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Order-of-addition mixture experiments

Nicholas Riosa and Dennis K. J. Linb

aDepartment of Statistics, The Pennsylvania State University, State College, Pennsylvania; bDepartment of Statistics, Purdue University,
West Lafayette, Indiana

ABSTRACT
In a mixture experiment, m components are mixed to produce a response. The total amount
of the mixture is a constant. Existing literature on mixture designs ignores the order of add-
ition of the mixture components. This paper considers the Order-of-Addition (OofA) mixture
experiment, where the response depends on both the mixture proportions of components
and their order of addition. Empirical study demonstrates that if mixture-order interactions
exist, then the optimal mixture proportions identified by traditional models may be mislead-
ing. Full Mixture OofA designs are created which ensure orthogonality between mixture
model terms and addition order effects. These designs allow for the estimation of (1) typical
mixture model parameters and (2) order-of-addition effects. Moreover, models which include
both main effects and key mixture-order interactions are introduced.
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response surface design

1. Introduction

In a mixture experiment, there are m components
that are mixed together in a fixed total amount to
produce a response y. It is typically assumed that the
response only depends on the proportion of each
ingredient that is included in the mixture. Let
x1, :::, xm represent the proportions of the m compo-
nents, with 0 � xi � 1 for i ¼ 1, :::,m and

P
i xi ¼ 1:

The objective of a mixture experiment is to find val-
ues of the mixture component proportions x1, :::, xm
that optimize (maximize or minimize) the response y.
Alternatively, the objective can be to choose x1, :::, xm
to match a target response T. Note that the mixture
components take values in the ðm� 1Þ dimensional
simplex S ¼ fðx1, :::, xmÞ 2 ½0, 1�jPi xi ¼ 1g:

Here, we are not only concerned with the mixture
proportions x1, :::, xm, but their addition order as well.
It is assumed that these m components are being
added one at a time. Thus, there are m! possible
orderings of these components to consider. This is an
Order-of-Addition (OofA) problem, where the
response y may depend on the order in which the
components x1, :::, xm have been added, as well as pos-
sible mixture-order interactions. In general, there are
many scientific applications where the order of the
components produces an effect on the response. Ding
et al. (2015) provides an example in the field of

combinatorial drug therapy, where both the ratio and
order of three drugs were examined for treatement of
oral cancer. Another example of order of addition
in bioengineering is provided by Chandrasekaran,
Bhartiya, and Wangikar (2006), where the efficiency
of synthesis of carbonate products depended on the
order of addition of alcohols.

1.1. Existing research on OofA

Most of the existing work on the OofA problem is on
the Pair-Wise Ordering (PWO) model, which was
introduced by Van Nostrand (1995). It was officially
called the Pair-Wise Ordering (PWO) model in
Voelkel (2019). Notation from Lin and Peng (2019)
will be used here. Suppose that there are m compo-
nents 1, 2, :::,m and a permutation is represented by
a ¼ ða1, :::, amÞT : Let P be the set of all pairs (j, k)
where 1 � j < k � m: Let jk denote the pair (j, k).
The PWO factor for all jk 2 P is defined as

zjkðaÞ ¼ 1 if j precedes k in a
�1 if k precedes j in a

�
[1]

So if a ¼ ð3, 1, 2Þ then z12ðaÞ ¼ 1, z13ðaÞ ¼
�1, z23ðaÞ ¼ �1: The PWO factors must obey the
transitive property, i.e., if zijðaÞ ¼ 1 and zjkðaÞ ¼ 1,
then it must be true that zikðaÞ ¼ 1: Thus, certain
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combinations are impossible, such as z12ðaÞ ¼
1, z13ðaÞ ¼ �1, z23ðaÞ ¼ 1: Let sðaÞ be the expected
response given permutation a. The PWO model is

sðaÞ ¼ b0 þ
X
jk2S

zjkðaÞbjk [2]

A parameter estimate b̂jk indicates how the pair-
wise order of components j and k impacts the
expected response. If certain parameters were identi-
fied as significant, then these parameters would pro-
vide clues to help determine the optimal order. In Lin
and Peng (2019), topological sorting methods are dis-
cussed for finding the optimal order given the output
of the PWO model. There are also several results con-
cerning the optimality of PWO designs (and fractional
designs). Let the moment matrix M be defined as
M ¼ XTX=n, where n is the number of runs in the
PWO design (the unreplicated full design would have
n ¼ m!). Peng, Mukerjee, and Lin (2019) showed that
the full design (with moment matrix Mf) is optimal
for D� ,A� , E� , and M:S:� criteria (as well as
for any criteria that is concave and signed permuta-
tion invariant). Peng, Mukerjee, and Lin (2019) also
showed that a fractional PWO design is optimal iff it
has the same moment matrix Mf as the full design,
and they showed a systematic way to construct some
optimal fractional and even minimal-point PWO
designs. See also Chen, Mukerjee, and Lin (2020),
Winker, Chen, and Lin (2020), and Zhao, Lin, and
Liu (2020).

