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In a mixture experiment, m components are mixed to produce a response. The total 
amount of the mixture is a constant. This classical experiment has been studied for a long 
time, but little attention has been given to the addition order of the components. In an 
Order-of-Addition (OofA) Mixture experiment, the response depends on both the mixture 
proportions of components and their order of addition. The overall goal of the OofA 
Mixture experiment is to identify the addition order and mixture proportions that produce 
an optimal response. Methodology for constructing full OofA Mixture designs is discussed, 
but the size of these full designs increases rapidly as m increases. A Threshold Accepting 
(TA) algorithm is used to find a subset of n rows of the full OofA Mixture design that 
maximize the D-optimality criterion, reducing the number of required runs. Neighborhood 
structures are proposed for OofA simplex lattice and general mixture designs. The TA 
algorithm is compared with the well-known Fedorov algorithm, and recommendations for 
the use of this algorithm are provided.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In a mixture experiment, there are m components that are mixed together in a fixed total amount to produce a response 
y. It is typically assumed that the response only depends on the proportion of each ingredient that is included in the mix-
ture. The objective of a mixture experiment is to find values of the mixture proportions that produce an optimal response. 
Typically, this means finding the values of the mixture proportions that maximize a response, minimize a response, or have 
the response match a pre-existing target value.

In an Order-of-Addition experiment, the response depends on the order in which m components are added to a system. 
The Order-of-Addition problem surfaces in many practical applications. In the pharmaceutical industry, Rajaonarivony et al. 
(1993), showed that the size of nanoparticles formed was found to depend on the order of addition of poly-L-lysine and 
calcium to sodium-alginate solution. Additionally, in Chandrasekaran et al. (2006), the efficiency of synthesis of carbonate 
products depended on the order of addition of alcohols. Another example is the field of combinatorial drug therapy, where 
Ding et al. (2015) demonstrate that both the ratio and order of three drugs have an impact on the treatment of oral cancer. 
The OofA experiment has been well-explored by Lin and Peng (2019) and Peng et al. (2019).

In an Order-of-Addition Mixture experiment (OofA Mixture), researchers are concerned with both the addition order 
of the components and their mixture proportions. Assuming that the m components are sequentially mixed, there are m!
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possible orderings. Suppose a mixture design in m components has t mixture experimental runs, where t depends on m. 
Then, a naive approach would be to try all t × m! mixture-order combinations, but this scales faster than an exponential 
rate. Additionally, a mixture need not use all m components, so some of the t × m! runs may be redundant. See Rios and 
Lin (2021), where an algorithm is proposed for creating such a design in the case where there are no constraints on the 
mixture proportions.

The focus of this paper is on designing experiments for the OofA Mixture experiment in the case where funds are limited, 
and researchers can only afford a small number of runs. This will be accomplished by using the Threshold Accepting (TA) 
algorithm to select a small number of runs from a larger pool of possible runs according to the popular D-optimality 
criterion. There are many possible criteria for selecting an optimal design (e.g. A-,I-), and the TA algorithm proposed in 
this paper may be adapted to different criteria without changing the overall algorithm. The Threshold Accepting heuristic 
originally proposed by Dueck and Scheuer (1990) has been widely used, specifically for addressing experimental design 
problems. The first of these applications focused on the (approximate) evaluation of the star discrepancy (Winker and Fang, 
1997). Further contributions focused on the construction of low discrepancy and optimal designs on a simplex (e.g. Fang et 
al. 2000, Fang et al. 2006), optimal designs on flexible regions (Lin et al., 2010) and robust designs (Winker and Lin, 2011).

1.1. Order of addition experiments

In an Order-of-Addition (OofA) experiment, a measurable response y depends on the order in which m components are 
added to a system or compound. Most of the existing work on the OofA problem is on the Pairwise Ordering (PWO) model, 
which was introduced by Van Nostrand (1995). It was officially called the Pairwise Ordering (PWO) model in Voelkel (2019). 
Notation from Lin and Peng (2019) will be used here. Suppose that there are m components 1, 2, . . . , m and a permutation 
is represented by a = (a1, . . . , am)T . Let P be the set of all pairs ( j, k) where 1 ≤ j < k ≤ m. Let jk denote the pair ( j, k). 
The PWO factor for all jk ∈P is defined as

z jk(a) =
{

1 if j precedes k in a

−1 if k precedes j in a .
(1)

So if a = (3, 1, 2) then z12(a) = 1, z13(a) = −1, z23(a) = −1. The PWO factors must obey the transitive property, i.e., if 
zi j(a) = 1 and z jk(a) = 1, then it must be true that zik(a) = 1. Thus, certain combinations are impossible, such as z12(a) =
1, z13(a) = −1, z23(a) = 1. Let τ (a) be the expected response given permutation a. The PWO model is

τ (a) = δ0 +
∑
jk∈P

z jk(a)δ jk . (2)

In Equation (2), δ jk is the effect of the order of components j and k on the response. The parameter estimates from the 
PWO model (2) may be used to help identify an optimal order of addition. Lin and Peng (2019) discuss how topological 
sorting methods may be used to finding an optimal order given the output of a PWO model. There has also been a large 
amount of research conducted on the optimality of PWO designs. Peng et al. (2019) proved that the full PWO design (with 
all m! runs) is optimal for any criterion that is concave and signed permutation invariant, which covers the D−, A−, E−, and 
M.S.− criteria. Peng et al. (2019) went a step further, and provided a systematic method for constructing fractional PWO 
designs that have the same moment matrix as the full design, and are therefore optimal. TA algorithms were demonstrated 
to be useful in constructing OofA designs in Winker et al. (2020), so it is natural to consider this method in the extension 
to OofA Mixture experiments. For more papers on OofA designs, see also Chen et al. (2020) and Zhao et al. (2021).

1.2. Mixture experiments

In a mixture experiment, m components are mixed to produce a (continuous) response y. The total amount of the 
mixture is fixed. Let x1, . . . , xm represent the proportions of the m components in a mixture experiment, with 0 ≤ xi ≤ 1 for 
i = 1, . . . , m and 

∑
i xi = 1. The objective of a mixture experiment is to find values of the mixture component proportions 

x1, . . . , xm that optimize (maximize or minimize) the response y. Alternatively, the objective can be to choose x1, . . . , xm

to match a target response T . Note that the mixture components take values in the (m − 1) dimensional simplex S =
{(x1, . . . , xm) ∈ [0, 1]| ∑i xi = 1}. We first review two classical mixture designs: the simplex-lattice design, and the extreme 
vertices design. Many other classical designs and models for mixture experiments are available (Cornell, 1990), and our 
methods are not limited to these designs.

