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Regulation of gene expression and protein activity
is central to the function of molecular and cellular
systems. High-throughput methods (e.g. cDNA 
microarrays, ChIP-chips, yeast two-hybrid interaction
studies) provide various views of the participating
genes, RNAs and proteins and their interactions, and
it is becoming increasingly clear that turning the
data deluge arising from these global analyses into
knowledge represents an unprecedented challenge.
This review discusses three main bioinformatic 
approaches (Figure 1) that aim to answer three
major questions:
1. How can we properly visualize gene expression

information in the context of existing knowledge
of pathways or networks?

2. What are the advantages and the limitations of
the application of existing probabilistic and
graphical models to ‘omics’ data, and how can
we improve these methods?

3. How can we infer regulatory networks from het-
erogeneous sources of data (including gene
expression data, promoter sequence information,
comparative genomics, functional annotations,
and genetic and protein interaction data)?

Methods that use genomic information to infer
correlations between genes and clusters of
genes
One of the challenges in interpreting microarray
data is to group genes on the basis of similar regu-
lation and function, or similar cellular state and 
biological phenotype. This is a multivariate prob-
lem of extremely high dimensionality that has
proven attractive to biostatisticians, so that in the
past few years statistical analysis has been among the
most active fields of microarray research. Identification
of unknown classes of co-regulated genes using
whole-genome expression profiles (unsupervised
learning, cluster analysis) or classification into known
classes of functionally or structurally related genes
(supervised learning, discriminant analysis) are two
common techniques used in gene expression exper-
iments.

Clustering algorithms based on probability mod-
els are methods in which the data are assumed to
be generated by a finite mixture of underlying prob-
ability distributions. One important feature of mix-
ture modelling is that posterior probabilities (i.e. the
probability to belong to the class, given the observed
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gene expression data) of class membership are obtained.
Following the first papers on hierarchical clustering [1,2],
research in cluster analysis has used graphical Gaussian
modeling [3], clustering using reliable, informative data
subsets [4], partitional clustering and motif discovery [5],
clustering based on singular value decomposition [6,7],
simulated annealing [8], graph theory [9], self-organizing
maps [10] and scale-free networks [11]. Some clustering
methods, developed to identify subsets of genes with 
expression patterns that vary in a similar fashion across
conditions, can be partially or fully supervised by using
known properties of the genes or samples to assist in find-
ing meaningful associations [12,13]. Tested on standard
datasets, these methods all identify similar core clusters
of genes that are most strongly affected by coordinate 
regulation. All these methods are based on the assump-
tion that functionally related genes have similar gene 
expression levels, an assumption that might mean that
important genes, in particular regulators, are overlooked.

In fact, transcription factors can change in function with-
out necessarily changing in expression, but rather in state,
through binding to an activator or by proteolytic activa-
tion. Another limit of clustering is that these methods do
not directly address the functional relationships among
genes.

Methods that integrate functional genomics result in
metabolic or cellular pathways
Genes never act alone in a biological system, but participate
in a cascade of networks. Pathways represent the biologist’s
way of describing the nature of biological interactions and
control networks. Biochemical networks link enzymes to
the flow of substrates and products of the different reac-
tions; regulatory networks describe how the expression
of the genes encoding the enzymes of the pathways are
regulated; protein–protein interaction networks annotate
interacting proteins. One of the main differences between
a network and a pathway is that a pathway is a linked

REVIEWS

FIGURE 1

Flowchart illustrating the three main approaches for microarray data analysis in the context of cellular and biochemical networks.
Visualization of output generated by (a) Hierarchical analysis, (b) GeneMapp software, (c) Pathway Processor software and (d) GeneXPress software.
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set of biochemical reactions, and includes the idea of 
directionality, where lines become arrows, and contain
information on the energy and metabolite flow, and
where the product of a reaction is either the substrate or
the enzyme that catalyzes a subsequent reaction. Several
efforts have therefore addressed the analysis of microarray
data in the context of state-of-the-art knowledge of biolog-
ical networks or pathways.

Pathway-based microarray analysis methods look for
patterns of expression variation in predefined classes of
genes, such as those involved in metabolism, the cytoskele-
ton, cell-division control, apoptosis, membrane transport,
sexual reproduction, signalling, and so forth, with the aim
of integrating information obtained on a genomic scale
with the biological information accumulated through years
of research of molecular genetics, biochemistry and cell
physiology. The integration of genomic and physiological
information is now increasingly important with the emer-
gence of ‘systems biology’, which attempts to simultane-
ously study the expression patterns and activity of all genes,
together with proteomic and metabolomic data. The
analysis of different kinds of genomic data from a network
perspective promises to foster a new level of understanding
of the system as a whole.

