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Optimized Normalization for Antibody
Microarrays and Application to
Serum-Protein Profiling*s

Darren Hamelinck}§, Heping Zhout§1], Lin Li|, Cornelius Verweij**, Deborah Dillontt,
Ziding Feng||, Jose Costa§§, and Brian B. Haab$1q]

The measurements of coordinated patterns of protein
abundance using antibody microarrays could be used to
gain insight into disease biology and to probe the use of
combinations of proteins for disease classification. The
correct use and interpretation of antibody microarray data
requires proper normalization of the data, which has not
yet been systematically studied. Therefore we undertook
a study to determine the optimal normalization of data
from antibody microarray profiling of proteins in human
serum specimens. Forty-three serum samples collected
from patients with pancreatic cancer and from control
subjects were probed in triplicate on microarrays contain-
ing 48 different antibodies, using a direct labeling, two-
color comparative fluorescence detection format. Seven
different normalization methods. representing major
classes of normalization for antibody microarray data
were compared by their effects on reproducibility, accu-
racy, and trends in the data set. Normalization with ELISA-
determined concentrations of igM resulted in the most
accurate, reproducible, and reliable data. The other nor-
malization methods were deficient in at least one of the
criteria. Multiparametric classification of the samples
based on the combined measurement of seven of the
proteins demonstrated the potential for increased classi-
fication accuracy compared with the use of individual
measurements. This study establishes reliable normaliza-
tion for antibody microarray data, criteria for assessing
normalization performance, and the capability of antibody
microarrays for serum-protein profiling and multipara-
metric sample classification. Molecular & Cellular Pro-
teomics 4:773-784, 2005.

Antibody microarrays may be very effective for the discov-
ery and application of molecular diagnostics tools. A key
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feature of microarrays is multiplexing, the ability to measure
multiple proteins in low volumes, consuming small amounts of
both precious clinical samples and expensive antibodies. Be-
cause many antibodies can be tested in parallel, many can-
didate molecular markers may be efficiently screened. In ad-
dition, the relationships between multiple analytes may be
observed so that the use of combinations of proteins in dis-
ease diagnostics may be assessed. The use of combinations
of proteins for disease diagnostics may produce fewer false
positive and false negative results relative to tests based on
single proteins. Antibody microarrays can be run efficiently in
parallel, enabling studies on the large populations of samples
that are necessary for marker discovery and validation. Addi-
tional advantages of the platform are good reproducibility,
high sensitivity, and quantitative accuracy over large concen-
tration ranges (1). We and others have demonstrated the
experimental feasibility of antibody and protein microarrays in
applications such as protein profiling of cancer tissue 2, 3),
autoimmune diagnostics (4), protein interaction screening (5—
8), and antibody-based detection of multiple antigens (1
9-12).

The routine application of antibody microarrays to biologi-
cal and marker-based research requires establishing opti-
mized experimental and analysis methods. Experimental op-
timization can help to improve the accuracy and
reproducibility of measurements, but the analysis methods
must be properly developed and applied to ensure the proper
interpretation of the data. A common data processing proce-
dure applied to microarray data is normalization, which ad-
justs the data from each microarray to account for possible
systematic experimental variation in factors such as sample
labeling efficiency, scanner readout efficiency, and microarray
quality (13, 14). Several normalization procedures have been
developed for DNA microarrays. A method developed early on
for DNA microarrays is global normalization, which normalizes
each array by the median or mean of the intensity log ratios on
the array. Other normalization methods purport to correct for
systematic errors that may affect arrays non-globally when
not all of the spots on an array have the same bias. Intensity-
dependent normalization adjusts two-color microarray ratios
to account for intensity-based bias in the ratios (14, 15) either
linearly or non-tinearly. Print tip normalization has been used
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to account for bias caused by variation associated with dif-
ferences in the tips used for printing (14). Scale normalization
makes the assumption that the spread of the distribution of
log ratios should be the same for all print tip groups (14).
Statistical regression models of microarray data also have
been developed for normalization (16).

The two-color comparative fluorescence detection method
that we and others have used for antibody microarray exper-
iments is similar to the two-color labeling strategies used for
cDNA microarray experiments, so the normalization methods
for cDNA érrays may be useful for two-color antibody mi-
Croarray experiments. However, the differences in antibody
microarray experiments, such as a smaller and more selected
set of targets and a different labeling method, may mean that
the optimal normalization methods may be different. A sys-
tematic, detailed comparison and evaluation of the various
normalization options for antibody microarrays have not yet
been performed. Given the importance of this procedure for
subsequent data analysis and interpretation, an in-depth anal-
ysis of normalization methods for antibody microarray data is
necessary before performing large scale biomarker studies.
Therefore, we conducted studies to evaluate various normal-
ization methods for antibody microarray data. Three replicate
sets of antibody microarray measurements from serum sam-
ples of patients with pancreatic cancer and of control subjects
were acquired, and we evaluated seven different normaliza-
tion methods. The methods represented a variety of major
classes of normalization types. Modifications of these types
exist, but by evaluating representative methods from a range
of classes we could broadly survey the effects of normaliza-
tion on the data. Newly developed methods with computa-
tions requiring special software were not tested.

Each normalization method makes use of assumptions of
how “correct” data should behave, and the comparison and
evaluation of normalization methods must be independent of
those assumptions. Previous comparisons of DNA normaliza-
tion methods have used the criteria of reproducibility between
replicate data sets (13, 17, 18), the linearity of signals from
spiked-in standards (17), and the levels of biases in simulated
data (13). In this study, we examined several different param-
eters to get a broad picture of the affects of normalization. The
criteria for evaluating and comparing the methods were re-
producibility between replicate data sets, accuracy in com-
parison with known values, and the integrity of overall trends
in the data sets. In addition, using optimally normalized data,
we investigated the potential benefit of using combinations of
measurements for the classification of the samples.

MATERIALS AND METHODS
Serum Samples

Serum samples were collected from 43 patients. Sixteen samples
from patients with pancreatic adenocarcinoma and 11 samples from
patients with benign diseases, such as ampullary adenoma, pancre-
atitis, cystadenoma, pseudocyst, or diverticulosis, were collected at

the Yale University School of Medicine. Sixteen control sampiles from
healthy persons were collected at the VU University Medical Center in
Amsterdam, The Netherlands. All samples were stored frozen in ali-
quots at ~80 °C, and each aliquot had been thawed no more than
twice before use. All samples were collected under protocols ap-
proved by local Institutional Review Boards for human subjects
research.