1.2. Mixture designs

Here, three common types of designs are reviewed:
the simplex-lattice design, the simplex-centroid design,
and the extreme vertices design. We use these designs
from Cornell (1990) for the purpose of illustration.
More complicated designs and models may be applied
in a similar manner.

1.2.1. Simplex-lattice design
The {m, l} simplex lattice design, called the {q, m}
simplex lattice design by Cornell (1990), is a design
for m components and a polynomial model of degree
l for the response surface. It uses design points of the
form xi ¼ 0, 1l ,

1
l ,

2
l , :::1: The design consists of all

possible combinations of the of these xi that produce
points in the simplex S:

1.2.2. Simplex-centroid design
The simplex-centroid design, also covered in Cornell
(1990), has a total of 2m � 1 design points. The design

points are generated as follows. Start by taking all m
permutations of the point ð1, 0, :::, 0Þ: Then, take all
ðm
2
Þ permutations of ð1=2, 1=2, 0, :::, 0Þ, all ðm

3
Þ per-

mutations of ð1=3, 1=3, 1=3, 0, :::, 0Þ, and so on until
one reaches the point ð1=m, :::, 1=mÞ, which is
the centroid.

1.2.3. Extreme vertices design
Sometimes, there are constraints placed on the mix-
ture proportions. For example, practical concerns
might make it so the first component must be
between 10% and 80%. In this case, we assume that
there are single-component constraints 0 � Li � Xi �
Ui � 1, for i ¼ 1, 2, :::,m: In this case, the region of
interest is not the entire simplex, but a polyhedron
that lies within the simplex. This design uses the verti-
ces of the polyhedron, in addition to points positioned
on the center of any faces of the region and an overall
centroid. These points can be systematically identified
by several procedures, such as the XVERT algorithm
provided by Snee and Marquardt (1974).

In these experiments, it is often sufficient to use a
second-order polynomial to model the response sur-
face:

g ¼
Xm
i¼1

bixi þ
X
i<j

bijxixj [3]

where g represents the response surface and the xi is
the value taken by the ith mixture component. The
model has no intercept term due to the constraint
that

P
i xi ¼ 1:

1.3. The OofA mixture experiment

The OofA mixture experiment is a mixture experi-
ment where the researchers are also concerned that
the order in which components are added into the
mixture has an effect on the response. In such studies,
the response surface would be a function of both the
mixture proportions x1, :::, xm and their order of add-
ition. In this experiment, there are three goals of
interest: (1) Determine whether the order-of-addition
of the components has a statistically significant effect
on the response; (2) Determine whether the mixture
components have a statistically significant effect on
the response; (3) Find the settings (i.e., mixture pro-
portions and ordering) that gives an optimal response;
i.e., a response that is either maximized, minimized,
or matches a target value T. The focus here is on how
to incorporate OofA designs into mixture models. For
more details, see Section 2.1, where the OofA Mixture
problem is formally stated.

2 N. RIOS AND D. K. J. LIN



It is important to study the OofA Mixture experi-
ment. There are studies that use mixture experiments
which acknowledge that the order of addition of the
mixture components can have an impact on the
response. As an example, Sljivic-Ivanovic et al. (2015)
studied how applying m¼ 3 sorbents in a mixture
impacted the removal of ions from aqueous solutions.
They concluded that the order of addition was indeed
significant. It should also be noted that they con-
ducted separate experiments for the mixture propor-
tions and the order of addition; they used an extreme
vertices design to examine the mixture proportions,
and they ran all m! ¼ 6 orderings with fixed mixture
proportions to study the order of addition. Another
example is given by Voelkel and Gallagher (2019),
where the effect of the order of addition of mixture
components (e.g. binder resins, flow and leveling
additives) on the viscosity of automotive paint coat-
ings was studied. In this study, any mixture compo-
nents involved were held constant, so it is not
possible to infer whether the mixture proportions had
an effect on the response. While it might seem prac-
tical to hold the mixture proportions constant to
study the order of addition, it should be noted that
doing so makes it impossible to determine if there is
interaction between the order of addition and the
mixture proportions. It is therefore useful to construct
designs where both the order of addition and the mix-
ture proportions are varied, so that experimenters can
determine whether the response changes for particular
combinations of addition orders and mixture
proportions.

