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The order-of-addition (OofA) designs have received significant attention over recent years. 
It is of great interest to seek for efficient fractional OofA designs especially when the 
number of components is large. It has been recognized that constructing efficient fractional 
OofA designs is a challenging work. A systematic construction method for a class of 
efficient fractional OofA designs, called OofA orthogonal arrays (OofA-OAs), is proposed. 
It is shown that OofA-OAs are superior over any other type of fractional OofA designs for 
the predominant pair-wise ordering (PWO) model. The balance property of OofA-OAs is 
also developed. In addition, the capacity of OofA-OAs for estimating different models is 
investigated.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The order-of-addition (OofA) experiment aims at determining the optimal order for processing components in the ex-
periment, which is essential in many areas. For example, in agriculture, Wagner (1995) investigated the order for mixing 
feed rations and the time spent in blending two types of mixers. The order of addition also matters in chemistry, Fuleki 
and Francis (1968) stated that “The order of addition of the lead acetate (before or after the pH adjustment) had a defi-
nite influence on the reaction. Higher recoveries were obtained by adjusting the pH after lead acetate addition.” The order 
of addition of reagents is critical in polymerase chain reaction and the sequence of drug administration impacts clinical 
outcomes (for example, Ding et al., 2015). In genomics, different orders of adding taxa into the computer program yield 
different likelihoods of the fitted tree (for example, Olsen et al., 1994; Stewart et al., 2001). More applications can be found 
in Lin and Peng (2019) and references therein.

The study on OofA problem has increasingly aroused the attention of researchers in academe. Van Nostrand (1995)
proposed the pair-wise ordering (PWO) model (as will be introduced in Section 2) which assumes that the responses of 
different orders depend on the pair-wise orders of components. Lin and Peng (2019) highlighted the prospect of the PWO 
model from many aspects including wide applications, easy utilizations and strong interpretability. Mee (2020) extended the 
PWO model by taking account of the higher-order interactions between PWO factors. With a different modeling perspective, 
Yang et al. (2021) developed the component-position (CP) model which assumes that a component has different effects 
when it is processed at different positions in an order, and Xiao and Xu (2021) proposed the mapping-based universal 
Kriging model for drug combination experiments.
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Table 1
Full OofA design O 3 and full PWO design P3.

PWO factors (P3)

O 3 z12 z13 z23

c3c2c1 −1 −1 −1

c3c1c2 1 −1 −1

c2c3c1 −1 −1 1

c2c1c3 −1 1 1

c1c3c2 1 1 −1

c1c2c3 1 1 1

Considering m components, a full OofA design contains m! different orders. In practice, performing an experiment by a 
full OofA design is usually unaffordable even for a moderately large m (for example, m = 10 resulting in m! ≈ 3.6 millions). 
It is necessary to choose a subdesign from the full OofA design to perform the experiment. The studies on construction of 
efficient fractional OofA designs are rather limited in the literature. Voelkel (2019) proposed to use OofA orthogonal arrays 
(OofA-OAs). As proved in Peng et al. (2019), the OofA-OAs are optimal under a variety of commonly used design criteria 
including D-, A- and M.S .-criteria. Based upon computer search, Voelkel (2019) found a small number of OofA-OAs with 
12 or 24 runs for m = 4, 5, 6. Peng et al. (2019) provided a closed-form construction method for OofA-OAs in m!/k! runs, 
where k = m/2 for an even m and k = (m −1)/2 for an odd m. By employing balanced incompleted block designs, Chen et al. 
(2020) found some OofA-OAs. The methods in Peng et al. (2019) and Chen et al. (2020) are lack of flexibility in design run 
size, what’s more, the run sizes of their OofA-OAs are quite large. For example when m = 7, the run sizes of the OofA-OAs 
in Peng et al. (2019) and Chen et al. (2020) are 840 and 168, respectively. Yang et al. (2021) and Huang (2021) respectively 
constructed a class of fractional OofA designs, called component-orthogonal arrays. The component-orthogonal arrays are 
D-optimal for the CP model but may not be estimable under the PWO model. It is desirable that a fractional OofA design 
can have good performance for different models. Under the PWO model, Zhao et al. (2021) explored the construction of 
minimal-point OofA designs, and Winker et al. (2020) generated highly efficient OofA designs via threshold accepting.