Antibodies, ELISA, and Protein Concentration Measurements

Antibodies were purchased from various sources {see Supplemen-
tal Table | for the complete list of antibodies and sources). Antibodies
that were supplied in ascites fluid or antisera were purified using
protein A beads (Affi-gel Protein A MAPS kit, Bio-Rad) according to
the manufacturer’s protocol. The antibodies were prepared at con-
centrations of 100-1000 ug/ml in 1X phosphate-buffered saline. Two
antibodies targeting HGF and one antibody targeting MUC-1 were
kindly contributed to the project (Drs. Brian Cao and llan Tsarfaty,
respectively). ELISAs were performed using commercially available
kits from Bethyl Corporation (Montgomery, TX) for the detection of
hemoglobin, IgM, IgG, IgA, transferrin, and albumin, and frorn Cedar-
lane Laboratories (Hornby, ON, Canada) for the detection of von
Willebrand factor. Total serum protein concentrations were measured
in duplicate using the BCA assay kit (Pierce).

Fabrication of Antibody Microarrays

Antibodies were deposited eight times each onto slides coated
with a polyacrylamide hydrogel (HydroGel, PerkinElmer Life Sciences)
using a high-throughput, custom built contact arrayer. Before print-
ing, the hydrogel-coated slides were hydrated for 10 min each in three
changes of purified water, dried by centrifugation, and incubated at
40 °C for 20 min. Each printed microarray was circumscribed using a
hydrophobic marker. The slides were incubated overnight at room
temperature in a humidified chamber to induce binding of the anti-
bodies to the hydrogel matrix. They were washed for 30 s, 3 min, and
30 min in 1x phosphate-buffered saline/0.5% Tween 20, blocked for
1 h at room temperature in 1% BSA/phosphate-buffered saline/0.5%
Tween 20, and washed briefly two times in phosphate-buffered sa-
line/0.5% Tween 20 before use.

Sample Labeling

An aliquot from each of the 43 serum samples was labeled with
N-hydroxysuccinimide-Cy3 (Amersham Biosciences), and another al-
iquot was labeled with N-hydroxysuccinimide-Cy5 (Amersham Bio-
sciences). Fach serum aliquot was diluted 1:20 into a 200 mwm car-
bonate buffer at pH 8.3, and a twentieth volume of 6.7 mm
N-hydroxysuccinimide-Cy3 or -Cy5 in Me,SO was added. This label-
ing mix gave approximately a 5~10-fold molar excess of dye relative
to the serum proteins (assuming an average serum protein molecular
mass of 70 kDa). The concentrations, time, and pH of the labeling
reaction were designed to label each serum protein thoroughly but
not to completion in case overlabeling of certain proteins might inter-
fere with antibody-antigen interactions. The carbonate buffer con-
tained 1.5 ug/ml BSA labeled with 2,4-dinitropheno! (DNP)," as a
normalization spike-in. After the reactions proceeded for 2 h on ice, a
twentieth volume of 1 m Tris-HCI, pH 8.0, was added to each tube to
quench the reactions, and the solutions were allowed to sit for an-
other 20 min. The unreacted dye was removed by passing each
solution through a size exclusion chromatography spin column (Bio-
Spin P8, Bio-Rad) under centrifugation at 1000 x g for 2 min. The

! The abbreviations used are: DNP, 2 4-dinitrophenol; CV, coeffi-
cients of variation.
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Cy5-labeled samples were pooled, and equal amounts of the pool
were transferred to each of the Cy3-labeled samples. Each dye-
labeled protein solution was supplemented with nonfat milk to a final
concentration of 3%, Tween 20 to a final concentration of 0.1 %, and
1 X phosphate-buffered saline to yield a final serum dilution of 1:100.

Processing of Antibody Microarrays

100 pl of each labeled serum sample mix was incubated on a
microarray with gentle rocking at room temperature for 2 h. After
incubation, the slides were rinsed briefly in 1x phosphate-buffered
saline with 0.1% Tween 20 to remove the unbound sample and then
subsequently washed three times for 10 min each in 1x phosphate-
buffered saline with 0.1% Tween 20. The slides were spun dry before
scanning for fluorescence at 543 and 633 nm using a microarray
scanner (ScanArray Express HT, PerkinElmer Life Sciences)

Data Analysis

The software program GenePix Pro 5.0 {Axon Instruments, Foster
City, CA) was used to quantify the image data. An intensity threshold
for each antibody spot was calculated by the formula 3 x B x CV,,
where B is the median local background of each spot, and CV, is the
average coefficient of variation (S.D. divided by the average) of all the
local backgrounds on the array. Spots that either did not surpass
the intensity threshold in both color channels, had a regression co-
efficient (calculated between the pixels of the two color channels) of
less than 0.3, or had more than 50% of the pixels saturated in either
color channel were excluded from analysis. The ratio of background-
subtracted, median sample-specific fluorescence to background-
subtracted, median reference-specific fluorescence was calculated,
and the ratios from replicate antibody measurements within the same
array were averaged using the geometric mean.

Hierarchical clustering and visualization were performed using the
programs Cluster and Treeview (see rana.lbl.gov). Ratios were log
transformed (base 2) and median centered by genes. Antibodies that
did not have measurements in at least 80% of the samples were
removed from the clusters.

Normalization Methods

Multiple normalization methods were applied to the microarray
data. The details of each are given below.

DNP—The averaged ratios were multiplied by a normalization fac-
tor N for each array that was calculated by N = 1/Ry\p, where Ry,
is the average ratio of the replicate anti-DNP antibody spots on the
array.

IgM-ELISA—The averaged ratios were multiplied by a normaliza-
tion factor N for each array that was calculated by N = (Sign tugnil/
Rgns where Rion is the average ratio of the replicate anti-lgM antibody
spots on the array, S,,,, is the ELISA-measured IgM concentration of
the serum sample on that array, and Hygns 1S the mean ELISA-meas-
ured IgM concentration of all of the samples.

IgM Set to 1—-The averaged ratios were multiplied by a normaliza-
tion factor N for each array that was calculated by N =1/R,,,,, where
Rigrs 1s the average ratio of the replicate anti-lgM antibody spots on
the array.

Mean Centering— The averaged ratios were multiplied by a normal-
ization factor N for each array that was calculated by N = 1/u, where
p is the mean ratio of all of the antibody spots on the array.