Simplex-Lattice Design. A classical approach is the {m, l} simplex lattice design. Here, m is the number of mixture compo-
nents, and l is the degree of the largest polynomial model that should be fit to the response surface. This design is formed 
by listing all possible combinations of the points xi = 0, 1l , 

2
l , . . . 1 that are inside the simplex S .

Extreme Vertices Design. In practice, it is likely that constraints will be placed on the mixture proportions. Suppose that 
there are single-component constraints 0 ≤ Li ≤ xi ≤ Ui ≤ 1 for each i = 1, 2, . . . , m. In this case, the experimental region is 
2
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a polyhedron that lies within the simplex. The extreme vertices design chooses the vertices of the bounded experimental 
region as design points, in addition to center points on the faces and interior of the region. Several algorithms can construct 
this design, such as Snee and Marquardt (1974). It is rare in a practical application to see a degree higher than 2 used to 
model the response surface. Therefore, we focus on the second-order polynomial to model the response surface:

η =
m∑

i=1

βi xi +
∑
i< j

βi jxi x j , (3)

where η represents the response surface, xi is the value taken by the ith mixture component, βi is the effect of a single 
blend of component i, while βi j is the effect of a mixed blend of components i and j on the response. The model has no 
intercept term due to the constraint that 

∑
i xi = 1. Model (3) can be extended to a mixture-process experiment, which 

occurs when variables other than the mixture proportions (called process variables) affect the response. Examples of pro-
cess variables are temperature, time, or pressure. A common approach to designing such an experiment is to create a 2k

factorial design for the process variables, and then run a mixture experiment at each combination of the process variables 
(Cornell, 1990). This allows researchers to determine the effect of interactions between the mixture proportions and process 
variables.

In reality, it can be impractical to use all runs from a mixture design. Instead of randomly selecting a subset of these runs, 
one can choose a subset using an optimality criterion. In a mixture model y = Xβ + ε , where the errors are independent 
with constant variance, the variance of the model parameters is proportional to (X T X)−1. All optimality criteria choose 
a matrix X that “minimizes” (X T X)−1 in some way. The D-optimality criterion tries to minimize det((X T X)−1), which 
minimizes the volume of the confidence ellipsoid about the coefficients β . The I-optimality criterion tries to minimize ∫

x∈S f (x)(X T X)−1 f (x)T dx, i.e., the average prediction variance over the experimental region under a mixture model f
(Goos et al., 2016). We focus on the D-optimality criterion as an example because of its popularity in the OofA literature 
and its ease of implementation. It is possible to apply the methods in our paper to any optimality criterion that may be 
quickly updated.

1.3. OofA Mixture experiments

In an OofA Mixture experiment, the response depends on both the mixture proportions of m components and their ad-
dition order into the mixture. Researchers often have three main goals of interest in this experiment: (1) perform statistical 
inference on the mixture components; (2) perform statistical inference on the addition order of the components; (3) identify 
the addition order and proportions of the m components that produce an optimal response. In this paper, we first identify 
a method for enumerating all sensible experimental runs for an arbitrary OofA Mixture experiment. However, these “full” 
designs are often quite large. We hope to reduce the size of these OofA Mixture designs, while still being able to achieve 
the previously mentioned goals. For more details on the OofA Mixture problem, see Section 2.

There are several studies which conclude that the addition order of mixture components may have an impact on the 
response. Voelkel and Gallagher (2019) studied the effect of the order of addition of mixture components on the viscocity 
of automotive paint coatings. Although this is indeed a mixture experiment, only the order of addition was studied in this 
case, as the mixture proportions were held constant. Sljivic-Ivanovic et al. (2015) studied how applying m = 3 sorbents in 
a mixture impacted the removal of ions from aqueous solutions. They concluded that the order of addition was indeed 
significant. It should also be noted that they conducted separate experiments for the mixture proportions and the order of 
addition; they used an extreme vertices design to examine the mixture proportions, and they ran all m! = 6 orderings with 
fixed mixture proportions to study the order of addition.

1.4. Outline of paper

In Section 2, we describe how to construct full designs for the OofA Mixture experiment, and formally define the problem 
of selecting a design matrix of n runs from a full OofA Mixture design matrix. Furthermore, we describe how to use the 
Threshold Accepting (TA) algorithm to find D-optimal designs. Section 3 shows results regarding the implementation and 
performance of the TA algorithm and recommendations for certain algorithm parameters. Section 4 provides two examples 
that compare the TA algorithm to the well-known Fedorov exchange algorithm. Section 5 concludes the paper.

2. Methods

In this section, we (1) describe how to construct full OofA Mixture designs that include all feasible combinations of a 
set of mixture proportions and addition orders, (2) formally state the problem of finding a D-optimal subset of these full 
designs, and (3) describe Fedorov and TA algorithms for solving such a problem.
3
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Table 1
An OofA simplex lattice design for m = 3, l = 2.

x1 x2 x3 z12 z13 z23

1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.5 0.5 0.0 1.0 0.0 0.0
0.5 0.5 0.0 -1.0 0.0 0.0
0.5 0.0 0.5 0.0 1.0 0.0
0.5 0.0 0.5 0.0 -1.0 0.0
0.0 0.5 0.5 0.0 0.0 1.0
0.0 0.5 0.5 0.0 0.0 -1.0

2.1. Full designs and models for OofA Mixture

In an Order-of-Addition (OofA) mixture experiment, we assume that the response depends on both the mixture propor-
tions x = (x1, . . . , xm) of each component, and the order of addition of these m components. There are m! possible orderings 
of the m components. Let a be a permutation (ordering) of (1, 2, . . . , m) and x = (x1, . . . , xm). In general, suppose that

y = f (x,a) + ε . (4)

The goal of a mixture experiment is to find the optimal mixture proportions and ordering, i.e., to find the mixture 
proportions and addition order that maximize the response or bring it close to a pre-determined target value T . Let A be 
the set of all permutations of (1, 2, . . . , m). Let S∗ = {(x1, . . . , xm) : Li ≤ xi ≤ Ui, 

∑
i xi = 1}. Then, if the goal is maximization 

of the response, we may write this as

(x∗,a∗) = arg max
x,a

f (x,a) subject to a ∈ A and x ∈ S∗ . (5)

To represent the order of addition of the m mixture components, we define these Mixture Pairwise Ordering (MPWO) 
variables:

z jk(x,a) =

⎧⎪⎨
⎪⎩

1 x j, xk �= 0 and j is before k in a ;

0 x j = 0 or xk = 0 or both;

−1 x j, xk �= 0 and j is after k in a.