In this paper, we propose a systematic construction method for OofA-OAs. Compared to the existing construction meth-
ods, the new method enjoys three advantages: (i) it works for any design run size, provided that the OofA-OA exists, (ii) 
given the run size and the number of components, it is capable of finding many non-equivalent OofA-OAs, and (iii) it is 
user-friendly due to its elegant mathematical formulation. We address an important unresolved issue in the literature, a 
D-optimal fractional OofA design is indeed an OofA-OA. It is further proved that any optimal fractional OofA design (in 
terms of D-, A-, M.S .- or χ2-optimalities) for the PWO model, must be an OofA-OA. The balance property of the OofA-OAs 
is also investigated. It is shown that the OofA-OAs have a perfect balance property. For example, after removing any m − 3
components from an OofA-OA, the resulting design has the 6 (3!=6) different orders appearing equally often. It is demon-
strated that OofA-OAs can provide considerable relative D-efficiencies (compared to their corresponding full OofA designs) 
for alternative models (such as CP model).

The rest of the paper is organized as follows. Preliminaries are given in Section 2. The construction method of OofA-OAs 
is proposed in Section 3. Section 4 explores the balance property of OofA-OAs and proves that, under the PWO model, D-, 
A-, M.S .- or χ2-optimal fractional OofA designs are OofA-OAs. The performance of OofA-OAs for the CP model is discussed 
in Section 5. Concluding remarks are given in Section 6. The proofs and some useful design tables are deferred to Appendix.

2. Preliminaries

Denote the m components as c1, c2, . . . , cm . Let O m denote the full OofA design in which the m! rows are m! permutations 
of the m components. For an order δ in O m , use τ (δ) to represent the expectation of observations arising from order δ. The 
PWO model is established as

τ (δ) = β0 +
m−1∑
i=1

m∑
j=i+1

βi jλi j(δ),

where λi j(δ) = 1 if component ci precedes c j in δ, otherwise λi j(δ) = −1, and β0, βi j ’s are unknown parameters to be 
estimated. As an example of m = 3, λ12(c1c2c3) = 1 as c1 precedes c2 and λ12(c2c3c1) = −1 as c2 precedes c1. By evaluating 
all of the m! orders δ1, δ2, . . . , δm! in O m , zi j = (λi j(δ1), λi j(δ2), . . . , λi j(δm!))T forms an m!-dimensional vector relating to the 
components ci and c j . We call zi j a PWO factor. For m components, there are in total m(m − 1)/2 PWO factors zi j ’s with 
1 ≤ i < j ≤ m. We call the column-juxtaposed matrix (z12, z13, . . . , z(m−1)m) the full PWO design, denoted as Pm . As an 
illustration, the full PWO design P3 is displayed in Table 1.

For ease of presenting the work, throughout the paper, the rows of O m are arranged in reversed lexicographical order. 
For example for m = 3, O 3 is displayed in Table 1. The PWO factors in Pm are arranged as (z12, z13, . . . , z(m−1)m), where 
zi j is ahead of zkl if i < k; or if i = k and j < l. For example, the PWO factors in P3 are displayed in Table 1. With such 
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arrangements, each row in Pm is uniquely determined by one row in O m , and vice versa. We denote D as a fractional OofA 
design from O m , and P D as the corresponding fractional PWO design determined by D .

Definition 1. An N-run fractional OofA design D is called an OofA-OA of strength t , denoted as OofA-OA(N, m, t), if the 
ratios among the frequencies of all t-tuples in any t-column subarray of P D equal to the ratios among the frequencies of all 
t-tuples in the corresponding t-column subarray of Pm .

Definition 1 is a variant of the definition of OofA-OA in Voelkel (2019). In the following, unless particularly stated, the 
OofA-OAs refer to OofA-OAs of strength t = 2. This needs to investigate the frequencies of two-tuples in the two-column 
subarrays of Pm . Let n(+,+) denote the frequency that the two-tuple (+, +) appears in a pair of PWO factors (columns) of 
Pm , and n(+,−) , n(−,+) and n(−,−) are similarly defined.

Remark 1. Write d = m(m −1)/2. For the PWO factors in Pm , the d(d −1)/2 pairs (zi j, zkl)’s can be classified into three types: 
the synergistic pairs, satisfying i = k or j = l, for which n(+,+) = m!/3, n(+,−) = m!/6, n(−,+) = m!/6 and n(−,−) = m!/3; the 
antagonistic pairs, satisfying i = l or j = k, for which n(+,+) = m!/6, n(+,−) = m!/3, n(−,+) = m!/3 and n(−,−) = m!/6; and 
the independent pairs, whose two PWO factors involve no common component, for which n(+,+) = m!/4, n(+,−) = m!/4, 
n(−,+) = m!/4 and n(−,−) = m!/4. Clearly, the run size N of an OofA-OA should be a multiple of 12.