Efforts to establish proper gene ontology (GO) [14] are
becoming increasingly important with the progress of the
various genome sequencing projects, and are relevant to
the interpretation of genomics data in their biological
context. The GO database provides a useful tool to 
annotate and analyze the functions of a large number of
genes.

The availability of properly annotated pathway data-
bases is one of the requirements for analyzing microarray
data in the context of biological pathways. The develop-
ment of pathway databases is continuing apace, with 
several resources available publicly, such as the Kyoto 
encyclopedia for genes and genomes, KEGG [15],
MetaCyC EcoCyCand AraCyC [16–19], MIPS yeast path-
ways, or commercially, such as BioSilico  [20], and GeneGo
(see Box 1 for URLs).

From the need for a unique annotation of all the bio-
chemical reactions stems another effort, Reactome, a joint
project of Cold Spring Harbor Laboratory, EBI and GO
Consortium [21]. Reactome is a curated database of bio-
logical processes, covering biological pathways ranging from
the basic processes of metabolism to high-level processes
such as hormonal signalling. Although it is targeted at
human pathways, it also includes many individual bio-
chemical reactions from rat and mouse. The information
in this database is provided by bench biologists who are
experts in a specific domain of biology, edited and entered
into a relational database which is cross-referenced with
PubMed, GO, and the sequence databases LocusLink,
Ensembl and SwissProt. The information is then reviewed
by other biological researchers for consistency and accuracy
and made public.

In parallel to the development of pathway databases,
the development of a dedicated universal standard data
exchange format for pathway information is essential for
sharing, evaluating and developing pathway information
resources and pathway-based models. The first effort in
this direction has been the Systems Biology Markup
Language (SBML) [22]. SBML is a format for representing
models of biochemical reaction networks such as meta-
bolic networks, cell-signalling pathways and regulatory
networks, which has been evolving since mid-2000
through the efforts of an international group of software
developers and users, the Systems Biology Workbench.
SBML is mainly a support for integrating different mod-
elling and simulation tools. It is particularly suited for
building programs that model how two genes construct
an oscillatory circuit or a feedback inhibition loop. This
language is very detailed and specifically describes the 
biological variables, including biochemical reaction, sub-
strate of the reaction, products, cell localization, Km, etc.

Another effort to realize a pathway exchange and rep-
resentation format is the BioPAX project. Established in
2002, BioPAX is a workgroup with the goal of developing
a common exchange format for biological pathways data.
The initial release of BioPAX level 1 is now available as a
Web Ontology Language (OWL) file. The OWL Web
Ontology Language is designed for use by applications
that need to process the content of information and 
facilitates greater machine interpretability of Web con-
tent than that supported by XML, RDF and RDF Schema
(RDF-S) by providing additional vocabulary along with a
formal semantics. The main difference between BioPAX
and SBML is that BioPAX is essentially a format for 
exchange of information between different databases,
whereas SBML is a support for modelling and simulation.
BioPAX has been developed to respond to the need to 
interpret genomics data, and aims to represent the bio-
chemical reactions in the big picture of cellular metabolism,
describing biochemical pathways and protein–protein 
interaction data. SBML, by contrast, has not been designed
specifically to represent microarray or genomics data, but
is more suited for the modelling of a series of defined 
dynamic biological events.

Current efforts to develop pathway-based approaches
for the analysis of microarray data can be divided into two
main classes: first, methods that automatically display
functional genomics results on metabolic or cellular charts;
and second, methods that test for statistical significance of
enrichment of genes belonging to the same class, pathway
or networks.

Methods that automatically display functional
genomics results on metabolic or cellular charts
A pathway map is a diagram showing biological relation-
ships between genes or gene products based on organizing
principles, such as metabolic pathways, signal transduction
cascades or subcellular locations. Many authors have
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manually mapped transcriptional changes to metabolic
charts; this time-consuming process has prompted the 
development of automated methods. Efforts have been
made to display expression data with pathway information
in databases, such as ArrayDB [23], SGD [24] and KEGG
[15]. Some commercial microarray analysis or bioinfor-
matics packages, such as Rosetta ResolverTM (Rosetta
Inpharmatics LLC), GeneSpringTM (Silicon Genetics,
Agilent Technologies), AcuityTM (Axon instruments), or
GeneGOTM (GeneGo) and the Proteome Bioknowledge
LibraryTM (Incyte) have developed features that enable the
display of gene expression data in the context of meta-
bolic, genetic or interaction maps.