(6)

For example, if the order of addition of m = 3 components is a = (3, 1, 2), but the mixture proportions are x = (0.2, 0, 0.8), 
then z13(x,a) = −1 (since components 1 and 3 were included in the mixture, and component 1 was added after 3), but 
z12(x,a) = 0 because component 2 was not included in the mixture. Using these MPWO variables, it is possible to construct 
a full design matrix D f ull using Algorithm 1.

Algorithm 1: Generate full OofA Mixture design matrix.
Create a design for m components, X∗ .
Initialize a design matrix D .
for each row x of X∗ do

Let k be the number of nonzero components of x.
Replicate x, k! times (including the original row).
Associate each replicate with a unique ordering a of the k nonzero components of x.
For each replicate, represent its ordering a using a row vector z of (m

2

)
MPWO variables z jk(x, a) for each jk ∈P .

end
Stack the rows x (and their replicates) into a matrix X .
Stack the rows z into a matrix Z .
return D = (X, Z)

Algorithm 1 takes an arbitrary design for the m mixture components, X∗ . Each row of X∗ is repeated k! times, where k
is the number of nonzero components in the row. Then, orderings are assigned to these nonzero components. This creates 
a “full” design in the sense that every possible ordering of the nonzero components is checked. Table 1 shows an example 
of a simplex lattice design matrix D for m = 3 components with degree l = 2 for the OofA Mixture problem.
In an OofA Mixture experiment, the response y has the following form:

y = η(x) + g(x,a) + ε . (7)

Here, η(x) is the “pure mixture” model, and it is typically a second-order polynomial mixture model of the m components, 
i.e.,
4
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Table 2
Run size (N) for full {m, l} OofA sim-
plex lattice design.

m l N

4 3 52
4 136

6 3 186
4 816
5 3006
6 9276

8 3 456
4 2864
5 15688
6 74208

η(x) =
m∑

i=1

βi xi +
∑
i< j

βi j xix j . (8)

There is some flexibility in the choice of g . One can choose g so that there are no mixture-order interactions. In this case, 
the full OofA Mixture model can be written as

η(x) =
m∑

i=1

βi xi +
∑
i< j

βi j xix j, and g(x,a) =
∑
j<k

δ jkz jk(x,a) , (9)

for all possible pairs j < k. It is also possible to allow for said mixture-order interactions, as in the following models:

g(x,a) =
∑

i

∑
k<l

γ i
klxi zkl(x,a), or, (10)

g(x,a) =
∑
k<l

δkl zkl(x,a) +
∑

i

∑
k<l,i=k,l

γ i
klxi zkl(x,a) . (11)

Models (10) and (11) are based on the mixture-process variable models (Cornell, 1990). Model (10) does not include any 
main pairwise order effects, but Model (11) does. Note that Model (11) assumes that all interaction effects γ i

kl = 0 if i �= k
and i �= l.

2.2. Problem statement

In general, existing OofA Mixture designs have too many runs. Table 2 shows the run sizes for OofA Simplex-Lattice 
Designs for various numbers of components m and degrees l. In Table 2, the run sizes increase rapidly as m and l increase.

Given an OofA Mixture design matrix D f ull with N rows, we hope to choose a subset of n < N distinct rows from this 
design matrix such that the subset of n rows is D-optimal. Let Dn be the collection of all matrices with exactly n distinct 
(non-repeating) rows from D f ull . Let Mn be the collection of all model matrix expansions (using the OofA Mixture model 
f ) of matrices in Dn . Then, M∗ is D-optimal if

M∗ = arg min
Mn∈Mn

det((MT
n Mn)

−1) = arg max
Mn∈Mn

det(MT
n Mn) . (12)

Once M∗ is found, we know the corresponding optimal design matrix D∗ . Throughout this paper, we will work mainly with 
the model matrices Mn ∈Mn using a given model f of the general form (7). Once an optimal design is identified, then the 
corresponding OofA Mixture experiment can be executed. Using the data from this experiment, an OofA Mixture model of 
the form (7) can be fit. This model can be used to estimate the response for new mixture proportions and addition orders, 
which can be used to identify the optimal mixture proportions and order of addition.

2.3. TA algorithms for OofA Mixture designs

In this section, we describe how to use Threshold Accepting (TA) algorithms for selecting D-optimal OofA Mixture designs 
of a fixed size. As stated in Winker (2000) and Lyra et al. (2010), TA algorithms initialize a solution and iteratively generate 
a new solution that is in a “neighborhood” of the current solution. The new solution is then accepted if it strictly improves 
the objective, or if the decrease in optimality (with respect to the objective function) is within some defined threshold. TA 
algorithms have very recently seen use with OofA experiments in Winker et al. (2020), so it is natural to consider them 
in the context of OofA Mixture designs. The pseudo-code for a general Threshold Accepting (TA) algorithm for finding a 
D-optimal design is given in Algorithm 2.
5
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Algorithm 2: Pseudo code for generic TA algorithm for finding D-optimal design.
Input: A sequence {tr : r = 1, 2, . . . } of real numbers such that tr → 0 as r → ∞.
1. Initialize a starting design D0. Set r = 1.
while a convergence condition is not met do

2. Find D1 ∈ N (D0).
3. if de(D1) > de(D0) − tr then

D0 = D1

end
4. r = r+1;

end
5. Return D0.

Fig. 1. The points in a {3,3} SLD. Neighboring points have edges between them.

We denote the D-efficiency of a design D as de(D). In step 1, a design D0 is randomly selected from a set of candidate 
points. Then, a new design D1 is chosen that is in the neighborhood of D0, i.e., the new design is not very “different” 
from the starting design. In Algorithm 2, the sequence {tr : r = 1, 2, . . . } tends toward 0 as r increases. This ensures that a 
new design is only selected if it has a higher D-efficiency than that of the previous design, or if it has a D-efficiency that 
is slightly worse than that of the previous design (where slightly is defined by the choice of tr ). This helps the algorithm 
avoid premature convergence. When tr is large, it is possible to choose some designs that are slightly less ideal in terms of 
D-efficiency. Then, as r increases, tr decreases, allowing the algorithm to converge.

In order to use the TA algorithm in the context of the OofA Mixture problem, it is required to (1) define a neighborhood 
around a design, i.e., clearly define N (D0), and (2) determine how to find the sequence of thresholds {tr : r = 1, 2, . . . }. We 
begin by creating a definition of a neighborhood for an {m, l} OofA Simplex Lattice Design (OofA SLD).

Definition 1. Two rows d = [x, z(x,a)], d′ = [x′, z(x,a′)] of an OofA SLD in m components with degree l are pairwise 
adjacent lattice neighbors if the only change between them is either one of the following:

1. ||x − x′||2 =
√

2
l

2. a′ is obtained by switching one pair of adjacent components in a.

