were
more accurate than the PM alone model. We see no benefit
for including a MM feature.

Feature Properties
We next asked if there were particular classes of sequences
that would show higher rates of SFPs. We examined three
properties of each feature. First, we investigated nucleotide
repeats. Microsatellites are highly abundant repeat regions
found in animals and plants (Morgante et al. 2002). We
searched through the list of 92,924 features for ones that con-
tained stretches of polynucleotides (N4–6). We also catego-
rized the length of di-, tri-, and tetranucleotide repeats within

each 25 bp feature. Table 3 shows that features that contain
longer stretches of polynucleotides are more likely to be mark-
ers. This was also true of di-, tri-, and tetranucleotide repeats.
In addition, poly-, di-, and tetranucleotide repeats were found
most often in untranslated regions (UTRs), whereas trinucleo-
tide repeats were nearly evenly distributed between coding
regions and UTRs. Second, we determined if features corre-
sponded to coding or UTRs. As expected, features detecting
coding regions of genes were less likely to be polymorphic
than those detecting UTRs (P < 0.0004, see Methods). Third,
the copy number of each gene was investigated to test
whether features in genes present at higher copy numbers
were more likely to be polymorphic. Copy number was deter-
mined by aligning the entire DNA sequence of genes detected
by AtGenome1 with a database containing all the genes (see
Methods). The number of high stringency matches was taken
as the gene copy number. Keep in mind that each individual
25 bp feature is unique and can easily distinguish between
gene family members. Table 3 also shows that features in
genes present at ten or greater copies had a three times higher
polymorphism rate than features in single copy genes, sug-
gesting that duplicated genes are less constrained and accu-
mulate more polymorphisms.

Potential Deletions
We next investigated whether clusters of adjacent markers
had elevated t-statistics, which would indicate deletions
rather than small (less than 25 bp) SFPs. We used a linear
clustering algorithm, lcluster (http://hacuna.ucsd.edu/
lcluster), to join adjacent t-statistics that had similar values.
Most features were not markers and clustered together with
an average t-statistic of nearly 0. SFPs stood out from this
background. Occasionally, adjacent features from an entire
gene or genes all had large t-statistics and clustered together
(Fig. 3).

We calculated the mean statistic, the number of features,
and cluster length in bp for 2000 clusters from the 5 chromo-
somes. Potential deletions were defined as clusters that con-
tained at least four features, had a total cluster length of at
least 100 bp and were supported by at least one feature every

Table 3. Properties of Features That Are SFPs

Polynucleotide

N,NN,NNN
0

NNNN
4

NNNNN
5

NNNNNN
6

SFPs 2999 654 130 23
nonSFPs 73,761 13.080 2053 224

3.9% 4.8% 6.0% 9.3%
Chisq = 59, df = 3, p-value = 1.1e-12

Gene copy number

1 2 3 4 5 6 7 8 9 10

SFPs 1216 921 491 244 205 124 85 85 72 338
nonSFPs 37,552 23,137 10,426 5142 2990 2045 1338 1219 896 3387

3.1% 3.8% 4.5% 4.5% 6.4% 5.7% 6.0% 6.5% 7.4% 9.1%
Chisq = 453, df = 9, p-value < 2.2e-16

Features that contain polynucleotide repeats or that are in duplicated gene have higher levels of polymorphism. 3806 SFPs were scored at a
5% FDR threshold.
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350 bp to avoid long unsupported clusters from being in-
cluded. In addition, for a cluster to represent a potential de-
letion it had to have a mean t-statistic above a significance
threshold. We counted the number of potential deletions
among the 2000 clusters for the real data set and the per-
muted data sets at different thresholds (Suppl. Table 3). This
identified 105 potential deletions covering 111 genes at a 5%
FDR. If all 92,924 t-statistics are shuffled with respect to chro-
mosome position prior to cluster analysis, then 0 potential
gene deletions are found in 2000 clusters at a 0.2 threshold,
illustrating the stringent requirements we have set for poten-
tial gene deletions. Furthermore, 45 deletions were confirmed
by sequence analysis using Cereon data–partial Ler shotgun
sequence (Suppl. Table 4).