Loess—For each array, the log-transformed ratios of the antibody
measurements were plotted with respect to the average intensities of
the spots (averaged over both the 543 and 633 channels), and a
regression line was fit as implemented by the marray package for the
R environment (19). The ratios of the individual spots were adjusted

so that the regression line centered around zero (14).
Loess/IgM-ELISA—The averaged ratios were first processed using

the Loess method described above. The resulting array values were

normalized by the IgM-ELISA method as described above.

RESULTS

Reproducible, Accurate Serum Protein Profiling Using An-
tibody Microarrays—Forty-three different serum samples (16
from patients with pancreatic cancer, 11 from patients with
other types of gastrointestinal diseases, and 16 from healthy
persons) were incubated on a microarray containing 48 dif-
ferent antibodies targeting known serum proteins and putative
cancer markers. The amount of protein binding to each anti-
body from each serum sample was measured relative to the
protein binding from a common reference pool using two-color
comparative fluorescence (1, 20). The set of 43 samples was
performed in triplicate, each set performed on a different day,
using batches of microarrays that had been printed on different
days. The antibodies on the microarrays and a summary of the
performance of each are presented in Supplemental Table I.

The variation across the samples in relative protein binding
to the antibodies can be visualized using hierarchical cluster-
ing (21). The non-normalized ratios of sample-specific to ref-
erence-specific fluorescence from the three replicate experi-
ment sets were grouped and clustered (Fig. 1). Each of the
columns contains the data for a given serum sample over all
the antibodies and replicate experiment sets, and each row
contains the measurements from a given antibody in a given
experiment set. The cluster includes only antibodies that gave
reproducible measurements between at least two of the three
data sets, defined by a 99% confidence threshold for corre-
lation (22). Of the 48 antibodies, 29 surpassed the threshold
using non-normalized data. The clustering algorithm ordered
the rows and columns by similarity, placing similar rows or
columns close to each other. Many replicate antibody meas-
urements, such as those from anti-complement C4 and C3,
anti-alkaline phosphatase, and anti-von Willebrand factor
cluster immediately adjacent to each other, showing the high
reproducibility and distinct profiles of those measurements.
Other replicate antibody measurements, such as those from
anti-a1-antitrypsin and anti-vascular endothelial growth fac-
tor, are more scattered, showing lower reproducibility or less
distinction from the other profiles.

Independently collected ELISA measurements from seven
of the proteins were included in the cluster and allowed to
cluster by similarity to the microarray measurements. Each
ELISA measurement set clustered immediately adjacent to its
corresponding microarray measurements. This agreement
between the ELISA and microarray measurements provided
validation of the specificity and accuracy of the microarray
measurements for those proteins.

Evaluation of Normalization Methods—We evaluated the
effects of seven different normalization procedures on meas-
urement reproducibility, measurement accuracy, and trends
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VAI0286 Auti-MUC-1 set 2

VA28 Arti-MUC-1 sct 2

VAI00266 Anti-Alpha-fetoprotein set 2
VAI0D13} Anti-VEGF set 2

VAD095 Anti-Cathepsin D set 2

VAN0283 Asti-MUC-T set 3

VAIO0266 Anti-Alpha-fewprotein set 3
VAIO0286 Anti-MUC-1 set 3

VAIDO276 Anti-Alpha 1-sntitrypsin sct 3
VAI0276 Anti-Alpha L-antitrypsin set 2
VAJ0§032 Anti-Alpha L-antichymatrypsin st 3
VAI01032 Anti-Alpha L-antichymotrypsin sct 2
VAIO0200 Anti-HCG sec 3

VAN00224 Anti-Cerutoplasmin set 3

VAI00224 Anti-Ceruloplasmin st 2

VAI00245 Anti-Complement C3 set |
VAI00245 Anti-Complement €3 set 3
VAID0245 Anti-Complement C3 set 2
VAI00224 Anti-Ceruloplasmin set ©

1gM ELISA

VAI00223 Anti-IgM set 1

VAIDO080 Anti-L-6 sct 3
VAIBI126 Ant-Albumin set 2

VAIO1126 Anti-Albumin sct 1

Afbumin ELISA

VAIO!126 Anti-Albumin sct 3

Transferrin ELISA

VALLO013 Anti-Transferrin sct |

VALIDO013 Anti-Transferrin sct 3

VAI00L3 Anti-Transferrin set 2

VAIOB0S) Aati-Angiostatin sct |

VAIO0131 Anti-VEGF se1 1

VAIO009S Anti-Cathepsin D set |

VAID246 Anti-Comploment 4 st 1
VAKI0246 Anti-Comploment C4 set 3
VAI0246 Asti-Complament C3 st 2

156 ELISA

VALI0003 Anti-1gG-Fo st |

VAI00244 Anti-lgG1 set2

VAI00244 Anti-1gGt set 3

VAI0027S Anti-Bets hipoprotein (LDL) set 3
VAIN232 Anti-Lactate deyhydrogenase 5 sei 3
VALI0003 Anti-lgG-Fo ser 3

VAIOD232 Anti-Lactate deyhydrogenase 5 set 2
VAL00I Anti-lgG-Fe sct 2

Protem concentrution

VAFLOO1| Anti-IgA set t

VAHOOT! Anti-fgA set 3

VALIB0 | Anti-lgA set2

1gA ELISA

VAI0288 Aati-HGF MAb 71 set 3
VAIO0131 Ans-VEGF set 3

VAI009S Anti-Cathepsin 1) set 3

VAID0263 Ant-Alph 2-mucrogiobulin set 3
VAI00263 Anti-Alpha 2-mucroglobulin set 2
VAI00263 Anti-Alpha 2-macroglobulin set }
VAID027S Anti-Beta lipoprotein (LDL) sct §
VAI0277 Anti-Haploglobin sct 3

VAI00277 Anti-Haptoglobin sct |

VAL00274 Anti-Alkaline phosphatase set 3
VAIO0274 Anti-Alkaline phosphutase sct 2
VAI00274 And-Alkatine phosphatase set |
Hemoglobin ELISA

VAIIGO0T Anti-Hemoglobin set §

VAEL0007 Anti-Hemoglobin sct 3

VAIG00? Anti-Hemoglobin sct 2

VAIGI032 Anti-Alpha |-sntichymotrypsin st 1
VAIDO216 Anti-CRP sct {

VAIO0216 Anti-CRP sct 3

VAI002Z16 Anti-CRP sct 2

VAIO02ZT6 Anti-Alpha L-antitrypsin set |

VWF ELISA

VAI00194 Anti-Von Willcbrand factor set §
VAIG0194 Anti-Vorn Willcbrand factor set 3
VALIGI94 Anti-Ven Willebrand factor sct 2
VAI0200 Anti-HCG
VARI200 Anti-HCG set |
VAIO0286 Anti-MUC-} sel 1
VAIOU28} Anti-DNP set 2
VAIOO281 Anti-DNP scr |