GeneMapp [24] is one of the most interesting freely
available computer applications. This program is designed
to visualize global gene expression or other kinds of 
genomic data in the context of hundreds of existing path-
way MAPPs (see below) and thousands of Gene Ontology
Terms, and to facilitate the exchange of pathway-related
data among investigators.

A MAPP is a special file format, assigning to each gene an
identification (ID) taken from GenBank, or a user-defined
ID system. The MAPP format is independent of the gene 
expression data and of the organizing principle, and allows

the visualization of well known pathways from curated
databases or the building of custom MAPPs according to
criteria defined by the user, without necessarily specifying
the number and type of interactions between the ele-
ments. The gene ID is the link (hyperlink) between the
gene object on the MAPP, the gene expression data and
the available information for that gene contained in the
GenMAPP database, a gene library that includes annota-
tion and biological and functional information on the
gene of interest available on public databases. Information
for genes not in the database may be entered by the user.
One of the most interesting features is MAPPBuilder, a
program that enables the user to group genes by any 
organizing principle and provides graphical objects that
can be placed and manipulated on a ‘drafting board’.
These include general objects, such as lines and arrows,
as well as biological items, such as receptor- and ligand-
binding symbols and subcellular components, and the
‘gene’, which represents a gene or gene product, thus 
allowing the creation of detailed custom MAPPs. The 
visualization tools of MAPPBuilder are indeed a strong
point of GeneMApp, in respect to the other publicly avail-
able visualization tools, as they clearly define the nature of
connections of the elements in the pathway, discriminating
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BOX 1

Summary of the names of the various applications discussed in the article and the relative URLs  

Name URL
Acuity http://www.axon.com/
AraCyC http://www.Arabidopsis.org/tools/aracyc/
ArrayDB http://genome.nhgri.nih.gov/arraydb/
BIND http://bind.ca/
BioPAX http://www.biopax.org/
BioSilico http://www.biosilico.com/
CARRIE http://zlab.bu.edu/CARRIE-web
Cytoscape http://www.cytoscape.org
DAVID http://www.david.niaid.nih.gov
EcoCyCand http://ecocyc.PangeaSystems. com/ecocyc/
Gene Ontology http://www.geneontology.org/
GeneGo http://www.genego.com
GeneMerge http://www.oeb.harvard.edu/hartl/laboratory/publications/GeneMerge/GeneMerge.html
GeneSpring http://www.silicongenetics.com
GeneXpress http://genexpress.stanford.edu/
GenMapp http://www.genmapp.org/
Gostat http://gostat.wehi.edu.au/
KEGG http://www.genome.ad.jp/kegg/
MetaCyC http://www.genome.jp/kegg/
MIPS Yeast Pathways http://mips.gsf.de/proj/yeast/CYGD/db/pathway_index.html
OpenDX http://www.opendx.org/
OpenDX http://www.opendx.org
Pathway Miner http://www.biorag.org/pathway.html
Pathway Processor http://cgr.harvard.edu/cavalieri/pp.html
Proteome Bioknowledge http://www.incyte.com/
PSI-MI http://psidev.sourceforge.net/
Reactome http://www.reactome.org/
Rosetta Resolver http://www.rosettabio.com/
SBML plug-in http://sbml.org/index.psp/
SGD http://www.yeastgenome.org/
SBML http://sbml.org/index.psp/
TRANSFAC http://transfac.gbf.de/