We then examined the types of genes in these clusters
(Suppl. Table 4). Transposon encoding genes were by far the
largest class of genes among those potentially deleted; 23 of
the 111 potentially deleted genes (21%) were transposons.
The entire array of 7098 genes only has 114 genes encoding
transposons (1.6%), thus many more transposons have been
deleted than would be expected by chance. Given the relat-
edness of the two accessions and the high level of transposon
variation, it seems likely that many mobile elements are still
active.

Disease resistance-like genes (R genes) were also among
the potentially deleted genes. R genes are sometimes found in
tandem arrays that are highly polymorphic between acces-
sions (Noel et al. 1999). We found increased polymorphism
rates and potential gene deletions in a 100-kb region span-
ning five R genes on chromosome 4 (Fig. 3A). However, not all
polymorphic R genes occur in tandem arrays (Grant et al.
1995). We found a single RPS2-like resistance gene to be po-
tentially deleted at 5,600 kb on chromosome 4 (Fig. 3C,
Suppl. Table 4). Chromosome regions with increased poly-
morphism rates containing potential gene deletions were not
limited to clusters of R genes. Figure 3B shows a region of
potentially deleted genes encoding proteins of unknown
function on chromosome 4.

Genes involved in secondary metabolism were
also found among the list of potentially deleted genes
(Suppl. Table 4). Polymorphisms between accessions in
genes involved in secondary metabolism are responsible
for variation in insect resistance between accessions
(Kliebenstein et al. 2001a,b,c; Lambrix et al. 2001). In
addition, genes present at higher copy numbers were more
likely to be deleted (P < 2e-16) which partially explains why
a larger proportion of SFPs were detected in these genes
(Table 3).

Figure 3 Loci containing potential deletions. (A) A cluster of disease resistance-like genes shows high rates of polymorphism and contains
potential gene deletions. (B) Other regions containing genes of unknown function are also highly polymorphic and contain potential gene
deletions. (C) A potential deletion in a single RPS2-like disease resistance gene. Plots of the entire genome can be viewed at http://
naturalvariation.org/sfp.
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Genotyping a Recombinant Inbred Line
An important test for SFPs is segregation analysis, as physi-
cally linked SFPs should cosegregate. We hybridized DNA
from a recombinant inbred line (RIL CL-33) to a single
GeneChip and determined the genotype at 3806 previously
identified SFPs. Each SFP was assigned a likelihood of being
either Col or Ler (Fig. 4, chromosome a). The 3806 SFPs are
not equally distributed along all chromosomes as AtGenome1
was designed prior to completion of the Arabidopsis genome.
Chromosome 2 and chromosome 4 are well covered and con-
tain 1371 and 1275 SFPs respectively. Chromosomes 1, 3, and
5 contain 779, 155, and 226 SFPs (unequally distributed),
making the prediction of breakpoints on these chromosomes
less accurate. Linear clustering was used to group the adjacent
markers and predict the recombination breakpoints (Fig. 4,
chromosome b). The breakpoint on chromosome 2 could be
localized to within 29 kb (P = 3.3e-7; see Methods). The high
resolution-genotype of the RIL CL-33, as determined by array
hybridization, matches that of the published low-resolution
genotype (Fig. 4, chromosome c, 74 PCR markers) except for
the end of chromosome 3 where very few features are present.

We also performed array hybridization with a single F2
plant and determined that Col, Ler, and heterozygous geno-
types could easily be scored (data not shown). Array hybrid-
ization with a single F1 plant gave uniform heterozygous
genotypes; no blocks of Col and Ler genotypes were observed.
Heterozygous genotypes have a hybridization intensity that is
approximately the average of the Col and Ler intensity and
were quite reproducible (data not shown).