3. Constructions of OofA-OAs

3.1. Constructions of OofA-OA(N, 4, 2)’s

To better understand the main idea of the proposed method, we first introduce the idea using m = 4 for an illustration 
in this subsection, and then extend it to a general m in Section 3.2.

Let bij,kl(·, ·) denote the 4!-dimensional vector whose r-th entry is 1, if the two-tuple (·, ·) appears in the r-th row of 
(zi j, zkl) in P4; and is 0 otherwise. Let

Bij,kl = (bij,kl(+,+),bij,kl(+,−),bij,kl(−,+),bij,kl(−,−)) and

B1,2,3,4 = (B12,13, B12,14, . . . , B23,24),

where Bij,kl is ahead of B pq,uv if i < p; or if i = p and j < q; or if i = p, j = q and k < u; or if i = p, j = q, k = u and l < v; 
with 1 ≤ i, j, k, l, p, q, u, v ≤ 4. The matrix B1,2,3,4 is displayed in Table B1 in Appendix B. For a fractional OofA design D , 
if the r-th row δr of O 4 is in D , yr(D) = 1, and yr(D) = 0 otherwise. Let Y D = (y1(D), y2(D), . . . , y4!(D))T . The following 
theorem establishes a sufficient and necessary condition for a fractional OofA design to be an OofA-OA(N, 4, 2).

Theorem 1. For m = 4, a fractional OofA design D is an OofA-OA(N, 4, 2) if and only if Y D is a feasible solution of

BT
1,2,3,4Y D = (N/4!)diag(BT

1,2,3,4 B1,2,3,4), (1)

where diag(·) is a column vector consisting of the diagonal elements of a matrix.

Theorem 1 indicates that once a feasible solution Y D of (1) is obtained, we can select an OofA-OA(N, 4, 2) from O 4
according to Y D . The following example illustrates this point.

Example 1. It is straightforward to verify that Y D = (0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1)T is a feasible 
solution of (1), then the OofA design D consisting of the 3, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 24-th rows of O 4 is an OofA-
OA(12, 4, 2).

By solving (1), there are in total 20 feasible solutions for N = 12 and each of them determines an OofA-OA(12, 4, 2). 
Among these 20 OofA-OA(12, 4, 2)’s, 8 of them are isomorphic to A12

4.1 whose row numbers in O 4 are displayed in Table B2
in Appendix B, and the other 12 are isomorphic to A12

4.2 in Table B2. Two OofA-OAs are said to be isomorphic if one can be 
obtained from the other by relabeling components. Throughout the paper, we check isomorphism by relabeling components.

3.2. Constructions of OofA-OA(N, m, 2)’s for m ≥ 5

We now extend the notation Y D , bij,kl(·, ·) and Bij,kl to a general m. Denote

B w1,w2,w3,w4 = (B w1 w2,w1 w3 , B w1 w2,w1 w4 , . . . , B w2 w3,w3 w4),

where 1 ≤ w1 < w2 < w3 < w4 ≤ m, Bij,kl is ahead of B pq,uv if i < p; or if i = p and j < q; or if i = p, j = q and k < u; 
or if i = p, j = q, k = u and l < v; with w1 ≤ i, j, k, l, p, q, u, v ≤ w4. Let B = (B1,2,3,4, B1,2,3,5, . . . , Bm−3,m−2,m−1,m), where 
3
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Bi, j,k,l is ahead of B p,q,u,v if i < p; or if i = p and j < q; or if i = p, j = q and k < u; or if i = p, j = q, k = u and l < v; with 
1 ≤ i, j, k, l, p, q, u, v ≤ m. The theorem below establishes a sufficient and necessary condition for a fractional OofA design 
to be an OofA-OA(N, m, 2) with a general m.

Theorem 2. A fractional OofA design D is an OofA-OA(N, m, 2) if and only if Y D is a feasible solution of

BT Y D = N/(m!)diag(BT B). (2)

The proof of Theorem 2 is similar to that of Theorem 1 and thus omitted. For m ≥ 5, it becomes a complex problem to 
solve (2). To efficiently obtain feasible solutions, we transform (2) into a 0 − 1 optimization problem, as stated in Remark 2.