Fia. 1. Two-way hierarchical clustering of non-normalized microarray data. Microarray data from 43 serum samples (

horizontal axis) and

the combined antibodies from all three experiment sets (vertical axis) were clustered. Each colored square represents one antibody
measurement from one array, and the color and intensity of each square represents the relative expression level: red, high; green, low: black,
medium; gray, no data. The color of the column labels indicates the clinical category of the patient from which the serum was taken: red,
pancreatic adenocarcinoma; blue, benign and other gastrointestinal diseases; green, healthy. Independently collected ELISA measurements
are included for the proteins IgM, 1gG, IgA, hemoglobin, von Willebrand factor, albumin, and transferrin (row labels colored red). The total

protein concentration of each serum sample was also included in the cluster.
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in the data sets. “DNP” normalizes each array by setting
values from a spiked-in standard (DNP-labeled BSA in this
case) to a fixed value; “IgM-ELISA” normalizes each array by
setting an internal standard (IgM in this case) to the standard’s
known values (from ELISA); “IgM set to 1" normalizes each

TABLE |
CV analysis

The standard deviation was divided by the average of the three
replicate experiments for each antibody and each serum sample after
normalization by each method. Column 2 gives the average CVs for
each method. Column 3 gives the p value of the comparison between
each method and the non-normalized data. Columns 4 and 5 give the
number of antibodies with statistically (p < 0.05) lower or higher CVs,
respectively, than the non-normalized data.

array by setting an internal standard (igM in this case) to a
fixed value; “Mean centering” sets the mean of the ratios in
each array to a fixed value; “Loess” uses intensity-based cor-
rection to account for biases in the data that may arise from
non-linearity in the ratios at certain intensities (14); and “Loess/
IgM-ELISA” uses intensity-based correction followed by nor-
malization to the known values of an internal standard (using the
IgM-ELISA method in this case). Each of the methods except for
the Loess methods corrects for factors that affect the arrays
globally, such as labeling or scanner effects. Print tip-based
methods were not tested because each antibody was printed
by all the tips, and the replicate spots were averaged.

Properly normalized data should reduce variability caused
by systematic noise between experiments. The effect of nor-

o Average antib':l)giec;fwitﬁ malization on the reproggcibi!ity between r.eplicate data' sgts

Normalization method oy pValue o Higher ~Was evaluated by examining both the coefficients of variation

cVv cv (CV) and the correlations between the replicate experiments.

Non-normalized 0.18 The CV of each antibody (S.D. divided by average) between

'gM-ELISA-normalized 0.17 0.34 10 6 the triplicate measurements from each serum sample was

%wpéré?:gﬂ?sg{mauzed 8?(;3 8:823 1} :73 calculated for each normalization method. The average CVs

Mean-centered 0.16 <0.01 16 0 for each antibody were compared between the non-normal-

Loess-normalized _ 0.18 0.55 7 4 ized data and each set of normalized data using a two-tailed,

Loess/IgM-ELISA-normalized 0.2 <0.01 4 7 paired t test (Table I). The average CVs ranged from 0.16
TasLe I

Correlation analysis

The Pearson correlation was calculated between measurements from the replicate sets of 43 samples for each antibody and after each
normalization method. A pairwise comparison among all three of the experiment sets (1 versus 2, 1 versus 3, 2 versus 3) was performed. Only
the antibodies that had correlations over the 99% confidence threshold between at least two of the three data sets were used in the analysis
(column 2). The correlations from the normalized data were compared to the correlations from the non-normalized data. The antibodies that
had either a higher or lower correlation in comparison with the non-normalized data were counted (columns 3 and 4), and those with a
correlation difference greater than 0.1 were also counted (columns 5 and 6).

Total no. of Ab No. with No. with No. with higher corr. No. with lower corr.
passed corr. higher corr. lower corr. difference >0.1 difference >0.1

Set 1 vs. Set 2

Non-normalized

DNP-normalized 22 19 1 11 0

IgM-ELISA-normalized 22 14 3 7 1

IgM Set-to-1-normalized 22 18 3 11 0

Mean-centered 22 11 8 3 4

Loess-normalized 22 4 16 2 9

Loess/IgM-ELISA-normalized 22 4 15 3 10
Set 1 vs. Set 3

Non-normalized

DNP-normalized 23 10 3 6 0

IgM-ELISA-normalized 23 15 3 5 1

IgM Set-to-1-normalized 23 19 1 12 0

Mean-centered 23 13 6 2 3

Loess-normalized \ 23 5 15 1 11

Loess/IgM-ELISA-normalized 23 4 12 2 4
Set 2 vs. Set 3

Non-normalized

DNP-normalized 27 11 8 4 3

IgM-ELISA-normalized 27 14 3 3 0

IgM Set-to-1-normalized 27 25 0 12 0

Mean-centered 27 7 g 4 5

Loess-normalized 27 2 21 1 18

Loess/IgM-ELISA-normalized 27 5 19 2 14
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Correlation
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Fig. 2. Correlation of microarray data with ELISA measurements. The average correlations (over all three experiment sets) between the
microarray data and the ELISA measurements (averaged over three replicates) for each of the seven proteins are shown for each normalization
method. The error bars represent the S.D. between the correlations of the three replicate experiments. The correlation values of the IgM protein
for both normalization methods involving IgM (IgM-ELISA and IgM set to 1) have been excluded because both methods have a correlation of
1 because of the nature of the method used. The asterisks refer to a statistically significant difference in correlation between normalized and

non-normalized data for a given protein.