Bulk Segregant Analysis
Since many SFPs throughout the genome could easily be iden-
tified using this method, we turned our attention to mapping.
The erecta mutation is a recessive mutation in Ler. Its pheno-
type is easily identified in segregating Ler/Col F2 plants.
ERECTA maps to a region on chromosome 2, which is well

covered on this array, making it an ideal test case. Equal
amounts of leaf tissue from 15 Col/Ler F2 plants showing the
erecta phenotype and 15 wild-type Col/Ler F2 plants were
combined into mutant and wild-type samples. DNA from
each pooled sample was extracted, fragmented, labeled, and
hybridized to a single expression array. Markers should be
enriched for the Ler genotype at the ERECTA locus in the
mutant pool and enriched for the Col genotype in the wild-
type pool. Other loci, not linked to ERECTA are expected to
show no bias toward Ler or Col genotypes since both pools
should contain roughly equal numbers of Ler and Col chro-
mosomes. The 3806 SFPs were scored by a single hybridiza-
tion with DNA from erecta and wild-type pools and evaluated
using ChipMap, scripts that implement a likelihood model
that accounts for both variance in F2 pools and array varia-
tion (see Methods). The log likelihood ratio (LLR) test statistic
was evaluated at 1-cM intervals across all chromosomes (Fig.
5). The maximum LLR was at 53 cM on chromosome 2. Simu-
lation studies determined that the maximum location was
between 45 and 57 cM in 95% of trials when the position of
ERECTA was as estimated 53 cM. Two LOD support intervals
also gave a similar 12-cM confidence interval (not shown).
The actual position of the ERECTA gene is 50 cM inside the
estimated confidence limits.

SFP Discovery in Other Accessions
To further verify this method of marker discovery and to es-
timate SFP allele frequencies, we expanded our analysis to
other Arabidopsis accessions. DNA from theWs-2, Nd-1, Tsu-1,
and Cvi accessions was isolated, fragmented, labeled, and
hybridized to three arrays each (two arrays for Cvi). Each ac-
cession was compared to Col and the same threshold (as de-
termined for Ler) was applied. This allowed us to again iden-
tify 3806 SFPs, this time specific to Col and the particular
accession being tested. From all five accessions a total of
12,487 unique SFPs were identified. 7774 of these were poly-

morphic in a single accession, and
4713 were polymorphic in multiple
accessions when compared to Col
(3438 in two accessions, 836 in three,
323 in four, and 116 in five acces-
sions). SFPs with moderate allele
frequencies are generally more use-
ful for mapping in crosses between
other accessions and have a much
smaller false positive rate. As such,
these SFPs will be the most informa-
tive. SFPs from all accessions are
available (http://naturalvariation.
org/sfp).

DISCUSSION
We have used an Affymetr ix
GeneChip designed for RNA expres-
sion analysis for highly parallel
genotyping in an organism with a
complex genome. Our method tests
the hybridization intensity of each
feature for a statistical difference be-
tween the accession in question and
the reference strain. The statistical
power comes from the use of inde-
pendent replicates, which can ac-

Figure 4 Genotype of RIL CL-33. The genotypes of 3806 SFPs were evaluated via chip hybridization
as being Col (green), Ler (red), or unknown (black) for the RIL shown in the a chromosome. Color
intensity represents the likelihood of each genotype (see Methods). A clustering algorithm was
applied to determine the precise location of the recombination events according to the likelihood of
each genotype. This is shown in bright green or red, b chromosome. Recombination breakpoints are
clearly defined for chromosomes 2 and 4 because they are well covered on AtGenome1. The c
chromosome shows the genotypes obtained from low-resolution PCR genotyping with 74 markers
(www.natural-eu.org) for comparison. The unknown locations of the recombination events are
shown in black, c chromosome.

Borevitz et al.