http://www.axon.com/
http://www.Arabidopsis.org/tools/aracyc/
http://genome.nhgri.nih.gov/arraydb/
http://bind.ca/
http://www.biopax.org/
http://www.biosilico.com/
http://zlab.bu.edu/CARRIE-web
http://www.cytoscape.org
http://www.david.niaid.nih.gov
http://ecocyc.PangeaSystems.com/ecocyc/
http://www.geneontology.org/
http://www.genego.com
http://www.oeb.harvard.edu/hartl/laboratory/publications/GeneMerge/GeneMerge.html
http://www.silicongenetics.com
http://genexpress.stanford.edu/
http://www.genmapp.org/
http://gostat.wehi.edu.au/
http://www.genome.ad.jp/kegg/
http://www.genome.jp/kegg/
http://mips.gsf.de/proj/yeast/CYGD/db/pathway_index.html
http://www.opendx.org/
http://www.opendx.org
http://www.biorag.org/pathway.html
http://cgr.harvard.edu/cavalieri/pp.html
http://www.incyte.com/
http://psidev.sourceforge.net/
http://www.reactome.org/
http://www.rosettabio.com/
http://sbml.org/index.psp/
http://www.yeastgenome.org/
http://sbml.org/index.psp/
http://transfac.gbf.de/
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the use of a biochemical intermediate from an interaction
between different proteins, or a feedback loop. To visu-
alize whole-genome expression on the MAPPs, the gene
objects can be color-coded and labelled on the basis of
microarray data [25]. One of the limits of the color-coding
visualization is that it provides only qualitative but not
quantitative information, without the ability to display
simultaneously genomics data from different sources,
such as proteomics or metabolomics, and relying on the
use of the hyperlink to obtain more information on a par-
ticular gene or reaction.

GenMAPP provides a unique additional feature in 
respect to the existing pathway resources, as it allows the
user to modify pathways for their own use or to design
new pathways. Thus, it is a powerful tool for freely 
exchanging pathway-related data among investigators.
One of the limits of this approach is the heterogeneity of
the pathways stored in the database. Ideally, the MAPPS
should have a well-established common annotation and
should be properly validated. The need for a controlled
pathway definition suggests that the potentials of GeneMapp
will be greatly enhanced by the interaction with other
sources, such as BioPAX or Reactome, addressed to prop-
erly annotate and curate the different pathways.

Cytoscape is another useful tool for the integration of
genomic data onto gene networks. This open-source tool
allows the visualization, drawing and editing of molecular
interaction networks [26]. Molecular interaction networks
are constructed from raw interaction files containing lists
of protein–protein and/or protein–DNA interaction pairs.
This is particularly useful for yeast studies, which benefit
from large sources of pairwise interactions, available
through the BIND and TRANSFAC databases. The program
allows the loading and saving of previously constructed
two-dimensional interaction networks in GML format
(Graph Markup Language), and importation of gene func-
tional annotations from the Gene Ontology (GO) data-
base, and has an SBML plug-in and PSI-MI plug-in, thus
making the tool compatible with upcoming community
standards for describing and modelling molecular inter-
action. The program allows superposing gene expression
ratios and p-values on the interaction network. A variety
of layout algorithms and analysis tools enable filtering of
the network to select subsets of nodes and/or interactions.
One limitation is that the graphical visualization is not
necessarily intuitive and could be greatly improved, and
thus currently it is useful only to investigate interaction
networks. This tool has a great potential and could be
adapted to design other kinds of networks, such as regu-
latory networks, and integrate them with expression or
proteome data.

A new and interesting tool to graphically display genomic
results is the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) [27]. This is an integrated
database that associates data from several public databases
to lists of genes and displays graphic summaries of functional

information assigning genes to KEGG metabolic processes
(KEGG charts) and Gene Ontology functional categories
(GO charts) at different term specificity levels, and a tool
called ‘DomainCharts’ that groups genes according to
conserved protein family domains. The limit of this tool
compared with GeneMapp is that it restricts the analysis
to a pre-defined set of pathways, and that the graphical
representation of the data on GO charts is not the most
appropriate to describe a pathway.

One of the common limitations of all the visualization
programs presented so far is that they do not automatically
indicate the statistical significance of the change of a path-
way, making it hard to select the most interesting of the
different pathway maps.

Methods that test for statistical significance of
enrichment of genes belonging to the same class,
pathway, or network
The development of statistical methods to assess the sig-
nificance of alteration in expression in diverse cellular
pathways is of increasing interest. Several microarray 
papers have reported activation or repression of a given
pathway, but too often the researcher finds what is 
expected, or what is already known, and the assumption has
not been properly supported from a statistics standpoint.

To assess the significance of the genes of a pathway to
be coordinately changed in expression in a given exper-
iment, several factors have to be taken into account: first,
the number of open reading frames (ORFs) for which 
expression has altered in each pathway; second, the total
number of ORFs contained in the pathway; third, the pro-
portion of the ORFs in the genome contained in a given
pathway; fourth, the correlation of the pathways, to 
select the most appropriate statistical test.