(mean centered) to 0.22 (Loess/IgM-ELISA). Normalization by
mean centering was the only method that had a significantly
fower (p < 0.05) average CV in comparison with the non-
normalized data (Table I, column 3). Normalization by Loess/
IgM-ELISA and DNP resulted in an average CV that was
significantly higher than non-normalized. We also counted the
number of individual antibodies that had significantly higher or
lower CVs in the normalized data compared with the non-
normalized data. A two-tailed, paired t test was used to com-
pare the CVs between the non-normalized data and each set
of normalized data for each antibody. Normalizing by mean
centering or by IgM set to 1 produced an abundance of
antibodies with a lower CV than in the non-normalized data
(Table 1, column 4). IgM-ELISA and Loess normalizing had sim-
ilar numbers of antibodies with higher and lower CVs relative to
the non-normalized data. Normalizing by DNP or by Loess/IgM-
ELISA yielded a high number of antibodies with a higher CV and
a low number with a lower CV than the non-normalized data.
A complementary approach for evaluating reproducibility is

to calculate a correlation between duplicate experiment sets.
Pearson correlations were calculated between the replicate
sets of 43 arrays after normalization by each method for each
antibody. The correlations from each of the normalized data
sets were compared with the correlations from the non-nor-
malized data (Table lI). In the comparison of experiment set 1
with set 2, normalization by DNP, IgM-ELISA, and IgM set to
1 produced many antibodies (19, 14, and 18, respectively)
that had higher inter-set correlations and few antibodies (1, 3,
and 3, respectively) that had lower correlations than the non-
normalized data. Many of the antibodies (11, 7, and 11, re-
spectively) had correlation coefficients that increased by 0.1
or more over the non-normalized data. In contrast, normaliza-
tion by Loess or Loess/IgM-ELISA resulted in only a few
antibodies with higher correlations and many with lower cor-
relations than the non-normalized data. Normalization by
mean centering did not seem to significantly increase the
antibody correlations in comparison with the non-normalized
correlations. The pairwise comparisons between all three of
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VAT At Haptoglobolin average

VAI002T4 Anti-Ataline phosphotase. average

VA0S Ani-MUC- averags

VAIO0266 Anii-Alpha-fesoprotcin average

VA2 Ami-MUC-1 average

VAIBI032 Ani-Alphs |-andickymotrypsin sversge

1gM ELISA

VAT AnilgM average

VAI2S An-HGF avorage

VA00243 Anti-Compitsaen €3 sverage

VAI06224 Ant-Ceruloplasmin eversge

VAII0263 Ani-Alpha 2-exacroglobulin averige
08275 Anti-Reta Hipoprotein (LDL} avirage

IgA ELISA

VAHOOM Antidgh average

VAIO044 AntiJgl sverage

VAL0003 A -Fe average

VAIO232 Anti-Lactate deyhydrogeruse § sverage

A

613 Ant-Transfemin, average

i clsy

VAIBL{26 Ani-Atbumin axeruge

VAIODI3E Ani-VE

VAL Anti-Cathepsin > average

VAIUOS3 Anti-Angiostsin average
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VALl
YWELLSS

VAI00194 Anti-Von Willebrand factor average
VAI0276 Anii-Alpha Tantitrypsin average
VAIO216 Ati-CRP auerage
VAIGO2RY And-DNP averuge

Reaoglubin £LISA
VAID0ST Aati-Hemoglobin sverage
VAI00245 Anti-Complemen C1 average
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VAIOU Anti-VEGE average
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Fia. 3. Cluster comparisons between four different normailization methods. The microarray data were normalized using the indicated
method, averaged over the three replicate experiments, and clustered. A, non-normalized data; B,

IgM-ELISA-normalized data; C, DNP-

normalized data; D, mean centered normalized data. Only the antibodies that produced reproducible measurements (defined as having
correlations over the 99% confidence threshold between at least two of the three data sets) were averaged over the three replicate sets. The

column labels are colored according to the descriptions in Fig. 1.

the experiment sets (1 versus 2, 1 versus 3, 2 versus 3)
produced similar results. Taking the two analyses together,
the reproducibility of the replicate data seems slightly im-
proved compared with the non-normalized data after normal-
ization by mean centering, IgM set to 1, or IgM-ELISA.

To evaluate the effects of normalization on measurement
accuracy, ELISA measurements for seven of the proteins
were used as a standard against which the microarray meas-

urements were compared. The correlations between the mi-
Croarray measurements (averaged over the three replicate
sets) and the ELISA measurements over the 43 samples were
calculated with each normalization method. The agreement
between the microarray and ELISA data for all seven of the
normalization methods is depicted in a bar graph (Fig. 2).
Normalization by five of the seven methods produced statis-
tically similar correlations, generally between 0.75 and 0.9.
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Normalization based on fixing the IgM values to a constant
produced consistently lower correlations with the ELISA val-
ues for five of the six comparisons. Microarray data adjusted
by Loess/IgM-ELISA normalization had a statistically significant
reduction in correlation with ELISA values for four of the six
antibodies in comparison with the non-normalized data. Based
on these comparisons with ELISA measurements, normaliza-
tion by fixing an internal standard to a constant seems to
negatively affect measurement accuracy, and measurement
accuracy may, be lowered after normalization by Loess.

Finally, we examined the effect of normalization on trends in
the data sets to determine whether certain normalization
methods altered overall trends more than others. These ef-
fects were evaluated by comparing clusters and comparing
the proteins that distinguished the sample groups after nor-
malization by each method. Clusters of the averaged data
(over the three replicates) from four of the normalization meth-
ods (the methods with the best reproducibility and accuracy,
as determined in the previous analyses) are shown in Fig. 3,
and the other three are available in the supplemental data. The
clusters may be inspected to identify the effects of normal-
ization on overall trends in the data sets. In all four clusters,
the control samples (green labels) cluster together, and the
other two classes are intermixed. In all four, the ELISA values
{row labels highlighted red) also generally cluster adjacent to
their respective microarray values. Trends that define the
patient groups are fairly consistent between the non-normal-
ized, the IgM-ELISA normalized, and the DNP-normalized
data (Fig. 3, A-C, respectively), although ordered differently.
The non-control samples seem to divide into two or three
groups in Fig. 3, A-C; one group has high levels of most of the
proteins (e.g. samples 351, 88, and 93), another group is low
in most of the proteins (e.g. samples 84, 76, and 77), and
another is low in some proteins and high in C-reactive protein,
von Willebrand factor, and a1-antichymotrypsin (e.g. samples
86, 91, and 82). The above patterns are somewhat altered in
the mean centered data because the groups of patients that
are high in most proteins or low in most proteins are not seen
as they are in the other clusters.