518 Genome Research
www.genome.org



count for random variation at the level of the organism, DNA
preparation, fragmentation, and labeling, as well as array hy-
bridization. This technique has not been used so far for analy-
sis of genomes larger than that of S. cerevisiae. We have used
total genomic DNA, eliminating the need to amplify specific
loci by PCR. In contrast to anonymous genetic markers, the
physical location of each SFP is known. Our method is com-
parable to VDA genotyping (Halushka et al. 1999); however,
far fewer features are required (six replicate observations of
one 25 bp feature, vs. one observation of 200 features cover-
ing 25 bp). In addition, error rates for our method can be
improved by simply increasing the number of replicates.

We have previously used specifically designed SNP arrays
to type known polymorphisms, however only 163 of 412
markers were robust enough to be used across multiple acces-
sions (Nordborg et al. 2002). DNA hybridization to expression
arrays is both a polymorphism discovery and genotyping plat-
form, eliminating the need for different array designs, further-
more, the array can be utilized efficiently for two purposes:
expression studies and polymorphism detection. Full genome
expression arrays for Arabidopsis (ATH1) are now available
($400) that contain 211,561 PM features. We expect to be able
to identify and type more than 8000 SFPs between any acces-
sion and the reference strain in highly parallel fashion. Iden-
tification will require six arrays (∼$0.30 per SFP), and typing
will require one array ($0.05 per SFP), making the individual
marker costs very competitive.

Our method also offers considerable advantages for QTL
mapping studies. In traditional QTL analysis, recombination

breakpoints are inferred between
markers using interval mapping.
However, as shown in this study, ar-
ray hybridization precisely defines
recombination breakpoints, allow-
ing QTL to be defined by intervals.
Such a dense marker set is clearly an
advantage for large RIL populations
(Dupuis and Siegmund 1999). An
additional advantage is that a single
RI line can be completely geno-
typed with one hybridization; mul-
tiple loci do not need to be indepen-
dently assayed. As the price of
GeneChips decrease, the benefits of
increased resolution and higher
throughput will make expression
array genotyping very attractive for
QTL mapping.

We have effectively used ex-
pression array genotyping to map a
known mutation in Arabidopsis us-
ing bulk segregant analysis. Here
two arrays were hybridized with
DNA made from pooled F2 plants
that had been sorted according to
mutant or wild-type phenotypes.
Larger bulk segregant pool sizes
(>200 plants), with two replicates of
both wild-type and mutant hybrid-
izations, will increase the mapping
precision to less than 5cM (J. Bor-
evitz and C. Berry, unpubl.). Full ge-
nome expression arrays will be ef-
fective tools to map new mutations

in segregating populations. An extension of this approach to
quantitative traits would allow the simultaneous mapping of
multiple loci with unknown dominance effects. Bulk segre-
gant analysis coupled with extreme mapping (Tanksley 1993)
could quickly determine if new large effect QTL are segregat-
ing in a particular F2 cross.

We have previously surveyed LD in Arabidopsis and
found it to decay variably throughout the genome, on the
order of 50–250 kb in worldwide samples (Nordborg et al.
2002). It was clear from this study that many more markers
would be needed to describe a complete LD map from a
worldwide sample of Arabidopsis accessions. Using the
GeneChip genotyping technology described here, we identi-
fied 4499 markers on chromosome 2 from five accessions. The
average inter-marker distance is 4.4 kb. As more accessions are
surveyed, additional markers will be discovered further in-
creasing the resolution. This same level of resolution could be
attained on all chromosomes using a full genome array. Ex-
pression array hybridization data from many accessions may
describe a genome wide LD map for Arabidopsis from which
association mapping could be performed without prior
knowledge of candidate loci.