The outline of the paper is as follows. In Section 2,
we discuss the construction of a design for the OofA
Mixture experiment and models for this problem.
Section 3 shows an example of these models. Section
4 gives the results of a simulation study. Section 5
provides a conclusion.

2. Proposed method

In this section, we first formulate the OofA Mixture
problem; i.e. show how to construct designs for this
problem and how to model the response surface.

2.1. Problem formulation

Suppose that there are m components that will be
added into a mixture with a fixed total amount to
produce a continuous response y. Let x1, :::, xm be the
proportions of each component that are included in
the mixture. Let A be the set of all permutations of

ð1, 2, :::,mÞ and S ¼ fðx1, :::, xmÞ 2 ½0, 1�jPi xi ¼ 1g
or a sub-region of this simplex determined by single-
component constraints. In the OofA Mixture experi-
ment, it is assumed that the response depends on
both the mixture proportions and their order of add-
ition. This can be expressed as

y ¼ f ðx, aÞ þ �

where � � Nð0, r2Þ, x 2 S, and a 2 A: There are two
goals to keep in mind when designing an OofA mix-
ture experiment. First, the experimental design should
ensure that effects only due to mixture components
(pure mixture effects) have low correlation with effects
that involve the order of addition. It is desirable for
these effects to be orthogonal, but this may not always
be the case. In Appendix A, we prove that these
effects are indeed orthogonal if the full design from
Section 2.2 is used. Appendices are included in the
supplementary material. Second, the design and
accompanying model should allow us to find the opti-
mal mixture proportions and ordering. In the case of
finding a maximum (or a minimum), the optimal pro-
portions and ordering are

ðx�, a�Þ ¼ arg maxx, af ðx, aÞ
subject to a 2 A and x 2 S

In the case of matching a target value T, the opti-
mal proportions and ordering are

ðx�, a�Þ ¼ arg minx, a ðf ðx, aÞ � TÞ2
subject to a 2 A and x 2 S

The above are constrained optimization problems,
since the optimal x� must lie in the simplex, and the
optimal ordering must be a valid permutation of
ð1, 2, :::,mÞ: For the purpose of this initial research we
focus on maximizing or minimizing the response, as
the problem of matching a target T is essentially mini-
mizing a function of the response.

2.2. Construction of the full design matrix

In this section, an OofA Mixture design that can be
constructed based on a simplex design is introduced.
Let P ¼ fjk j j, k 2 ð1, :::,mÞ, j < kg and S be an
ðm� 1Þ dimensional simplex. Then for x 2 S, jk 2 P,
and a permutation a of ð1, :::,mÞ, define the modified
PWO variables

zjkðx, aÞ ¼
1 xj, xk 6¼ 0 and j is before k in a
0 xj ¼ 0 or xk ¼ 0
�1 xj, xk 6¼ 0 and j is after k in a

8<
:

These modified PWO variables describe the order-
ing of the nonzero mixture components. The Simplex
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Lattice and Simplex Centroid designs include many
points in the simplex where some mixture proportions
are not used (e.g. vertices). This modification to the
PWO variables ensures that orderings are not assigned
to components that are absent from a particular run
of the design. It should be noted that the above modi-
fied PWO variables are only different from the trad-
itional PWO indicators if some of the mixture
components are zero. For example, if x ¼ ð0:5, 0:5, 0Þ
and a ¼ ð1, 2, 3Þ, then z12ðx, aÞ ¼ 1, but z13ðx, aÞ ¼
z23ðx, aÞ ¼ 0: Using these modified PWO variables,
it is possible to construct a design matrix using
Algorithm 1.

Algorithm 1: Generate Full OofA Mixture
Design Matrix

Create a simplex design for m components, SDðmÞ:
Initialize a design matrix D.
for each row x of SDðmÞ do
Let k be the number of nonzero components of x.
Replicate x k! times (including the original row).
Associate each replicate with a unique ordering a
of the k nonzero components of x.
For each replicate, represent its ordering a using

a row vector z of ðm
2
Þ modified PWO variables

zjkðx, aÞ for each jk 2 P:
end
Stack the rows x (and their replicates) into a matrix X.
Stack the rows z into a matrix Z.
return D ¼ ðX,ZÞ
Algorithm 1 uses an existing mixture design

SDðmÞ as an input. Each row of SDðmÞ is replicated
once for every possible ordering of the nonzero

components. Each replicate is then assigned an add-
ition order in terms of the modified PWO variables.
The designs generated by Algorithm 1 are called “full”
designs because, for each row of SDðmÞ, they include
one run for every possible ordering of the nonzero
mixture components. For example, an OofA Mixture
design constructed using a Simplex Lattice Design for
m ¼ 3, l ¼ 3 is shown in Table 1.