Definition 2. Let D and D ′ be two {m, l} OofA SLDs with n rows. Then D and D ′ are pairwise adjacent lattice neighbors
if they are identical apart from k corresponding pairs of rows (d1, d′

1), (d2, d′
2), . . . , (dk, d′

k), which are pairwise adjacent 
lattice neighbors, for some k ∈ {1, 2, 3, . . . n}.

If D and D ′ are pairwise adjacent lattice neighbors, denote this as D ′ ∈Nk(D). The definition of pairwise adjacent lattice 
neighbors arises from the fact that the mixture points in an {m, l} SLD are equally spaced, and the Euclidean distance 
between any two adjacent mixture points in such a design is 

√
2

l . Hence, it is natural to conclude that two mixture points 
x, x′ are “neighbors” if the distance between them is 

√
2

l . To illustrate this, Fig. 1 shows the points in a {3, 3} SLD that are 
equally spaced with a distance 

√
2

3 . In Fig. 1, neighboring points have edges between them.
The second half of Definition 1 arises by realizing that changing an adjacent pair of components is a relatively small 

modification to make. In terms of PWO coding, changing the order of adjacent components j = 1, 2, . . . , m − 1 and k = j + 1
only requires multiplying z jk by −1. Finally, note that the definition of pairwise adjacent lattice points implies that d and 
d′ are neighbors if they are adjacent in only one of the following regards (and equal in the other): (1) in terms of distance 
6
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in the simplex or (2) in terms of the pairwise ordering. It is also possible to define a more general neighborhood, which is 
useful for the case of constrained mixture proportions.

Definition 3. Two rows d = [x, z(x,a)], d′ = [x′, z(x,a′)] of an OofA Mixture design are pairwise adjacent ε neighbors if the
only change between them is one of the following (but not both):

1. ||x − x′||2 ≤ ε
2. a′ is obtained by switching one pair of adjacent components in a.

Definition 3 can be used for any OofA Mixture design, where a value of ε needs to be pre-specified. In this definition, 
d and d′ are neighbors if they are nearby in the experimental space of x (with order constant) or if they are identical in 
x, but have orderings that differ by a single pairwise switch. One can take ε to be a quantile (e.g. 80th, 90th) of the list of 
all pairwise distances between all points in the extreme vertices design. If ε is too small, then there is a risk of becoming 
trapped at a local optimum. On the other hand, if ε is too large, then the size of the neighborhoods will also increase, 
possibly causing the algorithm to become inefficient.

Once a neighborhood is defined, it remains to discuss how to generate the threshold sequence {tr : r = 1, 2, 3, . . . } An 
empirical procedure similar to that of Winker et al. (2020) is used to generate the threshold sequence. This procedure is 
summarized in Algorithm 3.

Algorithm 3: Algorithm for finding an empirical threshold sequence.
Inputs: number of components m, an OofA Mixture Design D f ull number of iterations ni , neighborhood parameter k, and the model f (x,a)

1. Initialize t = (0, . . . , 0) of length 2ni .
for r = 1, 2, . . . , 2ni do

2. Form D0 by choosing n random rows from D f ull .
3. Find a random D1 ∈ Nk(D0)

4. tr = |de(D0) − de(D1)|
end
5. Sort t in descending order.
6. Use the lower 50% of t as the threshold sequence {tr : r = 1, . . . , ni} .
Output The threshold sequence {tr : r = 1, . . . , ni}

Algorithm 3 takes as inputs a full OofA Mixture design, the desired threshold sequence length ni , the parameter k, which 
chooses the number of rows exchanged in a neighborhood Nk(D0), and an OofA Mixture model f (x,a). The algorithm first 
initializes a list t (step 1). Then, the algorithm generates a large number of possible initial designs D0. For each of these 
designs, a random neighbor D1 ∈ Nk(D0) is found, and the absolute difference in D-efficiency is stored in the list (steps 
2-4). Finally, these absolute differences are sorted in descending order. Using the entire sequence of absolute differences for 
the thresholds is inefficient, because the largest values of the sequence are large enough to allow any design to be selected 
at the beginning. This would mean that many iterations would be wasted on random search steps at the beginning of the 
algorithm. Instead, the lower 50% of these values are used as the threshold sequence (steps 5-6).

Algorithm 4: TA algorithm for finding D-optimal OofA Mixture design with empirical threshold sequence.
Inputs: number of components m, full OofA Mixture design D f ull , target size n, number of iterations ni , and the model f (x,a)

1. Use Algorithm 3 to find the threshold sequence {tr : r = 1, . . . , ni}
2. Form D0 by choosing n random rows from D f ull .
3. Find M0, the model matrix expansion of D0.
4. Compute and store C0 = (MT

0 M0)−1 and d0 = |MT
0 M0|.

for r = 1, 2, . . . , niter do
5. Copy d1 = d0, C1 = C0.
6. Randomly choose D1 ∈ Nk(D0) by sequentially exchanging k random rows of D0.
for each exchange of a row x in D0 with some y do

7. Compute �(x,y) = 1 + v(y) − v(x) + v(x,y)2 − v(y)v(x).
8. d1 = d1�(x,y).
9. Update C1 = C1 − C1 F1(I2 + F T

2 C1 F1)−1 F T
2 C1 where F1 = [ f (y), − f (x)] and F2 = [ f (y), f (x)].

end
10. Use d0, d1 to compute de(D0), de(D1).
11. if de(D1) > de(D0) − tr then

Update D0 = D1, d0 = d1, C0 = C1.
end

end
Output D0 and de(D0).

Algorithm 4 takes as inputs D f ull , which is the set of all candidate points. It also takes the desired size n of the final 
OofA Mixture design, the number of iterations ni of the algorithm, and the type of model being used f (x,a). As output, 
7
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Algorithm 4 returns a design D0 that is D-efficient, and it also displays the D-efficiency of D0. Step 1 of Algorithm 4 calls 
Algorithm 3 to generate the empirical threshold sequence. Step 2 takes a random subset of the rows of D f ull and uses this 
as an initial design. Step 3 uses the user-specified model to generate the model matrix M0 that corresponds to D0. Once 
this is done, the matrix inverse C0 and determinant d0 are computed in step 4.