We have identified 3806 SFPs between the Ler accession
and the Col reference strain. Cluster analysis grouped 801 of
these into 105 potential deletions in 111 genes. A similar
analysis could also be used to define the precise lesion(s) gen-
erated by fast neutron mutagenesis when the hybridization
differences between wild type and mutant are directly com-
pared. Furthermore, this approach could be applied to iden-

Figure 5 Bulk segregant analysis. Hybridization of F2 pools was used to determine the predicted
location of the erectamutation. (Left) Solid circles show the LLR statistic at each cM. The maximum LLR
(thick vertical line), is 3 cM away from the ERECTA gene (thin vertical line) on chromosome 2. Simu-
lations were used to determine that the 95% confidence interval spanned 12 cM (dashed vertical
lines). LLR scores on unlinked chromosomes (black solid circles). Most LLR scores are negative on
unlinked chromosomes. Gray lines show the variation in LLR scores produced by simulations.
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tify the precise chromosomal duplications and deletions that
occur in tumor cells, an improvement from current BAC array
methods (Pinkel et al. 1998; Pollack et al. 1999). An alterna-
tive algorithm for microarray deletion analysis was effectively
used in Mycobacterium tuberculosis (Salamon et al. 2000; Kato-
Maeda et al. 2001).

We identified a number of potential naturally occurring
deletions. Of them, transposon-encoding genes were the larg-
est single class to be identified. Potential deletions were found
in disease resistance-like genes present in both single copies
and in highly polymorphic clusters (Fig. 3). Genes involved in
secondary metabolism were also identified. High levels of
variation in genes, or gene clusters, may suggest some func-
tional role in natural variation, and many of the naturally
occurring deletions will be excellent candidates for QTL. Can-
didate gene selection, subsequent to QTL analysis, can be
guided with the knowledge of potential deletions combined
with the vast number of coding region SFPs. The power of this
approach has been confirmed by the detection of a poten-
tial deletion in a transcription factor gene that maps to the
location of a flowering time QTL (J. Werner, J. Maloof,
G. Trainer, J. Borevitz, J. Chory, and D. Weigel, unpubl.). Fi-
nally, genes present at high copy numbers were more poly-
morphic (Table 3) and contained potential deletions, provid-
ing evidence that duplicated genes may be under less func-
tional constraints.

Our discoveries that ∼4% of features on the expres-
sion arrays are polymorphic between two accessions, and
that ∼1%–2% of genes may be deleted, have implications
for transcription analysis when different accessions are
compared. If relatively few expression differences (<5%) are
found, care should be taken as to whether hybridiza-
tion changes instead of expression differences are the cause.
To remedy this problem, the DNA hybridization pattern could
be used as a background for expression analysis, or polymor-
phic features could be removed prior to expression compari-
sons.

Our method emphasizes that only a significant differ-
ence in hybridization intensity is needed to define a SFP.
Knowledge about the exact sequence change is not necessary.
In this regard genomic DNA from any organism could be hy-
bridized to an expression array to identify SFPs. When DNA is
used from more complex genomes, such as from human, the
number of replicates can be increased to improve quality.
Cross species comparisons could also be effective, however
the physical location of SFPs will be unknown. A high density
genetic map can be constructed by array genotyping segregat-
ing populations. We have hybridized two subspecies of Bras-
sica oleracea to Arabidopsis expression arrays and found many
significant SFPs (J. Borevitz, unpubl.).

Four years have passed since DNA hybridization to ex-
pression arrays was first demonstrated to be effective in yeast
(Winzeler et al. 1998). We have now analyzed Arabidopsis
DNA using an improved statistical algorithm that included
permutation tests, and a spatial correction. Repetitive and
overlapping features have been removed and we have shown
that the MM feature provided no additional information.
Steinmetz et al. (2002) recently cloned three genes from one
locus responsible for high temperature growth, a quantitative
trait in yeast. They were greatly assisted by the use of DNA
hybridization to expression arrays. Our work indicates that
these approaches can now be extended to organisms with
more complex genomes. We look at quantitative trait locus
analysis with renewed excitement.