In general, the number of rows N in D for the Full
OofA Simplex Centroid Design is

N ¼ mþ m
2

� �
2!þ m

3

� �
3!þ :::

þ m
m� 1

� �
ðm� 1Þ!þm!:

So N grows very quickly with m when D is con-
structed from the Simplex Centroid Design. It should
be noted that the previous algorithm is a general
framework; the rows x do not have to be drawn
from the Simplex Centroid Design. They can be
drawn from any unreplicated mixture design (e.g.
Simplex Lattice). If there are single-component con-
straints, the rows may be drawn from an extreme
vertices design. If the constrained region is in the
interior of the simplex, the modified PWO variables
will reduce to the PWO variables from Peng,
Mukerjee, and Lin (2019).

As m increases, the run size of the full design also
grows quickly for the Simplex Lattice design, and even
more so for the extreme vertices design. In the case of
strict financial limitations on the number of runs, the
full OofA Mixture design can be used as a list of can-
didate points for a smaller design of size n<N.
Modern statistical packages can be used to choose n
of the N rows that maximize an optimality criterion,
such as such as D-optimality, which maximizes the
determinant of the information matrix. For instance,
this can be done using the R package AlgDesign by
Wheeler (2019). In cases where the number of mix-
ture components is large, enumerating a set of candi-
date points may be burdensome, as such a set would
be quite large. This subset of n rows is not guaranteed
to be the optimal design, but these designs generally
have desirable optimality criteria.

2.3. Models for OofA mixture

In this section, we construct models for the pairwise
ordering and mixture component effects. First, an
additive model is considered, i.e., a model with no
interactions between the mixture terms and the
ordering:

Table 1. OofA simplex lattice design, m ¼ 3, l ¼ 3:
x1 x2 x3 z12 z13 z23
1.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00
0.33 0.67 0.00 1.00 0.00 0.00
0.33 0.67 0.00 –1.00 0.00 0.00
0.67 0.33 0.00 1.00 0.00 0.00
0.67 0.33 0.00 –1.00 0.00 0.00
0.33 0.00 0.67 0.00 1.00 0.00
0.33 0.00 0.67 0.00 –1.00 0.00
0.67 0.00 0.33 0.00 1.00 0.00
0.67 0.00 0.33 0.00 –1.00 0.00
0.00 0.33 0.67 0.00 0.00 1.00
0.00 0.33 0.67 0.00 0.00 –1.00
0.00 0.67 0.33 0.00 0.00 1.00
0.00 0.67 0.33 0.00 0.00 –1.00
0.33 0.33 0.33 1.00 1.00 1.00
0.33 0.33 0.33 1.00 1.00 –1.00
0.33 0.33 0.33 1.00 –1.00 –1.00
0.33 0.33 0.33 –1.00 –1.00 –1.00
0.33 0.33 0.33 –1.00 –1.00 1.00
0.33 0.33 0.33 –1.00 1.00 1.00
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y ¼ Xbþ Zdþ � [4]

where � � Nð0, r2IÞ, b contains the coefficients for
the mixture model, d contains the coefficients for
the PWO model, and X,Z are as defined in
Algorithm 1. Model (4) is useful for identifying sig-
nificant mixture or order main effects. However, if
there is concern that the mixture effects depend on
the addition order (or vice-versa), then Model (4)
should be compared with a model that includes
mixture-order interactions. Consider the following
more general model:

yðx, zÞ ¼ gðxÞ þ gðx, zÞ þ � [5]

where gðxÞ models the response surface in terms of
the mixture proportions, and gðx, zÞ is a function of
both the mixture proportions and their order.
Technically, Model (5) is a generalization of Model
(4), i.e. take gðxÞ ¼ Xb and gðx, zÞ ¼ Zd: However,
with Model (5), interaction terms may now be
included. For instance, consider:

yðx, zÞ ¼
Xm
i¼1

bixi þ
X
i<j

bijxixj þ
X
k<l

dklzkl

þ
X
i

X
k<l

ciklxizkl þ � [6]