Pathway Processor [28] was the first program that 
implements both a statistical method to determine which
pathways are most affected by transcriptional changes
and a visualization tool to map expression data from mul-
tiple whole-genome expression experiments on metabolic
pathways.

The method automatically associates an ORF with a
given biochemical step according to the information con-
tained in 92 pathway files from KEGG database. KEGG
has been chosen for the concise and clear way in which
the genes are interconnected and for the great effort in
keeping the information up to date. Thus, this approach
allows the proper testing of the ability of the statistical
method to score a limited number of well curated and bio-
chemically annotated pathways.

The ‘Pathway Analyzer’ program of ‘Pathway Processor’
uses the Fisher Exact Test to generate a P-value which 
indicates the probability that the pathway would contain
as many or more affected genes than actually observed,
the null hypothesis being that the relative changes in
gene expressions in the pathway are a random subset of
those observed in the experiment as a whole. The value
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of the statistical test is multiplied by +1 or –1, to indicate
whether the majority of the genes in a particular pathway
are upregulated or downregulated, and is therefore called
the ‘Signed Fisher Exact Test’, whose value is a positive
real number (between 0 and 1) corresponding to the 
P-value of the Fisher Exact Test for the pathway. Sorting
for the Signed Fisher Exact Test can be used to compare
different experiments; the comparison can be represented
graphically using programs as common as ExcelTM or
TreeView, or more sophisticated ones such as OpenDX.

Common practice suggests that the validity of the statis-
tical methods has to be tested on a well known biological
problem. The yeast Saccharomyces cerevisiae represents the
best model for testing tools connecting expression data
with biochemical pathways. The potential of the Fisher
exact test and of Pathway Processor as a whole was tested
by examining the differential expression during the diauxic
shift, a well known physiological switch from fermenta-
tion to respiration of the yeast cell upon exhaustion of
the available carbon sources, described in one of the
proof-of-concept papers for microarray technology [29].
The analysis highlighted affected pathways that had 
previously been detected only through cumbersome
analysis of the results with repeated references to KEGG,
MIPS and SGD.

The P-values can also be used to select pathways to 
examine more closely using Expression Mapper, the second
program of Pathway Processor, displaying differences in 
expression on KEGG metabolic charts. One of the major
limits of this program is that it has been initially designed
only for the analysis of expression data from two well 
established model organisms, yeast and Bacillus subtilis,
according to the KEGG biochemical pathways. This limi-
tation is derived from the choice to use only well annotated
pathways, with minimal overlapping, for the statistical
tests. A new updated version (to be made public in autumn
2005) will soon enable researchers to analyze metabolic
and cellular pathways, other than those reported in
KEGG, in several organisms including Mus musculus and
Homo sapiens.

Several methods for assessing the significance of expres-
sion changes in diverse cellular pathways have been recently
developed. GeneMerge [30] uses gene lists from KEGG,
GO, MIPS or other sources, and rank scores for functional
or categorical over-representation within the study set of
genes and is obtained using the hypergeometric distri-
bution. The program is extremely useful, as it extends the
analysis to any favorite list of genes, the major limitations
being the absence of any form of pathway visualization.
Similar to GeneMerge, Gostat [31] also takes input from
all genes on a microarray and automatically obtains the
GO annotations from a database. The program automat-
ically obtains the GO annotations from a database and
generates statistics (Wilcoxon test and Kolmogorov-
Smirnov statistics) of which annotations are overrepresented
in the analyzed list of genes.

Pathway Miner [32] is another freely available tool that
uses the Fisher exact test to rank genes that are defined as
part of the same pathway, on the basis of their role in
metabolic, cellular and regulatory pathways, or as groups
pre-defined by the user. The genes are then mapped onto
pathways with a graphical output similar to that of
Cytoscape, and gene product association networks are 
extracted for genes that co-occur in pathways.