Because a major use for antibody microarray experiments
is to identify differences between sample classes, we exam-
ined the effect of normalization on the statistical differences
between the sample classes. The antibody measurements
that distinguished between the sample classes (p < 0.05,
using data averaged between the three replicate sets) were
identified by a two-tailed t test, and the number of antibodies
that were found in common between any two methods was
tabulated (Table Ill). Using the non-normalized data, 17 anti-
body measurements differentiated the serum samples from
patients with pancreatic cancer and the samples from healthy
control subjects. Of those 17 antibodies, 16 were common to
the analysis from DNP-normalized data and 15 were common
from IgM-ELISA-normalized data. The other four normaliza-
tion methods had between 3 and 12 common discriminators

TasLE {H
Common discriminators between normalization methods

A two-tailed t test was used to identify antibodies with statistically
different (o < 0.05) measurements between the pancreatic cancer
and healthy sample sets. The column and row labels indicate the type
of normalization method used: 1) non-normalized, 2) DNP, 3) IgM-
ELISA, 4) Loess, 5) Loess/IgM-ELISA, 6) mean centered, 7) IgMm
set-to-1. The values within the table indicate the number of antibodies
that were significantly different among the patient classes and that
were common among the normalization methods intersecting in the
rows and columns.

1 2 3 4 5 6 7
1 17
2 16 19
3 15 14 16
4 10 10 11 14
5 12 11 12 10 12
6 12 12 13 14 10 16
7 3 4 4 7 3 7 8

with the non-normalized data. Therefore, the trends observed
after normalization by DNP and IgM-ELISA are similar to each
other and similar to the non-normalized data, but normaliza-
tion by the other methods resulted in a divergent set of
antibodies that distinguished the patient groups. Because of
the high accuracy and reproducibility of normalization by igM-
ELISA and because of its minimal alteration to the trends in
the data sets, this normalization method was used for the
analysis below.

Evaluation of Multiparametric Classification — A major bene-
fit of the ability to measure multiple proteins is the evaluation
of using combinations of proteins for improved sample clas-
sification relative to the use of single proteins. We investigated
this application of the data using the IgM-ELISA-normalized
data. The data were averaged over the three replicate sets
using only the antibodies that produced reproducible meas-
urements (defined as having correlations over the 99% con-
fidence threshold between at least two of the three data sets).
Twenty-nine of the 48 antibodies passed the reproducibility
threshold. Sixteen antibodies produced measurements with
statistically different means (p < 0.05) between the samples
from patients with pancreatic cancer and those from healthy
control subjects. The distributions of the measurements from
each of these antibodies in the cancer and control samples
are shown in Fig. 4. Three antibodies, anti-von Willebrand
factor, anti-al-antitrypsin, and anti-C-reactive protein,
showed higher binding in the pancreatic cancer samples, and
the rest showed lower binding in the pancreatic cancer sam-
ples; anti-albumin, anti-transferrin, and anti-complement C3
showed the greatest significance. Fig. 4 shows that all of the
distributions overlapped significantly between the cancer and
control groups.

The potential benefit from using combined antibodies to
classify the samples was examined using a generic version of
the Real Booksting algorithm (23, 24). Boosting is an appealing

780  Molecular & Cellular Proteomics 4.6




Antibody Array Normalization

4
2
o
%)
O 8 o
o o
-2
4 1 1 1 1 I 1 1 1 1 I 1 I 1 1
. > 2
2% B B EE zE 3% 3y oz oz 2% EE E: z: z: zz %oz
G 7o 78 T 7o o GH G T T T T 75 g5 7o g T
[ Mlae | - O 0 oo < < < > o> > > > > OO o go oIS > i da % ga 2
BE Y9 g9¢ vy 535 BE F& Zzz 22 9% 5% 3z Fg B®BE &F s 2
5 5 [ g 8 R =53 QO 5o £ £ == = Ealit: el oG g9 et T &
& @ o LSRR ] i s ® 5 f S & 8 S B T oM 2}
¥ 85 &s& gg TE 3 - - 828 L5 33 88 g3 22 gy £° o - 2
3 3 g 8 3 3 £ g = o= <= F 5 B o a g g 2 8 g 8 8 8 B 8 o o o =
S Q= o @ 8 = FE ) 5 08 5 o o o g 8 o = 8 & 5 & o= B oo 2 ¢
S5 3 B 203 s g T o = SN2 ® & c B T oo =3 2 25 o 5 a 2 a &
- = A A A E 8 e 5 5 82 <3 o & A 8 7 U= 8 5 8 5
8 22 B A T 33 45 E& 83 g g v =
g = 2 = e El Y o 8 = g =
3 8 @ 5 B F o o o - <
85 o o = 2 g ~<
o = S8 8 B S om
8 SR 5 2 [T
o= 5 = o 5
8 7 g 5 T
a3 = o=
R

Fic. 4. Distributions of measurements for the discriminating antibodies. The distributions of measurements that were statistically
different (v < 0.05) between the samples from pancreatic cancer patients (dark boxes) and healthy controls (fight boxes) are shown. The boxes
give the upper and lower quartiles of the measurements with respect to the median value {horizontal line in each box). The lines give the ranges
of the measurements, excluding outliers, which are represented by the circles.

method for combining “weak” individual classifiers into a
“powerful” combined (or summary) classifier, and it was
shown empirically to be resistant to overfitting (23), a problem
often encountered by other widely used classification algo-
rithms. A 10-fold cross-validation determined the optimal
number of antibodies in a final combined classifier. 90% of the
samples were used as a training set to define a model for
classification, whereas 10% of the samples were reserved as
a testing set to determine the error rate of the model. This
process was repeated 10 times, each time using a different
group of 90% for classification. The classifier was considered
final when further addition of an antibody into the model
increased the cross-validation error. The cross-validation
process simulates the uncertainty in classification of future
samples and estimates the prediction error of the selected
combined classifier from the current data set. This validation
gives extra protection against the chance of overfitting.

Real boosting was used to classify each of the cancer and
control samples as belonging to one of the two classes. The
antibodies used in the multiparametric classification and the
performance of the classifier is presented in Table IV. The
errors, sensitivities, and specificities (columns 2-4) were av-

eraged over the 10 cross-validation iterations. Each row gives
the cumulative result after using the antibodies at and above
that row. When using all seven antibody measurements (one
antibody was used twice), the cumulative results are 0.00
error, 1.00 sensitivity, and 1.00 specificity, or perfect classifi-
cation, which was not possible using any single antibody.

DISCUSSION

The major goal of this work was to determine the optimal
normalization procedure for antibody microarray data. This
work was necessary because no systematic evaluation of
normalization methods for antibody microarray experiments
had yet been performed. Our thorough analysis revealed
some differences between the normalization methods in the
resulting data quality, and a comparison of the methods pro-
vided valuable information about which normalization method
is optimal. Our study also was valuable to develop an objec-
tive approach for assessing and comparing normalization
methods.