where cikl represents the effect of the interaction
between mixture proportion xi and the order of com-
ponents xk, xl. Model (6) is an instance of Model (5),
where

gðxÞ ¼
Xm
i¼1

bixi þ
X
i<j

bijxixj ,

gðx, zÞ ¼
X
k<l

dklzkl þ
X
i

X
k<l

ciklxizkl

Model (6) only includes “first order” interactions;
i.e., interactions between single mixture proportions
and PWO variables. It can be modified to include
higher-order interactions, though this will clearly
increase the number of parameters to estimate. In

general, Model (6) will include mþ 2ðm
2
Þ þmðm

2
Þ

parameters. Another major flaw with Model (6) is
that its model matrix will not have full rank. To see
this, note that zkl ¼ ðx1 þ :::þ xmÞzkl ¼ x1zkl þ :::þ
xmzkl: So, each of the “main effects” zkl can be written
as a linear combination of the terms x1zkl, :::xmzkl, so
the columns of the resulting model matrix will be lin-
early dependent. This problem can be remedied in
one of two ways. The first is by following method-
ology from Cornell (1990) and fitting a modification
of Model (6):

gðxÞ ¼
Xm
i¼1

bixi þ
X
i<j

bijxixj , gðx, zÞ

¼
X
i

X
k<l

ciklxizkl [7]

Model (7) does not explicitly model the main effect
of the order components; it models the effect of the
order components only through their interactions
with the mixture proportions. This is very similar to
the form of the mixture models with process variables
as shown in Chapter 7 of Cornell (1990). This

“reduced” model only has mþ ðm
2
Þ þmðm

2
Þ parame-

ters. The second way to remedy this problem is to
place restrictions on certain model parameters. When
m � 3, assume that cikl ¼ 0 if i 6¼ k and i 6¼ l: In this
case, the model becomes

gðxÞ ¼
Xm
i¼1

bixi þ
X
i<j

bijxixj ,

gðx, zÞ ¼
X
k<l

dklzkl þ
X
i

X
k<l, i¼k, l

ciklxizkl

[8]

Model (8) includes both the main PWO effects and
some of their interactions with the mixture propor-
tions. Specifically, the assumption cikl ¼ 0 means that
a mixture proportion only interacts with the pairwise
orderings that it takes part in. For example, under
Model (8), if m¼ 3 then mixture component 1 is may
interact with z12 and z13, but not z23.

With an estimable model of the general form (5),
the optimal proportions and order x�, a� and response
y� can be found. This is done by finding the mixture
proportions that produce a minimum (or maximum)
response for each possible order, and then finding the
overall minimum response (or maximum) across the
orders. Obviously, this is not ideal for larger m;
rather, this algorithm simply outlines a brute force
approach for finding an optimal value. Note that if
the objective of optimization is to match a target T,
then it is sufficient to minimize ðf̂ ðx, aÞ � TÞ2 instead
of f̂ ðx, aÞ:

2.3.1. Identifiability for Model (7) or (8)
If Model (7) or (8) is applied to an OofA Mixture
design that is generated from a Simplex-Centroid
design, then the resulting model matrix will also not
be full rank. In the OofA Simplex-Centroid design, if
xj and xk are mixture proportions for components j
and k and zjk is the indicator for the ordering of xj
and xk, then notice that xjzjk ¼ xkzjk: This is true
because each row in the Simplex-Centroid design that

JOURNAL OF QUALITY TECHNOLOGY 5



satisfies xj 6¼ 0, xk 6¼ 0 must have xj ¼ xk; otherwise,
zjk ¼ 0, which preserves the equality. Since xjzjk ¼
xkzjk, then some of the parameters in Model (7) or
(8) will not be identifiable. Thus, for identifiability, it
is required that for a simplex design SD, the set of
design points fx 2 SD j xj 6¼ 0, xk 6¼ 0, xj 6¼ xk, jk 2
Pg is non empty. This requirement is satisfied by
several Simplex-Lattice Designs (e.g. {3,3}
Simplex Lattice).

3. Example

This example is based on the classical fish patty data-
set in Cornell (1990). In this dataset, the response y is
the texture of the fish patties, which is measured in
grams of force required to puncture the surface of a
patty. The fish patties were mixtures of three compo-
nents: mullet (x1), sheepshead (x2), and croaker (x3).
The original dataset included three process variables:
temperature (z1), oven time (z2), and frying time (z3).
Each of the process variables were coded to have evels
f�1, 1g: The original design was a simplex-centroid
design that was run for each of the 23 combinations
of the three process variables. The original dataset is
provided in Appendix B.