METHODS
All raw data, analysis scripts, and a table with the marker state
and descriptions of 92,924 features are provided at http://
naturalvariation.org/sfp.

DNA Methods
Total genomic DNA was extracted individually from separate
plants (5g fresh weight (FW) leaf tissue), using a 2X CTAB
buffer (2% CTAB, 1.4 MNaCl, 20 mM EDTA, 100mM TrisHCl,
pH 8.0, 10 mg/L RNAse). Tissue was frozen in liquid N2,
ground to a fine powder, thawed in 5 mL CTAB buffer, incu-
bated at 65°C for 1/2 h, chloroform extracted, and isopropa-
nol precipitated. To avoid precipitation of carbohydrates, cen-
trifugation was limited to 30 sec during the isopropanol pre-
cipitation. Thirty µg of genomic plant DNA with 2.5 ng each
Bio B, Bio C, Bio D, and Cre control bacterial DNA were frag-
mented with 1 U DNAse1 (Promega) for 4 min at 37°C in 1X
one-phor-all buffer with 1.5 mM Cobalt Chloride in 35 µL.
DNAse1 was added to the lid of each tube; digestion was si-
multaneously initiated via a quick spin. After heat inactiva-
tion for 10 min at 95°C, equal digestion was confirmed on
agarose gels by the presence of sheared products centered at
∼25–50 bp. The labeling reaction was performed by adding 20
U terminal deoxynucleotidyl transferase and 1 µL (1 mM)
Biotin N6-ddATP to the fragmentation reaction and incubat-
ing for 1 h at 37°C. Hybridization was subsequently carried
out using standard Affymetrix protocols for RNA, specifically,
overnight hybridization at 45°C was followed by the Eukary-
otic wash protocol that includes antibody staining.

Feature Sequence Analysis
Each of the 131,822 PM features on the Arabidopsis expression
array (http://www.netaffx.com) was blasted against the 5 Ara-
bidopsis pseudo-chromosomes (ftp://ftp.tigr.org/pub/data/
a_thaliana/ath1/SEQUENCES/ATH1_chr_all.5con, release
1/7/2002) using a stringency of e = 0.004. The positions of
103,860 features with exactly one match were extracted using
a perl script, “cleanblast.pl”. Analysis was performed on
92,924 independent features (see Suppl. Table 1). These fea-
tures were then blasted to the ATH1.cds (coding sequences)
and ATH1.seq (mRNA sequence) databases to determine
whether a feature was in a coding region or in an untranslated
region. Gene copy number was evaluated by blasting the se-
quence of genes which were detected on the Affymetrix ex-
pression array (http://www.netaffx.com) with the ATH1.seq
database at a stringency of e = 0.000004. The number of
matches from one to ten and greater was recorded using
“blast.affy.copy.num.pl”. Features that contained mini-
microsatellites were evaluated using “microsat.pl”. Random
Ler genomic sequences from TIGR (ftp://ftp.tigr.org/pub/data/
a_thaliana/Ler/Ler_20010523.tar) and 40 bp flanking putative
Ler markers from CEREON (http://www.arabidopsis.org/
Cereon/index.html) were blasted to the pseudochromosomes
to identify locations. “myan” and “tdnalign” (H. Chen and
J. Ecker, unpubl.) software was used to filter blast results
and compare the Ler sequence positions for overlap with
AtGenome1 features.

Spatial Correction
All statistical analysis was performed in the freely available
statistical package R (http://www.r-project.org; Ihaka and
Gentleman 1996). After individual “.cel” files were read into
R, a matrix corresponding to the original scan of 534 by 534
features was recreated. Intensities were log transformed. The
mean log intensity of a 37 by 37 feature sliding-window was
calculated at each coordinate. Only data from the unique
103,860 and corresponding MM features were used for spatial
correction. This matrix of windowmeans was subtracted from
the original matrix of log intensities, yielding a spatially cor-
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rected feature intensity for each unique feature. Other win-
dow sizes gave similar results.