In step 5 of Algorithm 4, the values of d1, C1 are initialized as copies of d0, C0, respectively. In step 6, k randomly 
selected rows of D0 are sequentially exchanged to form a neighboring design D1. Steps 7-9 describe how the determinant 
d1 and inverse C1 are updated for each sequential exchange. Here, Algorithm 4 makes use of some update formulas given in 
Fedorov (1972) and also given in Meyer and Nachtsheim (1995). Specifically, if a point x in the model matrix is exchanged 
with an arbitrary point y in the design space, then |MT

0 M0| changes by a multiplicative factor of

�(x,y) = 1 + v(y) − v(x) + v(x,y)2 − v(y)v(x) , (13)

where v(x,y) = f (x)T (MT
0 M0)

−1 f (y) and v(x) = v(x,x) for ease of notation. Note that v(x) is the prediction variance at 
the point x. Additionally, the update on line 10 comes from both Fedorov (1972) Meyer and Nachtsheim (1995), who note 
that after exchanging x with y, the matrix C1 can be found without inverting the entire new moment matrix again:

C1 = C0 − C0 F1(I2 + F T
2 C0 F1)

−1 F T
2 C0 . (14)

In equation (14), C1 = (MT M)−1 is the inverse of the moment matrix after the exchange, M is the model matrix after the 
exchange, C0 = MT

0 M0, F1 = [ f (y), − f (x)], and F2 = [ f (y), f (x)]. The matrix (I2 + F T
2 C0 F1) is 2 ×2, so inverting this matrix 

is computationally easier than finding (MT M)−1 at each iteration of the algorithm. The matrix C0 is required during each 
iteration to calculate the prediction variances v(x), v(y), and v(x,y), so a quick method of updating this matrix is necessary 
for this algorithm. Line 11 of the algorithm uses d0, d1 to find the D-efficiencies of D0 and D1, i.e., the D-efficiencies before 
and after the k sequential exchanges, respectively. Finally, in step 12, if de(D1) > de(D0) − tr then the exchange is confirmed, 
otherwise the loop continues.

To implement Algorithms 3 and 4, a method of quickly finding a random neighbor D1 ∈ Nk(D0) is required. Since the 
full design D f ull is known before the algorithm is executed, it is possible to store a list of all neighbors for each candidate 
point ahead of time. To generate a random neighbor D1 ∈Nk(D0), simply select a row x in D0, look up the list of neighbors 
of x, and randomly select one that is not currently in the design. Although it is computationally burdensome to compute 
the N × N adjacency matrix, this only needs to be computed once for any full design. Once the adjacency matrix is found, 
the selection of random neighbors in Step 7 of Algorithm 4 is relatively fast, as the list of neighbors for any row is already 
stored in the adjacency matrix. We emphasize that our implementation of this procedure enforces the n rows to be unique 
(no replicates). This restriction may easily be dropped if it is desired.

Algorithm 4 is compared with an updated version of Fedorov’s exchange algorithm (Cook and Nachtrheim, 1980) that 
is outlined in Algorithm 5. Lines 1 to 3 of Algorithm 5 choose a random subset of rows from D f ull to create an initial 
design D0 of size n, find its model matrix expansion M0, and then compute the initial values of C0 and M0. Then for 
each iteration, each row x of the current design D0 is paired with a row y from D f ull (that is not currently in D0) so 
that �(x,y) is maximized (Lines 6-8). If �(x,y) > 1, then the exchange is performed (Lines 9-11). Line 10 keeps track of 
the multiplicative change in the determinant across the entire iteration. At the conclusion of an iteration, the convergence 
parameter δ is calculated (Line 12).

Algorithm 5: Fedorov exchange algorithm for OofA Mixture design.
Inputs: number of components m, full OofA Mixture design D f ull target size n, and the model f (x,a)

1. Form D0 by choosing n random rows from D f ull .
2. Find M0, the model matrix expansion of D0.
3. Compute and store C0 = (MT

0 M0)−1.
while δ < 10−4 do

4. d0 = 1.
for each row x of D0 do

5. Initialize a list �.
for row y in D f ull do

6. Compute �(x,y)∗ = 1 + v(y) − v(x) + v(x,y)2 − v(y)v(x).
7. Add �(x,y)∗ to the list �.

end
8. �(x,y) = maxy∈D f ull\D0 (�)

if �(x,y) > 1 then
9. C0 = C0 − C0 F1(I2 + F T

2 C0 F1)−1 F T
2 C0 where F1 = [ f (y), − f (x)] and F2 = [ f (y), f (x)].

10. d0 = d0�(x,y)

11. In D0, exchange row x for row y.
end

end
12. δ = d0 − 1

end
Output D0
8
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Table 3
IQR (and standard deviation) for relative D-efficiencies of designs chosen by TA algorithm.

m l Number of iterations

5000 20000 100000

4 3 0.1070 (0.0836) 0.1065 (0.0859) 0.1151 (0.0901)
4 0.6749 (0.3632) 0.0003 (0.2699) <0.0001 (0.2760)

6 3 0.1777 (0.1299) 0.1440 (0.1261) 0.1259 (0.1151)
4 2.0549 (1.5209) 0.6019 (0.4242) 0.1725 (0.1538)
5 3.3511 (2.5339) 3.6768 (2.3487) 0.3751 (0.3702)

8 3 0.1432 (0.1077) 0.1432 (0.1078) 0.1663 (0.1480)
4 2.2928 (1.5576) 1.1680 (0.9933) 0.3294 (0.2812)
5 2.2636 (1.8204) 3.2879 (2.1425) 1.9445 (1.3119)

Note that if Mt is the model matrix at iteration t , then

δ = |MT
t Mt | − |MT

t−1Mt−1|
|MT

t−1Mt−1|
. (15)

So δ is the proportional increase in the determinant after all of the exchanges in a single iteration are made. It is assumed 
that the algorithm converges if the proportional increase δ is smaller than a pre-determined threshold. In this implemen-
tation, δ < 10−4 was the condition for convergence. As one may imagine, calculating the change in the determinant for 
all points in the full design D f ull is computationally burdensome. Also, the Fedorov algorithm runs the risk of becoming 
trapped at local maximums, because it always performs an exchange if the exchange is beneficial.

3. Impact of algorithm parameters

This section focuses on the implementation of Algorithm 4 for the OofA SLD. In this case, one needs to set the number 
of iterations and the degree of the OofA SLD. The degree may be limited by real world constraints, but the number of 
iterations is only limited by computing time. In this section, we examine (1) the convergence of the TA algorithm as the 
number of iterations increases, (2) how the performance of the TA algorithm changes as n increases relative to N , and (3) 
the efficiency of small double-point designs for various m and l. By double-point design, we mean a design with n = 1 + 2p
runs, where p is the number of model parameters. To put this into context, the smallest number of runs possible is 1+p, 
with the extra run used to estimate the error variance. To measure the performance of the TA algorithm, we rely on the 
relative D-efficiency of the n-run design D to the full OofA Mixture design D f ull . Let M and M f ull be the model matrices of 
D, D f ull , respectively. Then, the relative D-efficiency of D to D f ull is defined as

Relative D-efficiency = 100%
( 1

n |MT M|1/p

1
N |MT

f ull M f ull|1/p

)
. (16)

In general, as the number of exchanges k increases, the relative D-efficiency decreases. For this reason, the number of 
exchanges was set to k = 1. For simplicity, we use the additive form of the OofA Mixture model (9).