To illustrate the use of the OofA models given in
Section 2.3, the process variables z1, z2, and z3 were
replaced with the modified PWO variables z12, z13,
and z23, respectively. This is simply for the sake of
illustration of the methods. In the case where certain
components were not used, the corresponding PWO
variables were set to 0. There were two rows where
the PWO indicator variables represented an impos-
sible ordering, e.g. ð1, � 1, 1Þ; these two rows (51 and
54) were removed from the dataset.

In the original problem, objectives of the analysis
included studying how the process variables impacted
the response, as well as the mixture proportions.
Additionally, it was desirable for the texture of the
fish patties to be between 2.0 and 3.5. Similar objec-
tives are considered in this modified problem. Aims
of this analysis will be to see whether the OofA of the
mixture components (and the mixture proportions)
impacts the response and to see how both OofA and
mixture proportions affect the response. Finally, a tar-
get value of T¼ 2.75 (the midpoint of 2.0 and 3.5)
was considered as an “optimal” texture value. Initially

the additive Model (4) was fit to the data, and an
ANOVA was used to determine if the mixture or the
order had a significant effect on the response. These
results are summarized in Table 2. Using a signifi-
cance level of a ¼ 0:05, it is clear that both the mix-
ture proportions and the order of addition have a
significant effect on the texture of the fish patties.

Model (4) was compared to Model (9), which is
provided below.

gðxÞ ¼
X3
i¼1

bixi þ
X
i<j

bijxixj,

gðx, zÞ ¼
X
k<l

dklzkl þ c112x1z12 þ c223x2z23 þ c313x3z13

[9]

We note that the omission of the mixture-order
interactions x1z13, x2z12, and x3z23 in Model (9)
ensures identifiability; otherwise, we would see that
xjzjk ¼ xkzjk and the model matrix would not be full
rank. The parameter estimates for Models (4) and (9)
are given in Table 3.

Figure 1 shows side-by-side contour plots for
Models (4) and (9), respectively. We note that the
shape of the contours for the right panel is different
from the left panel due to the interaction terms that
are included in Model (9). This implies that when the
interaction model is used, there is potential for opti-
mal points to lie in different regions. In Figure 2, the
same models are compared, but the order is changed
to (1)–(3). The shape of the contours in each plot still
differs in terms of gaps between the contours. In all
of these cases, the contours have an upward trend
when moving toward the right side of the simplex.
Additionally, comparing the right panels in Figures 1
and 2 shows that when the order of addition changes,
the shape of the contours change as well. However, a
nested F-test between Models (4) and (9) revealed
that the additional interaction terms in Model (9)
were not statistically significant (p-value ¼ 0.9509).

Table 2. Overall ANOVA results for the OofA mixture model.
Source SS df MS Fstat p value

1 Mixture 211.9692 6 35.3282 134.2938 4.9052e-27
2 Order 3.4716 3 1.1572 4.3989 8.4958e-03
3 Error 11.838 45 0.2631

Table 3. Parameter estimates for the OofA mixture models.
Model (4) Model (9)

Term Estimate Std. Error t value Estimate Std. Error t value

x 1 2.8630 0.1808 15.838 2.8630 0.1863 15.3636
x 2 1.0730 0.1808 5.936 1.0730 0.1863 5.7579
x 3 2.0005 0.1808 11.067 2.0005 0.1863 10.7351
z 12 0.1030 0.1405 0.733 0.0075 0.8768 0.0086
z 13 0.4726 0.1405 3.365 0.0900 0.8768 0.1027
z 23 –0.1064 0.1405 –0.757 –0.1800 0.8768 –0.2053
x1x2 –0.9444 0.8405 –1.124 –0.9444 0.8665 –1.0900
x1x3 –0.8044 0.8405 –0.957 –0.8044 0.8665 –0.9284
x2x3 0.3856 0.8405 0.459 0.3856 0.8665 0.4450
x1z12 0.2475 1.9427 0.1274
x2z23 0.1950 1.9427 0.1004
x3z13 0.9000 1.9427 0.4633
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This does not mean that the interaction terms are
unimportant, as they may have important practical
interpretations. Furthermore, other interaction models
may have a better fit. For example, if we fit Model (9)
without the OofA main effect terms cklzkl, then the
resulting model has lower AIC (90.92 vs 91.29,96.85)
and BIC (110.8 vs 111.18,122.71) than Models (4) and
(9), respectively.