Remark 2. For a given c ∈ Rm! , an m!-dimensional vector, if Y D is a feasible solution of the 0 −1 linear optimization problem,

min cT Y D subject to:
BT Y D = N/(m!)diag(BT B) and Y D ∈ {0,1}m!, (3)

then Y D is a feasible solution of equation (2).

Any integer programming solver can be used to solve (3). In this paper, we employ intlinprog in Matlab. For an N and 
arbitrary c, intlinprog either reports a feasible solution or no feasible solution found (indicating that no OofA-OA exists for 
such an N). As a sufficient condition, equation (3) may miss some solutions (OofA-OAs) that can be given by equation (2). 
Note that (2) serves as a sufficient and necessary condition which can provide all possible OofA-OAs.

As an example, we apply Theorem 2 and Remark 2 to seeking for OofA-OAs for m = 5, 6, 7. Those designs with small 
run sizes are displayed in Appendix B.

OofA-OAs for m = 5
(i) OofA-OA(12, 5, 2)’s. By directly solving equation (2) with m = 5 and N = 12, there are in total 240 different feasible 

solutions and each of them provides an OofA-OA(12, 5, 2). Among these OofA-OAs, 120 of them can be obtained from A12
5.1

in Table B3 in Appendix B by relabeling components, and the other 120 of them can be obtained from A12
5.2 in Table B3 by 

relabeling components.
(ii) OofA-OA(24, 5, 2)’s. With 2,000 random c’s defined in Remark 2, nearly 800 different feasible solutions are found. 

With these feasible solutions, selective 15 OofA-OA(24, 5, 2)’s are displayed in Table B4 in Appendix B. Each of the displayed 
15 OofA-OA(24, 5, 2)’s cannot be obtained from the others by relabeling components.

(iii) OofA-OA(36, 5, 2)’s. With 2,000 random c’s defined in Remark 2, nearly 1,200 different feasible solutions are found. 
With these feasible solutions, selective 15 OofA-OA(36, 5, 2)’s are displayed in Table B5 in Appendix B. Each of the displayed 
15 OofA-OA(36, 5, 2)’s cannot be obtained from the others by relabeling components.

OofA-OAs for m = 6
(i) OofA-OA(12, 6, 2) does not exist.
(ii) OofA-OA(24, 6, 2)’s. With 2,000 random c’s defined in Remark 2, nearly 500 different feasible solutions are found. 

With these feasible solutions, selective 15 OofA-OA(24, 6, 2)’s are displayed in Table B6 in Appendix B. Each of the displayed 
15 OofA-OA(24, 6, 2)’s cannot be obtained from the others by relabeling components.

(iii) OofA-OA(36, 6, 2)’s. With 2,000 random c’s defined in Remark 2, nearly 1,000 different feasible solutions are found. 
With these feasible solutions, selective 15 OofA-OA(36, 6, 2)’s are displayed in Table B7 in Appendix B. Each of the displayed 
15 OofA-OA(36, 6, 2)’s cannot be obtained from the others by relabeling components.

(iv) OofA-OA(48, 6, 2)’s. With 2,000 random c’s defined in Remark 2, nearly 900 different feasible solutions are found. 
With these feasible solutions, selective 15 OofA-OA(48, 6, 2)’s are displayed in Table B8 in Appendix B. Each of the displayed 
15 OofA-OA(48, 6, 2)’s cannot be obtained from the others by relabeling components.

OofA-OAs for m = 7
(i) OofA-OA(12, 7, 2) does not exist.
(ii) OofA-OA(24, 7, 2)’s. With 2,000 random c’s defined in Remark 2, nearly 1,100 different feasible solutions are found. 

With these feasible solutions, selective 15 OofA-OA(24, 7, 2)’s are in Table B9 in Appendix B. Each of the displayed 15
OofA-OA(24, 7, 2)’s cannot be obtained from the others by relabeling components.

Theorems 1 and 2 imply three salient features of the proposed method. First, the proposed method can provide OofA-OAs 
for almost any N . Second, given m and N , the proposed method is capable of constructing many non-equivalent OofA-OAs. 
Different OofA-OAs may have different performances. This will be clearly addressed in Section 5. Third, the proposed method 
is easy to use due to the simple structure of (2).
4
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4. Theoretical properties of OofA-OAs

4.1. Balance property of OofA-OAs

An example is first provided to illustrate the development in this section.