One of the major limitations of these methods is the
application of the Fisher exact test and/or hypergeometric
distribution to the analysis of highly interconnected path-
ways with a high level of redundancy. The use of statistics
in the current approaches considers all the annotations as
independent categories, which is clearly not the case. As
an example, several gene lists may include entirely sub-
lists of genes, and some genes could be part of more than
one gene list. When using programs that test for enrich-
ment in GO annotations, it is important to keep in mind
that the GO annotations do not define a pathway, but are
rather a classification based on existing knowledge, where
a gene can be attributed to many different classes, and the
ontology defines different hierarchical levels, that do not
necessarily describe causality, directionality, or the type
of interaction between the components of a given class.
As a result, classes defined by the GO terms can be highly
redundant. The fact that one gene can be contained in
several categories particularly affects the application of
hypergeometric statistics and makes it difficult to properly
correct for multiple hypotheses. Therefore, the statistical
values obtained should be considered merely as indicative,
and lead to loss of important information. Our experience
on the Diauxic shift dataset and KEGG indicates that the
application of a standard Bonferroni correction is often
too restrictive, and clearly discards a great deal of impor-
tant biological information (D Cavalieri, unpublished).

This consideration highlights the need to tailor the tool
to the source of the pathway information, and in partic-
ular to estimate the connection between different path-
ways. This connection can be the result of partial or total
overlap, or from sharing of common reaction precursors
or the potential flow of intermediate products into more
than one pathway. An estimate of the connectivity
between pathways could be used to apply multiple
hypothesis correction to the statistics. Integration of 
expression information pathway-based analysis with Flux
balance analysis can be converted to in silico regulatory
models that can be further combined with genome-scale
metabolic models to build integrated models of cellular
function including both metabolism and its regulation
[33].

On the other hand, it will be interesting to see the results
of the application of Bayesian networks for representing sta-
tistical dependencies to the discovery of the interactions
between genes in pathways and discover novel pathways,
according to the same framework used to describe inter-
actions between genes [34].
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Methods that use functional genomics results,
existing biological information, and clustering to
reconstruct a novel biological network
One of the limits of pathway-based methods is that they do
not provide information on genes of unknown function or
the transcriptional regulatory networks. The integration
of the results from pathway-based analyses with those
of clustering algorithms could indicate which genes of
unknown function cluster together with genes assigned
to a given pathway, suggesting that their functions are
metabolically related, and affording a new approach for
attribution of functions to unknown genes.

GeneXpress is a recently developed tool that enables
the user to combine cluster analysis with the analysis of
biological attributes. Following cluster analysis of microar-
ray data, GeneXPress tests what biological processes are rep-
resented in a given cluster, what cis-regulatory motifs are
shared by genes within a cluster, and how significant
these associations are, while allowing the possibility of
performing a global analysis. This is a substantial improve-
ment compared with other tools because statistical analysis
of the clusters can associate the cluster to one or more 
biological processes, provide a p-value for the association
and integrate the pathway results with the structure of
the transcriptional regulatory networks, testing for enrich-
ment in known transcription factor binding motifs. This
tool has been recently applied to the collection of avail-
able expression data related to cancer progression, demon-
strating an extremely promising mine of biological and
clinical information [35].

Another recently developed program (CARRIE) uses
promoter sequence and expression data to infer a regu-
latory network shown on an interactive graph [36]. The
network data can be analyzed in the context of the cellular
response visualizing the genes on KEGG metabolic pathways.

Conclusions
The advantage of analyzing a network of genes is that 
altered genes which co-vary even to a small extent can be

considered significant, rather than focusing on the prob-
ability of the change of every single element. The hypoth-
esis that genes in the same pathway are more likely to be
coordinatedly regulated than a randomly selected gene
set has been recently demonstrated using coherence 
indicators estimated in 96 pathways in tumour and normal
samples [37].

Ideally, methods that analyze expression data according
to a pathway-based logic should give: (1) an indication of
the statistical significance of the conclusions; (2) provide
a user-friendly interface for visualizing the results; (3) be
able to encompass the largest number of well-established
pathways; (4) define novel pathways; (5) assign unknown
genes to a pathway; and (6) reconstruct the hierarchical
structure of a group of pathways.

The efforts of the consortiums developing common 
exchange formats for biological pathways, annotations of
all the biochemical reactions and databases of validated
pathways are instrumental to the integration of bio-
chemical function and gene expression. The improve-
ment of pathway-based methods will require improved
statistics, the connection of biological pathways with 
information on transcription factors, metabolite flow, net-
works of protein–protein interaction, and better visualiza-
tion and graphical tools. Progress in this field will provide
a crucial contribution to the application of microarrays
to clinical studies and to systems biology.
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