We first examine the convergence of the TA algorithm as the number of iterations increases. Table 3 shows the in-
terquartile range (IQR) and the standard deviation (in parentheses) of the distribution of relative D-efficiencies for 100 
different seeds for all combinations of m, l where l ≤ min(m, 5). In this table, n = 1 + 2p, where p = m + 2

(m
2

)
is the number 

of parameters in model (9). In all but two cases (noted below), the value of n did not greatly effect convergence of the 
algorithm.

In Table 3, in most cases, the IQR and standard deviation of the relative D-efficiencies decrease as the number of it-
erations increases. 100000 iterations appear sufficiently large enough to reduce the spread (measured by IQR or standard 
deviation) of the distribution of relative D-efficiencies. The main exceptions to this case are when m = 4, 8 and l = 3, where 
the standard deviation increases from 20000 to 100000 iterations. In these cases, increasing the target run size n improves 
the convergence of the algorithm. For instance, when m = 8, l = 3, if n is increased to 1 + 3p (42% of N), then the standard 
deviations become 0.0499 (5000 iterations), 0.033 (20000 iterations), and 0.033 (100000 iterations).

Fig. 2 shows the distribution of relative D-efficiencies (to the full design) for designs selected by the TA algorithm for 
100 different random seeds with 5000, 20000, and 100000 iterations. In most cases, as the number of iterations increases, 
the spread of the distribution decreases, indicating convergence. Also, as the number of iterations increases, the center of 
the distribution typically increases.

To see how the relative D-efficiency changes as the target run size n increases (as a percentage of N), we examine the 
median relative D-efficiency for all combinations of m, l with l ≤ m for m = 4, 6, 8. Table 4 shows these median relative 
D-efficiencies for n = 0.3N, 0.4N, 0.5N, 0.6N, 0.7N, 0.8N , and 0.9N for 10 random seeds and 100000 iterations. Fig. 3 shows 
plots for m = 6, l = 3 (panel a) and m = 6, l = 4 (panel b).
9
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Fig. 2. Relative D-efficiency comparison for various {m, l} OofA SLD designs at varying number of iterations of the TA algorithm.

Fig. 3. Median relative D-efficiency of TA algorithm, m = 6, l = 3,4.

The x-axes in Fig. 3 are 100(n/N)%. In panel (a), we see that the relative D-efficiency increases to a peak at n = 0.5N , 
and then decreases. In panel (b), the highest relative D-efficiency occurs at n = 0.3N , and then the relative D-efficiency 
quadratically decreases (to around 100%) as n increases.

In Table 4, the best median relative D-efficiencies are achieved when l is highest, regardless of the target run size n. 
When the degree of the design is 3, it appears that the best relative D-efficiencies are achieved when n = 0.5N , i.e., half the 
10
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Table 4
Median relative D-efficiencies for TA algorithm.

m l n

0.3N 0.4N 0.5N 0.6N 0.7N 0.8N 0.9N

4 3 * 98.96 101.67 101.40 100.79 100.28 99.94
4 118.76 115.90 114.03 110.65 107.47 104.79 102.10

6 3 96.86 100.09 101.30 100.96 100.55 100.40 100.19
4 117.83 112.85 109.38 106.71 104.63 102.95 101.52
5 122.90 119.31 115.94 111.40 107.70 104.69 102.19

8 3 97.41 99.69 100.93 100.90 100.71 100.47 100.21
4 111.39 108.40 106.32 104.80 103.62 102.50 101.25
5 118.56 113.45 109.88 107.25 105.25 103.57 101.84

* This case cannot be examined because n < p + 1.

Table 5
Relative D-efficiency comparison for varying SLD degrees (100000 iterations).

m l n 100(n/N)% Min Q 25 Q 50 Q 75 Max

4 3 33 63.46 100.98 101.21 101.27 101.33 101.38
4 33 24.26 119.19 120.39 120.39 120.39 120.39

6 3 73 39.24 99.49 99.81 99.88 99.93 100.16
4 73 8.95 124.67 125.05 125.14 125.22 125.4
5 73 2.43 146.74 148.52 148.71 148.89 149.57

8 3 129 28.29 96.49 96.66 96.74 96.83 97.52
4 129 4.50 119.71 120.32 120.52 120.64 121.06
5 129 0.82 136.74 138.98 140.1 140.92 144.12

size of the full design. In the other cases, the median relative D-efficiency decreases as n increases. In these cases, a smaller 
design is preferred. In Table 4, there are several cases where relative D-efficiencies are above 100%. This suggests that under 
the additive OofA Mixture model and the D-criterion, it may be more efficient to use fewer runs than the full design. This 
will happen again in the examples in Section 4.

It is also of interest to see how well a double point design (where n = 1 + 2p) performs relative to the full design. To 
investigate this, we fix the number of components m. For each m, we set the target run size n = 1 + 2p, and compare 
distributions of the TA designs made with different degrees. The results are shown in Table 5.

Table 5 shows the five-number summary of the relative D-efficiencies of 100 designs generated from the TA algorithm. 
More summary statistics may be found in Appendix B. In each row, m, l, and n were fixed. These results suggest that when 
n = 1 + 2p, using a design with higher degree (larger l) will result in a higher relative D-efficiency to the full design.

4. Comparison with exchange algorithm

It is of interest to compare the TA algorithm (Algorithm 4) to an exchange algorithm, as both of these can try to find 
an optimal subset of candidate points from full OofA Mixture Designs. Exchange algorithms are widely used to find ex-
perimental designs for a fixed number of runs under an optimality criterion. Exchange algorithms are appealing, as many 
optimality criteria have fast update formulas when a single row of the design matrix is exchanged. For suitable candidate 
points, exchange algorithms converge to a design with high optimality. One of the most popular exchange algorithms is 
the modified Fedorov algorithm (Algorithm 5). Algorithms 4 and 5 were implemented in Matlab. As defined in Section 3, 
we use the relative D-efficiency to compare designs. In Section 4.1, we show an example comparing these algorithms for a 
simplex-lattice design. In Section 4.2, these algorithms are compared in an example with single-component constraints and 
an extreme vertices design.