Some of the normalization methods performed well in one
category but not very well in another, showing the value of
using multiple criteria for the evaluation. For example, normal-
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TaBLe IV
Sample classification using muitiple proteins

A 'real boosting’ algorithm was used to identify a linear combina-
tion of protein classifiers that could distinguish pancreatic cancer
from control samples using the IgM-ELISA-normalized data averaged
over the three replicates. The error rate, sensitivity (the percentage of
true positives over all positives), and specificity (the percentage of
true negatives over all negatives) were calculated from cross-valida-
tion analysis as described in the text. Antibodies with measurements
that were higher in pancreatic cancer relative to control samples are
indicated by bold.type.

Antibody Error Sensitivity  Specificity
Anti-complement C4 0.08 0.90 0.95
Anti-C-reactive protein 0.11 0.85 0.95
Anti-transferrin 0.06 0.95 0.95
Anti-complement C3 0.08 0.90 0.95
Anti-complement C4 . 0.05 0.95 0.95
Anti-a1-antichymotrypsin ~ 0.02 1.00 0.95
Anti-cathepsin D 0.02 1.00 0.95
Anti-a1-antitrypsin 0.00 1.00 1.00

izing by IgM set to 1 yielded more reproducible data than the
non-normalized data. However, the accuracy of the measure-
ments was greatly compromised as determined by compari-
son with the ELISA values. Because IgM concentrations vary
from sample to sample, setting this vaiue to a constant is not
valid and reduces the accuracy of the measurements. It will
probably be impossible to find a “housekeeping” protein in
the serum that could be used as a constant reference be-
cause it seems that all serum proteins are subject to signifi-
cant change between individuals as supported by our current
analyses. Normalizing by IgM set to 1 also greatly altered the
trends in the data sets in comparison with the other normal-
ization methods (Supplemental Fig. 1).

Other methods performed well in some categories but not
in others. Loess normalization produced reasonably accurate
data, but the reproducibility was fower than the non-normal-
ized data as assessed by the correlation analysis. Applying
jgM-ELISA normalization to the Loess-adjusted data did not
improve reproducibility. The list of proteins that discriminated
cancer from healthy and the general structure of the cluster
(Supplemental Fig. 2) also was altered after Loess normaliza-
tion. The Loess method was developed for DNA microarray
data and relies on having a large number of data points to
produce an accurate picture of intensity-based biases in the
ratios. With fewer data points, as with our data, such adjust-
ments may be erroneous and may actually add noise to the
data. Other normalization methods that use regression calcula-
tions of trends in data therefore also may not perform well on
smaller, more selected arrays. Likewise, scaling methods, which
adjust the variances (the spread) in groups of ratios, also might
not perform well on these arrays because the variances in
small numbers of proteins could legitimately change.

Both DNP and IgM-ELISA normalization had good accu-
racy, and neither altered the trends in the data sets relative to
the non-normalized data, but the reproducibility after igh-

ELISA normalization was slightly higher. Normalization by
mean centering also performed well in reproducibility and
accuracy, although the normalization seemed to alter trends
in the data more than normalization by DNP or IgM-ELISA.
Normalization by mean centering is accurate if the average
concentration of the measured proteins is constant between
samples. Because the average concentration may change,
especially if measuring a small number of proteins, normal-
ization by mean centering may occasionally produce results
that inaccurately reflect the trends in the data sets.

Therefore, taking all of the information together, the IgM-
ELISA normalization method, of the methods evaluated,
seems to have performed the best. Normalizing by the known
values of an internal standard such as IgM is attractive be-
cause these values are inherent to the sample. A spiked-in
standard like DNP-labeled BSA is not inherent to the sample,
so the standard would not correct for sources of bias that
occurred before the standard was introduced. The accuracy
of a known standard is independent of the size or selection of
the rest of the array, and it makes no assumptions about the
behaviors of particular housekeeping proteins. Drawbacks of
normalization by an internal standard are that highly accurate
ELISA values for that protein must be obtained for every
sample and that one relies on the quality of the microarray
measurements for that protein.

Further improvements in the normalization method are still
possible and necessary for antibody microarrays. The high
reproducibility of the mean centered data showed that nor-
malizing by many proteins may be valuable. We are currently
investigating variants on the mean centering method. In ad-
dition, different spike-in proteins, such as plant or peanut
proteins that have no homology to human proteins, may per-
form better than DNP-labeled BSA. A panel of three or four
highly specific spike-in proteins may produce less variable
results than the use of a single protein. Other antibody or
protein array techniques may have other optimal normaliza-
tion methods; the methods presented here provide a strategy
for determining which is optimal. In addition, other sample
types, such as those from tissue or cell culture sources, may
behave differently than serum, and the normalization would
need to be independently optimized.

In addition to being useful for evaluating normalization
methods, these data served the additional purpose of explor-
ing the value of combined measurements for sample classi-
fication. Multiple markers may be grouped together to im-
prove diagnostic performance if the markers contribute
complementary, non-overlapping discriminatory information.
The improvement of the sample classification when using the
multiparametric method, compared with the use of single
proteins, showed the potential value of antibody microarray
data for more accurate diagnostics. This particular classifier is
not likely to be specific for pancreatic cancer because most of
the proteins used in the classifier had similar distributions
between the cancer and other gastrointestinal disease sam-

782 Molecular & Cellular Proteomics 4.6




Antibody Array Normalization

ples. The development of a specific classifier for pancreatic
cancer will require measurements from additional proteins
that are more specifically associated with pancreatic cancer.
A more sensitive detection method, such as the two-color
rolling circle amplification method demonstrated previously
(22), would allow the measurement of lower abundance pro-
teins that may contribute to a specific signature for pancreatic
cancer. Studies using that approach are ongoing.

No firm conclusions on the nature of specific serum protein
alterations in pancreatic cancer can be made from these data
because of the small sample size and potential bias between
the case and control samples, but the observed differences
between the cancer and control samples were consistent with
the high levels of inflammation usually associated with pan-
creatic cancer. The higher levels of C-reactive protein and von
Willebrand factor in the disease samples probably reflect a
positive acute phase response (25, 26), and a reduction in the
levels of albumin and transferrin as observed here is also
commonly observed in an acute phase response (27). De-
creased levels of serum IgG and IgM have been observed in
cancer (28, 29), and higher a1-antitrypsin has also been as-
sociated with pancreatic cancer (30).