SFP Identification
Analysis was performed in a manner very similar to SAM
(Tusher et al. 2001) written in R. When features overlapped,
by 22, 23, 24, 25 bp, they were included in the model as
multiple observations of a feature; however, overlapping fea-
tures were allowed to have different mean intensities. For
groups of features a single t-statistic for the Col/Ler difference
was derived by regression. Features with low intensities can
have large t-statistics if the error is correspondingly small. To
avoid these spuriously large t-statistics we added a small posi-
tive constant (s0) in the denominator as suggested by SAM.
We used the median standard deviation of log feature inten-
sity for s0. s0 was fixed and not recalculated for each permu-
tation.

Sequence Confirmation
To independently determine the FDR for SFPs we compared
our results with available sequence data. Since some markers
in the CEREON database may be sequencing artifacts, we cal-
culated error rates for array genotyping allowing different ac-
curacies of CEREON markers. The array error rates were cal-
culated as a function of the data in Table 2 and assumed error
rates for the sequence databases using this model:

�
xns,+ xns,−
x + + x + −

x − + x − −
� = �

�ns, + �ns,−

� + + �+ −

� − + �− −
��N + 0

0 N −
�� �+ 1 − �+

1 − � − �−
�

where the left-hand side contains the expected counts corre-
sponding to the sum of the cells in Table 2, �ij is the prob-
ability of sequence classification “i” given the true polymor-
phism status “j,” Ni are the actual counts of polymorphic and
nonpolymorphic sites, and �i is the probability that the sta-
tistical classification is correct given the actual status is “i”.
Further, values are given for the probability that a sequence
classification is correct when the sequences are the same,

�− =
�− −

�− − + � + −

and for when they are different

� + =
�+ +

�+ + + � − +
.

This last value is always taken as 1.0, since it is exceedingly
unlikely that a sequencing error could make two different
sequences of 25 bp appear to be the same sequence. Finding
values for the unknowns to yield expected counts, �ij, equal to
the observed counts requires solution of a system of nonlinear
equations, which was carried out in R (Ihaka and Gentleman
1996).

Properties of Features That Are Markers
To assess whether the length of a mini-microsatellite, feature
location within a gene, or gene copy number was a predictor
of the feature t-statistic and thus marker state, we used regres-
sion. For each single, di, tri, and tetra repeats we regressed the
SFP t-statistic against length of the repeat (as an unordered
categorical variable) in four separate analyses. The SFP t-
statistic was significantly different from 0 (P < 0.0004), indi-
cating higher rates of polymorphism, for features with single
nucleotide repeats of length four or greater, di-nucleotide re-
peat length three or greater and tri and tetra nucleotide re-

peats of length two or greater. Features that correspond to
noncoding regions also had t-statistics significantly different
than 0 (P < 0.0004), again indicating higher rates of polymor-
phism. Lastly, the SFP t-statistic was also regressed on gene
copy number (as an unordered categorical variable). t-
statistics of genes with copy numbers of three or greater were
significantly different than 0 (P < 0.0004). Table 3 shows the
proportion of features identified as markers at different
lengths of single-nucleotide repeats and different gene copy
numbers. �2 tests were also highly significant (Table 3).

Linear Clustering
To identify clusters of markers that might represent potential
gene deletions, we applied a linear clustering method called
lcluster. lcluster is an add-on package to R that is available at
(http://hacuna.ucsd.edu/lcluster). lcluster operates on 92,924
ordered features along the 5 chromosomes. Adjacent markers
with similar t-statistics were joined and scores averaged, with
the most similar ones (according to a total residual sum of
squares criterion) being joined first until all features had been
joined. Any fixed number of clusters could be identified in
this hierarchy; we chose to examine 2000 clusters based on a
preliminary inspection of the data; however, 1000 and 5000
clusters gave similar results. Clusters were then assessed for
potential gene deletions as described in the results.