4.1. OofA simplex-lattice design

Both algorithms were run for m = 4 components, degree l = 3, and target sample size n = 30 (N = 52) for the additive 
OofA Mixture model (9). This example can be performed for a third-order pure mixture model as well, though we use the 
second-order model due to its popularity and simplicity. The Fedorov algorithm converges in 3 iterations. The TA algorithm 
was run for 100,000 iterations. The design chosen by the Fedorov Algorithm 5 has a relative D-efficiency of 101.6243% to 
the full design. The same initial points were used for each algorithm. Since the TA Algorithm 4 is stochastic, it was executed 
for 1000 different random seeds. The empirical distribution of the relative D-efficiencies of these 1000 designs is shown in 
Fig. 4. Quantiles of the 1000 relative D-efficiencies are shown in Table 6.

In this case, the empirical distribution appears to be left-skewed. Table 6 shows that well over 50% of the designs 
found using the TA algorithm have a relative D-efficiency at least as good as the Fedorov algorithm. In fact, 71% of the 
designs generated by the TA algorithm have relative D-efficiencies greater than or equal to the Fedorov algorithm. The IQR 
is Q 0.75 − Q 0.25 = 0.1432%, which indicates that the variability in the relative D-efficiency that occurs due to the change in 
11
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Fig. 4. Relative D-efficiencies of TA designs for 1000 random seeds. The vertical line represents the relative efficiency of the design obtained by the Fedorov 
algorithm.

Table 6
Quantiles of the relative D-efficiencies of 1000 designs generated by Algorithm 4.

Q 0.10 Q 0.25 Median Q 0.75 Q 0.90

101.5922% 101.6176% 101.6457% 101.7608% 101.8471%

Table 7
Quantiles of the relative D-efficiencies of 1000 OofA EVDs generated by Algorithm 4.

Q 0.10 Q 0.25 Median Q 0.75 Q 0.90

120.8555% 121.0650% 121.2949% 121.4874% 121.6593%

the seed appears to be small (less than 1%). In this case, it is clear that the TA algorithm is likely to provide a solution that 
is at least marginally better than that of the Fedorov algorithm. The TA algorithm has an average runtime of 0.4675 seconds 
over all 1000 designs, while the Federov algorithm took 0.0190 seconds to converge. The design selected by the Federov 
algorithm, as well as the TA design with the highest relative D-efficiency, can be found in Appendix B.

4.2. OofA Extreme Vertices Design

We borrow an example of an extreme vertices design from (Cornell, 1990), where we have m = 4 components with 
single component constraints 0.4 ≤ x1 ≤ 0.8, 0.1 ≤ x2 ≤ 0.5, 0.05 ≤ x3 ≤ 0.3, 0.05 ≤ x4 ≤ 0.3. The design from Cornell (1990)
has 15 runs, 8 of which are vertex points on the polyhedron, 6 of which are face centroids, and one overall centroid. See 
the Appendix for more details on this design. Since all of these points lie in the interior of the simplex, the resulting OofA 
Extreme Vertices Design (OofA EVD) has N = 15m! = 360 runs. We try to find a D-optimal design with n = N/6 = 60 runs 
for Model (11), which includes both main effects and mixture-order interactions. As in Section 4.1, we use the same initial 
points for the Fedorov and TA algorithms, and the TA algorithm was run for 100,000 iterations and 1000 different random 
seeds. For this implementation, ε was chosen to be the 90th percentile of all mixture points from the extreme vertices 
design. The Fedorov algorithm chooses a design with a relative D-efficiency of 120.5293% (Fig. 5).

Based on Table 7, we can see that over 90% of the designs generated by the TA algorithm (roughly 98%) have higher 
relative D-efficiencies than the design generated by the Fedorov algorithm. The TA algorithm has an average runtime of 
0.5261s over all 1000 designs, and the Federov algorithm has a runtime of 0.1479s. It is clear that in this case, the TA 
algorithm is preferred. This example also illustrates that (1) we can search for D-optimal OofA Mixture designs when there 
are constraints on the mixture proportions and (2) our methods also work on models that include mixture-order interaction 
terms. The design selected by the Federov algorithm, as well as the TA design with the highest relative D-efficiency, can be 
found in Appendix B.

4.3. Summary

In this section, we see that the TA algorithm is a useful and flexible method for searching for D-optimal OofA Mixture 
designs. In both examples, the majority of designs found by the TA algorithm have higher D-efficiencies than those found by 
the Federov algorithm. The first example shows a classical problem where the design space of the mixture proportions was 
12
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Fig. 5. Relative D-efficiencies of TA OofA EVDs for 1000 random seeds. The vertical line represents the relative efficiency of the design obtained by the 
Fedorov algorithm.

the (m − 1)-dimensional simplex, while the second example deals with the case where the design space was a polyhedron 
within the same simplex. Additionally, these examples show that our methods can be applied to an OofA Mixture model 
with or without interaction terms. We also see that in both of these examples, reducing the number of runs improves the 
D-efficiency relative to the full design. This intuitively suggests that the full design has too many replicates, and not all of 
these runs are needed.

5. Conclusion

To the best of our knowledge, this is the first paper that addresses finding small-run OofA Mixture experiments according 
to an optimality criterion. Moreover, the methodology proposed here allows for flexibility in the choice of the target run size 
n. This approach can also be used to create an OofA Mixture design from a variety of existing mixture designs, even in the 
case of single component constraints. Furthermore, the methods in this paper are not necessarily limited to the D-optimality 
criterion; as long as it is possible to find the change in optimality at each iteration of the TA algorithm, then these methods 
may be applied. This research also provides a useful tool for experimental design in the fields of biochemistry, chemical 
engineering, and food science, where the response may depend on both the mixture proportions and their addition order.

In this paper, the TA algorithm was used to search for OofA Mixture designs of a fixed run size according to the D-
optimality criterion. In Sections 3 and 4, we find that in many cases, using a design with a small fraction of the t × m!
runs (for t mixture points) results in much higher D-efficiency relative to the full OofA Mixture design. It is intuitive that 
reducing the run size will lead to better designs relative to the full design, as the full OofA Mixture design has many 
replicates. In Section 4, we give examples where the TA algorithm outperforms the classical Fedorov approach in terms of 
selecting a design with higher relative D-efficiency.

The methods proposed in this paper can be used in many practical situations. The general definition of a neighborhood 
proposed in Section 2.3 is applicable to any OofA Mixture design for a suitably chosen radius ε > 0. Moreover, as long as 
a set of feasible mixture points for an experiment can be listed, the TA algorithm proposed in this paper can be used to 
search for D-optimal designs. This makes the method appealing for cases with single-component constraints, as shown in 
Section 4.2. Additionally, the TA algorithm can be applied to more design-specific neighborhoods, such as the simplex-lattice 
neighborhood constructed in this paper.