By examining all possible orders, we found the
mixture and order settings that gave the closest patty
texture to the target of T¼ 2.75 for both models. For
both models, there were multiple combinations of the
mixture and order that gave a predicted response
nearly equal to T (within 10�10). These are summar-
ized in Table 4. It should be noted that for the order-
ing (1)–(3), the value of x� for Model (4) is quite
different than it is under Model (9). Careful consider-
ation should be taken when deciding which of these
points to use. For example, it may not be practical to
have a mixture proportion as low as 0.003, so one
should carefully consider if the first optimal point for
Model (9) is a reasonable choice.

The purpose of this example is to both demonstrate
how OofA Mixture models can be used and also to

Figure 1. Comparison of Models With and Without Interaction Terms for ordering (1–3). Left: Contour plot for Model (4), which
has no mixture-order interaction terms. Right: Contour plot for Model (9), which has mixture-order interaction terms.

Figure 2. Comparison of Models With and Without Interaction Terms for ordering (1–3). Left: Contour plot for Model (4), which
has no mixture-order interaction terms. Right: Contour plot for Model (9), which has mixture-order interaction terms.

Table 4. Mixture proportions and orderings with a response
matching the target of T¼ 2.75.

Model (4) Model (9)

x� a� x� a�

(0.603,0.054,0.343) (1,2,3) (0.611,0.003,0.385) (1,2,3)
(0.469,0.161,0.370) (1,2,3) (0.399, 0.167, 0.434) (1,3,2)
(0.767,0.033,0.200) (2,1,3) (0.838, 0.078, 0.083) (3,1,2)

(0.026, 0.020, 0.954) (2,1,3)
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show the impact of including interaction terms in an
OofA Mixture model. The inclusion of interaction
terms in this example altered the shape of the con-
tours. This resulted in different optimal points for the
models with and without interaction when the object-
ive was hitting a target response value.

4. Simulation study

Simulations were conducted to compare the optimal
mixture proportions produced by the pure mixture
Model (3) to those produced by the interaction Model
(7) under various scenarios. The aim was to maximize
the response. In the simulations, the optimization of
the response was done in R using the package Rsolnp;
see Ghalanos and Theussl (2012). Two settings
(denoted Mixture-1, Mixture-2) were used to generate
the parameters for the response surface, and another
two settings (denoted Order-1, Order-2) were used to
generate the parameters for the interaction effects in
Model (7). Mixture data was simulated with m¼ 3, 4,
5 components under Model (7). All of the scenarios
used normal errors with constant variance r2:
Simulations were run for r2 ¼ 0:05 and 1. In all cases
the optimal ordering was to place the components in
ascending order.

� Mixture-1 (Edge): The optimal point lies on the
edge of the simplex between x1 and x2. In this
case, the parameters for the response surface were
b1 ¼ 4, b2 ¼ 2, bi ¼ 1 for i ¼ 3, 4, . . . ,m, and
bij ¼ bibj for i < j. For example, when

m¼ 3, b ¼ ð3, 3, 1, 9, 3, 3Þ:
� Mixture-2 (Center): The optimal point lies near

the center of the simplex. In this case, the
parameters for the response surface were bi ¼ 3
for i ¼ 1, . . . ,m and bij ¼ bibj � iþ j: When
m¼ 3, b ¼ ð3, 3, 3, 7, 8, 7Þ:

� Order-1 (Constant): “Constant” means that the
interaction terms were the same for each kl 2 P
across i, i.e. cikl ¼ ckl: The interaction effects are
c12 ¼ 1, c13 ¼ 2, . . . , cm�1,m ¼ ðm

2
Þ, e.g. for

m¼ 3, c ¼ ð1, 2, 3, 1, 2, 3, 1, 2, 3Þ:
� Order-2 (Varying): “Varying,” means that the

interaction terms were not constant across i
for each kl 2 P: In this case, cikl ¼
i=1, i=2, . . . , i=ðm

2
Þ: For example, when m¼ 3,

c ¼ ð1, 1=2, 1=3, 2, 1, 1=3, 3, 3=2, 1Þ:

By varying the number of mixture components,
error variance (small vs large), and the mixture set-
tings (edge vs center) and the order settings

(constant vs varying), a total of 24 cases were exam-
ined. This allows a more informed conclusion to be
made about how well the optimal proportions given
under the mixture-only Model (3) compare to those
found using the interaction Model (7). Mixture-1 set-
ting represents the case where the mixture surface
has an optimal point on the edge of the simplex;
without loss of generality, this was taken to be the
edge between components x1 and x2. Mixture-2 set-
ting represents the case where the optimal point is
near the center of the simplex. Order-1 setting is
established so that the interaction effects are the
same for each kl 2 P, whereas in Order-2 setting,
these interaction effects are allowed to vary.