In summary, this work established reliable methods for
normalizing antibody microarray data and established objec-
tive criteria for assessing normalization methods. Further-
more, we showed that many different proteins in serum sam-
ples can be reliably measured using antibody microarrays and
that this capability is useful for multiparametric sample clas-
sification. These developments lay the foundation for larger-
scale studies that could lead to improved diagnostics for
pancreatic cancer and other cancers.
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Antibody array normalization 12
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VAIDD2E6 Anti-MUC-1 ser 2
IO07E3 Ann-MUC-1 get 2
VAIDD266 Anti-Alpha-fetaprotein se12
00131 Ant-VEGF set2
VAIDDOSS Anti-Cathepein T set 2

266 Anti-Alpha-fetaprotein set 3
VAIDO286 Anti-MUC-1 sct 3
IB0276 Anti-Alpha 1-antitrypsin set 3
VAIDO276 Anti-Alpha 1-antitrypsin set2
101032 Anti-Alpha 1 -antichymotrypsin set 3
VAID1032 Anti-Alpha L-antichymotrypsin set2
100200 Anti-FICG set 3
0224 Anti-Ceniloplasmin set 3
VAIDO224 Anti-Ceruloplusmin set 2
0245 Anti-Complemert O3 set 1
VAIDD245 Anti-Complemern €3 set3
100245 Anti-Complement C3 set 2
VAIDO224 Anti-Ceruloplusmin ser 1
Tgh FLISA
AID0223 Anti-TeM cet 1
VAIDO223 Anti-TeM set3
100223 Anti-TgM set 2
VAIDDOS3 Anti-Angiostatin sct 3
10005F Anti- Angiostatin set 2
VAIDO0S0 Anti-IL-G st 3
101126 Anti-Albumin st 2
ATO1126 Anti- Albumin set 1

et

10013 Ant-Transfernn et 1
FAILO0L3 Anti- Tranefersin vet3
10013 Ant-Transfernn cet 2
AIDD033 Anti- Angioetatin set 1
JAIDDI31 Ant-VEGF setl
VAIDDGR S Ann-Cathepian 1D set 1
VAIDD246 Ant-Complement C4 zet |
(00246 Ant-Complement C1 cet 3
VAIDD246 Anti-Complement C4 set 2
IgG ELISA
T10003 Ant-Igf c set
AntilgGl eet?
00244 Ann-TgGl set3
VAIDOITS Anti-Beta lipoprotem (LDL) set3
VAIDD232 Anti-Lactate deyhydrogenase 5 set 3
VAII0003 Ant-TgG-Fc set3
VAIDD232 Anti-Lactate deyhydrogenase 5 set 2

in concentration
10011 Ant-TgA set 1
VAILOOL] Anti-leA ser 3
VAIIO011 Anti-TgA set 2
IgA ELISA
VAIDD2EE Anei-HGF MAb 7-1 se1 3
10131 Ann-VEG 13
VAIDDOSS Anti-Cathepein T set 3

H263 Anti-Alpha 2 macroglobudin set 3
VAIDD2G63 Anti-Alpha 2-macroglobulin sa1 2
set 1

0263 Anti-Alpha 2-macroglobulin

VAIDD275 Anti-Beta lipoprotein (LDL) serl

et 3

277 Anti-Haptoglobulin set 1

4 Anti-Alkaline phosphatase sct 3

Anti- Alkaline phosphatase set 2

4 Anti-Alkaline phosphatase st 1

lobin ELISA

VAILDODT Anti-Hemoglobin set 1

10007 Anti-Hemoglobin set 3

VAILOO0T Anti-Hemoglobin et 2

VAIDL032 Anti-Alpha 1-antichymerypzin set 1
AIDO21L6 Ant CEP set 1

VAIDD216 Anti-CRP set3

6 Ant CRP et

VAIDD276 Anti-Alpha 1-antitrypsin set 1

VWF ELISA

VATOO194 Anti-Von Willebrand factor set 1

00194 Anti-Von Willebrand factor set 3

AID0194 Ant-Von Willebrand factor set 2

VATOO200 Anti-HOG set?

00200 Ant-HOG cet 1

VATDOZRS Anti-MUTC-1 et 1

00781 Ant DNF set 2

VATDOZRL Anti-DNF set |

Figure 1
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Antibody array normalization

12

AL MNormalization Method Avg CV p-Value # Ab with Lower CV # Ab with Higher CV
Non-Normalized 018
1aM-ELISA Normalized 017 .34 10 G
DINP Normalized 0,20 .01 1 7
TgM Setto | Normalized 018 098 11 3
Mean Centered 016 <0.01 16 1]
Loess Normalized 018 0.55 7 4
Ioess & IgM-ELIS A Normalized 0.22 < (.01 4 17
B Total # of ab | # with Higher | # with Lower # of ab having # of ab having o Passed
. Pussed Corr. G T Higher Corr. with Lower Corr. with o
Differ ence =1 Difference =01 :
o Non-Normalized 4
3 DNP Normalized 22 19 1 11 4] 61
g _FLISA Normalize s £ E P
= IgM-ELISA Normalized 14 3 7 1 54
}} Loess Nommalized 22 4 16 2 9 44
Loess & IgM-ELISA Normalized 22 4 15 3 10 46
— Non-MNormalized 58
W’g DNP Normalized 23 10 3 3 4] 58
£ | [eM-ELISA Normalized 23 15 3 5 1 63
-
3 Loess Nomnalized 23 5 15 1 11 55
Loess & [eM-ELISA Normalized 23 4 12 2 4 63

~”
T
@
H
-
3

Non-Normalized 57
DNF Nommalized 27 11 8 4 3 63
| [eM-ELISA Normalized 27 14 3 3 0 61
Loess Nomalized 27 2 21 1 18 54
Loess & IgM-ELISA Normalized 27 5 19 2 14 57

Tablel




Antibody array normalization 12

1 2 3 4 5 6 7
1 17 16 15 10 12 12 3
2 16 19 14 10 11 12 4
3 15 14 16 11 12 13 4
4 10 10 11 14 10 14 7
5 12 11 12 10 12 10 3
6 12 12 13 14 10 16 7
7 3 4 4 7 3 7 8

Table2
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Antibody array normalization 12
Antibody Error | Sensitivity | Specificity
Anti-Complement C4 0.08 0.90 0.95
Anti-CRP 0.11 0.85 0.95
Anti-Transferrin 0.06 0.95 0.95
Anti-Complement C3 0.08 0.90 0.95
Anti-Complement C4 0.05 0.95 0.95
Anti-Alpha 1-antichymotrypsin 0.02 1.00 0.95
Anti-Cathepsin D 0.02 1.00 0.95
Anti-Alpha1-antitrypsin 0.00 1.00 1.00

Table3
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