RIL Genotyping
The genotypes for RIL CL-33 were scored at each of 3806 SFPs
by calculating a log likelihood ratio (LLR) test-statistic. The
likelihood of a CL-33 feature representing a Col genotype was
divided by likelihood of a CL-33 feature representing a Ler
genotype. The standard deviation + small positive constant,
s0, was used when testing each marker. The log of this likeli-
hood ratio was plotted in Figure 4 (top chromosome). Log
ratios were truncated at 7 and �7, which correspond to green
or red; intermediate log ratios have intermediate colors. Lin-
ear clustering (lcluster) was then applied to the truncated log
ratio data from each chromosome to identify the recombina-
tion breakpoints. Chromosomes 1, 2, and 4 were cut into four
clusters. Log ratios for chromosomes 3 and 5 were first trun-
cated at 4 and �4 and then seven clusters were identified,
because the number of features from chromosomes 3 and 5 on
AtGenome1 is much lower than chromosomes 1, 2, 4 (Suppl.
Table 1). The number of clusters exceeded the number of ex-
pected recombination events for each chromosome. “Positive
cluster” means indicated Col genotype and “negative cluster”
means indicated Ler genotype, as shown in color (Fig. 4, bot-
tom chromosome). On chromosome 2, the recombination
breakpoint was delimited to an interval of 29 kb (P = 3.3e-7
for larger than 29 kb) by examining the likelihood ratios of
markers adjacent to the breakpoint. Three markers to the right
gave an odds ratio of 289/1 for Col, and seven markers to the
left gave an odds ratio of 1/10474 for the Ler genotype P = 1/
(2898*10474) = 3.3e-7.

Bulk Segregant Analysis
A brief description of the likelihood model in the ChipMap R
package is given here. The model accounts for variance and
covariance from segregation in the F2 pools as well as variance
due to array genotyping. We modeled a single recessive mu-
tation by assuming a Gaussian distribution for M marker val-
ues with parent Ler and Col means given by vectors of � + �
and � � �. Bulk segregant “mutant” and “wild-type” pools
(Nmut and Nwt) were modeled as having and lacking the reces-
sive trait with variance matrices having diagonal elements
�ii = �2 + �2 and off-diagonal elements �ij = �2. The likeli-
hood for measurements from a single replicate of each marker
array, based on Nmut and Nwt F2 plants, is a finite mixture of
Gaussians that is asymptotically Gaussian with mean vectors
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Under the null hypothesis, the common expectation vector is
E(y) = � and the variance matrices are

Var�y� =
1
2N

Diag���	��,��Diag��� + �

with N = Nwt or Nmut. Here the M marker locations on the
chromosome are � = (d1,d2,…,dM) in Haldane map distance,
the putative location of a gene is 
, and 	(x,y) = 1 �2r(x,y),
where r(x,y) is the recombination fraction between locations x
and y. 	(�,�) is an M by M array of such values, that is, the
lengths of the vector arguments determine the row and column
dimensions of 	(·,·).

Our implementation of mapping using this likelihood
uses the observed averages over three arrays in each parent
line to find � and � and their residuals to estimate �2 and �2.
Map locations are assigned to the midpoints of 1-cM-wide
bins. The log likelihood ratio statistic is given by
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F2 plants were simulated and then pooled according to
whether they were erecta (Ler homozygous) or wild-type (het-
erozygous or Col homozygous) at 53 cM on chromosome 2.
The true genotype signal in the pool is the mean genotype of
each of the 15 mutant or 15 wild-type simulated plants. Array
noise was then added to the true genotype signal that was
proportional to the variation in observed SFPs. The bulk seg-
regant likelihood model was applied to identify the location
of the mutation. This was simulated 500 times to determine
the distribution of maximum LLR scores and estimate confi-
dence limits.
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