Table 5 shows the optimal mixture proportions
x�, optimal ordering, and maximum response y� for
m¼ 3 and r2 ¼ 0:05: The remaining cases are shown
in Appendix C. In all cases, the optimal proportions
found using Model (3) differed from those found
using Model (7). For example, when m¼ 3, in the
case of Mixture-1 and Order-2, Model (3) places the
optimal point on the edge of the simplex, while
Model (7) places the optimal point closer to the
interior of the simplex. This case is shown in
Figure 3.

In general, the simulations show that if the add-
ition order of the mixture components has an effect
on the response, then the optimal mixture propor-
tions x� and optimal response y� found by the sim-
plex model may be misleading. The simulations
demonstrate that if there are interactions between
mixture and addition order, then the optimal pro-
portions x� occur at different locations in the sim-
plex than in traditional models. Based on these
observations, it is recommended to initially fit the
additive Model (4) to determine whether the order of
addition is significant. If so, then it is recommended
to compare fit of the additive model and Model (7)
or (8) to determine whether there are significant
interactions between mixture proportions and pair-
wise order.

Table 5. Optimal proportions, order, and response from simu-
lation, m¼ 3, r2 ¼ 0.05.
m Mixture Order Model x� a� y�

3 1 1 (3) (0.658,0.342,0) NA 5.076
(7) (0.754,0.211,0.036) (1–3) 10.719

2 (3) (0.645,0.355,0) NA 5.293
(7) (0.436,0.373,0.191) (1–3) 7.729

2 1 (3) (0.341,0.284,0.375) NA 6.550
(7) (0.276,0.294,0.43) (1–3) 12.61

2 (3) (0.333,0.316,0.351) NA 6.345
(7) (0.081,0.410,0.509) (1–3) 10.512
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5. Conclusion

This paper introduced a new OofA Mixture experi-
ment and provided a framework for an OofA analysis
in traditional mixture designs. Full designs for this
experiment were constructed. These designs ensure
orthogonality between the simplex design parameters
and pairwise ordering effects, as well as mixture-order
interaction effects. Under an identifiability condition, two
general models that allow for interactions between mix-
ture and order were discussed. The designs presented in
this paper can be used to determine whether the order
and the mixture have a significant effect on the response.
Finally, empirical evidence from simulations indicated
that if there is significant interaction between order and
mixture, then the optimal mixture proportions found by
traditional models may be misleading.

It would be ideal to apply these methods to data-
sets where both the mixture proportions and addition
order are varied, but traditional simplex designs do
not do the latter. Thus, many papers on mixture
experiments either ignore the order of addition, ran-
domize the mixing order, or choose a constant mixing
order. To the best of our knowledge, there are cur-
rently no published articles or datasets that vary both
the order of addition and the mixture components in
the same experiment.

It should be acknowledged that this paper provides
initial steps for designing experiments for the OofA
Mixture problem. There are many ways this work
may be extended. Primarily, more work is needed to
reduce the run size. The full designs presented in this
paper are not intended for use for large m. Rather, it
would be ideal to identify a fraction of these full
designs that are D� optimal, as was done in Peng,

Mukerjee, and Lin (2019) for the case of the general
OofA problem. Similarly, it is of interest to see if the
OofA Orthogonal Arrays in Voelkel and Gallagher
(2019) can be used to reduce the run size. On this
same note, future work in this area is needed to iden-
tify optimal designs in this setting, ideally with regard
to D� optimality and other popular criteria. For
instance, Goos, Jones, and Syafitri (2016) studied the
construction of exact and continuous I� optimal mix-
ture designs, which minimize the average prediction
variance over the experimental region. It would be
both useful and intriguing to study I� optimality in
the context of OofA mixture designs. Another area of
future research regards constrained mixture compo-
nents. In real scenarios, it is likely that the mixture
proportions will have at least single component con-
straints 0 � Li � xi � Ui � 1 for each i ¼ 1, :::,m: In
this situation, the experimental region is not the full
simplex, but a polyhedron that lies within the simplex.
In this scenario, the Simplex Lattice and Centroid
designs cannot be used, and one must rely on algo-
rithms to construct an optimal design with a small
run size. The same restriction clearly applies to OofA
mixture designs, and it is of great importance to deal
with this problem in the future.
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