For implementing this algorithm, it is recommended to use a target run size of at least n = 1 +2p, where p is the number 
of model parameters. In the case of the simplex-lattice design, as the degree l increases, the TA algorithm becomes more 
computationally efficient when operating on a larger run size, making it easier to achieve convergence in fewer iterations. 
It is debatable if this is a practical concern, as lattice designs with high degrees are not often used. Also, in Section 3, it 
appears that lower run sizes were shown to have higher relative D-efficiency to the full design, except in the case where 
l = 3, where a half-fraction design seems to be optimal.

More work needs to be done with regards to finding optimal OofA Mixture designs. This paper only examined the D-
optimality criterion. There are many other optimality criteria that would be of interest to study. Goos et al. (2016) pointed 
out that I-optimal designs are of importance in mixture experiments, as they minimize the average prediction variance 
over the experimental region, and the goal of a mixture experiment is to optimize the predicted model over this region. 
Moreover, a theoretical framework for optimal OofA Mixture designs still needs to be established. Finally, this paper assumed 
that a list of candidate points is provided. It is also of interest to use an algorithm that does not rely on candidate points, 
such as a genetic algorithm (Pradubsri et al., 2019) or other metaheuristic algorithms (García-Ródenas et al., 2020). It would 
also be interesting to use OofA Mixture models to analyze an experimental dataset to see if mixture-order interactions are 
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significant. Currently, most researchers do not examine this because the resulting design would be too large. Hopefully, the 
methods reviewed here will enable future research in this area.
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Sljivic-Ivanovic, M.Z., Smiciklas, I.D., Dimovic, S.D., Jovic, M.D., Dojčinović, B.P., 2015. Study of simultaneous radionuclide sorption by mixture design method-

ology. Ind. Eng. Chem. Res. 54 (44), 11212–11221.
Snee, R.D., Marquardt, D.W., 1974. Extreme vertices designs for linear mixture models. Technometrics 16 (3), 399–408.
Van Nostrand, R., 1995. Design of experiments where the order of addition is important. In: ASA Proceedings of the Section on Physical and Engineering 

Sciences. American Statistical Association, Alexandria, VA, pp. 155–160.
Voelkel, J.G., 2019. The design of order-of-addition experiments. J. Qual. Technol. 51 (3), 230–241.
Voelkel, J.G., Gallagher, K.P., 2019. The design and analysis of order-of-addition experiments: an introduction and case study. Qual. Eng. 31 (4), 627–638.
Winker, P., 2000. Optimization Heuristics in Econometrics: Application of Threshold Accepting. Wiley.
Winker, P., Chen, J., Lin, D.K.J., 2020. The construction of optimal design for order-of-addition experiment via threshold accepting. In: Contemporary Experi-

mental Design, Multivariate Analysis and Data Mining. Springer, pp. 93–109, Chapter 6.
Winker, P., Fang, K.-T., 1997. Application of threshold-accepting to the evaluation of the discrepancy of a set of points. SIAM J. Numer. Anal. 34 (5), 

2028–2042.
Winker, P., Lin, D.K.J., 2011. Robust uniform design with errors in the design variables. Stat. Sin., 1379–1396.
Zhao, Y.L., Lin, D.K.J., Liu, M., 2021. Designs for order of addition experiments. J. Appl. Stat. 48 (8), 1475–1495.
14

https://doi.org/10.1016/j.csda.2021.107411
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibB6E9C2B142F7C42090CBAEA4503D2002s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibB6E9C2B142F7C42090CBAEA4503D2002s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib9B5E1A95A8542A42CCB2A93E521D3ACAs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib80C908328D732A99AC31B23F312E8FCDs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibAD75060FB2F9AB5751DDF5D231165068s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibB8E1C02C84B5B72F4CAD8EEEF147EC6Cs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibB8E1C02C84B5B72F4CAD8EEEF147EC6Cs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib49D3411535E5C15ED86CA9DF536B07EEs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib49D3411535E5C15ED86CA9DF536B07EEs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibF9C8EE22CA11E64A233049920F098074s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibEF6D76D49CEE352093A4CFB68EA4EBA1s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibEF6D76D49CEE352093A4CFB68EA4EBA1s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibDA75CD5FC6992924E3F2697B38EA6BFFs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibDA75CD5FC6992924E3F2697B38EA6BFFs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib858EF338E85EF9066C4404A52784E930s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib62CF177909CF75AB78759BFDEB529F12s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib5B7687013D6957DD80029D5E69833422s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib26B7EBEADEFB563A011E4F24975967D9s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib26B7EBEADEFB563A011E4F24975967D9s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib33B90C7C8CD433BD878C806BF8502E25s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib3680CC946CEA8D441FC08BC2C5C3D592s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib3680CC946CEA8D441FC08BC2C5C3D592s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib02BE62EA3DC7B020DE53A0D72580F3F9s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib02BE62EA3DC7B020DE53A0D72580F3F9s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibCD33378F53B5AE5EDB13D56942DD5B6Fs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib13C8F44E3DE62DBB8A17104D80E6A90Cs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib13C8F44E3DE62DBB8A17104D80E6A90Cs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bibD2549A0C280EED0FF2BD2112359F4BECs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib6D07205582EE125D0D8AED2BB95CEBE7s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib6D07205582EE125D0D8AED2BB95CEBE7s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib1F0F42E9EF5B2319030E7C1334AA42ADs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib45882744FC8102FB46FF97CAEE68FD1Cs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib7EC8E09233B09C85493C52EA37EF0E38s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib05978A2BB62A34D37BA729C58E4D4DB7s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib05978A2BB62A34D37BA729C58E4D4DB7s1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib170CEE4A00C1679D4DA9F7790A28C68Bs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib170CEE4A00C1679D4DA9F7790A28C68Bs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib71B549DB7FC8284C16CEB61862529E6Cs1
http://refhub.elsevier.com/S0167-9473(21)00245-0/bib5DF7E7BFC16B522B1B1BDDAEDE66CE06s1

	TA algorithms for D-optimal OofA Mixture designs
	1 Introduction
	1.1 Order of addition experiments
	1.2 Mixture experiments
	1.3 OofA Mixture experiments
	1.4 Outline of paper

	2 Methods
	2.1 Full designs and models for OofA Mixture
	2.2 Problem statement
	2.3 TA algorithms for OofA Mixture designs

	3 Impact of algorithm parameters
	4 Comparison with exchange algorithm
	4.1 OofA simplex-lattice design
	4.2 OofA Extreme Vertices Design
	4.3 Summary

	5 Conclusion
	Funding
	Appendix Supplementary material
	References