Example 2. The design

A12
4.2 =

⎛
⎜⎜⎝

c4 c4 c3 c3 c3 c3 c2 c2 c2 c1 c1 c1
c2 c1 c4 c4 c2 c1 c4 c4 c1 c4 c4 c2
c3 c3 c2 c1 c1 c2 c3 c1 c3 c3 c2 c3
c1 c2 c1 c2 c4 c4 c1 c3 c4 c2 c3 c4

⎞
⎟⎟⎠

T

(displayed in Table B2 in Appendix B) is an OofA-OA(12, 4, 2). Projecting A12
4.2 onto components c1 and c2 results in the 

design H1,

H1 =
(

c2 c1 c2 c1 c2 c1 c2 c2 c2 c1 c1 c1
c1 c2 c1 c2 c1 c2 c1 c1 c1 c2 c2 c2

)T

,

which is a 6-replication of O 2. Projecting A12
4.2 onto components c1, c2 and c3 results in the design H2,

H2 =
⎛
⎝ c2 c1 c3 c3 c3 c3 c2 c2 c2 c1 c1 c1

c3 c3 c2 c1 c2 c1 c3 c1 c1 c3 c2 c2
c1 c2 c1 c2 c1 c2 c1 c3 c3 c2 c3 c3

⎞
⎠

T

,

which is a 2-replication of O 3. It is always the case when projecting A12
4.2 onto other two or three components.

We now formally introduce the balance property of OofA-OAs as indicated in Example 2.

Theorem 3. For any OofA-OA(N, m, 2) D,

(i) when D is projected onto any two components ci and c j , the resulting design is an N/2-replication of O 2;
(ii) when D is projected onto any three components ci , c j and ck, the resulting design is an N/6-replication of O 3.

With the proof of Theorem 3, a sufficient condition for the OofA-OAs is derived.

Corollary 1. When a fractional OofA design D is projected onto any s components with s ≥ 4, if all of the s! orders of these s components 
appear equally often in the resulting design, then D is an OofA-OA.

Theorem 3 implies that when an OofA-OA is projected onto any two or three components, the resulting designs preserve 
perfect order balances. As indicated in Example 2, when removing a component from an OofA-OA(12,4,2), all of the 6 orders 
of the remaining three components appear equally 2 times in the resulting design, and when removing two components 
from an OofA-OA(12,4,2), all of the 2 orders of the remaining two components appear equally 6 times in the resulting 
design. Corollary 1 serves as a sufficient condition for seeking for OofA-OAs. It shows that a fractional OofA design is an 
OofA-OA as long as the s! (s ≥ 4) orders of its any s components appear equally after components collapsing.

4.2. Equivalence between the OofA-OA and multi-optimalities

In the literature, it was conjectured that a D-optimal fractional OofA design may be an OofA-OA (Voelkel, 2019). Here, 
we prove that this is indeed the case. Furthermore, we show that the OofA-OAs are the unique type of fractional OofA 
designs which possess D-, A-, M.S .- and χ2-optimality.

For an N-run fractional OofA design D , let X be its model matrix under the PWO model, the D-efficiency is defined 
as det(M)1/q , where M = X T X/N is the moment matrix of D , q is the number of columns in X and N is the number of 
rows in X . Peng et al. (2019) proved that a fractional OofA design is optimal with respect to the D-criterion if and only 
if it has the same moment matrix as the full OofA design. Clearly, OofA-OAs have the same moment matrices as the full 
OofA designs, and thus are D-optimal. In the following, we show that any D-optimal fractional OofA design must be an 
OofA-OA. Before formally introducing this result, we first provide a useful lemma. Similar to Theorem 2, the equation for 
the D-optimal OofA design of N runs can be formulated as in Lemma 1.
5
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Lemma 1. An N-run fractional OofA design D has the same moment matrix as the full OofA design O m if and only if, for any two 
different PWO factors zi j and zkl in Pm, the equations

(zi j � Y D)T 1m! = 0 and (4)

(zi j � Y D)T (zkl � Y D) =
⎧⎨
⎩

N/3, i = k and j �= l; or j = l and i �= k,

−N/3, i = l and j �= k; or j = k and i �= l,
0, otherwise

(5)

hold for Y D , where 1m! is an m!-dimensional vector of unity, 1 ≤ i, j, k, l ≤ m and � is the element-wise product.

Combining Lemma 1 with Theorem 3, we have Theorem 4 below.

Theorem 4. A fractional OofA design is D-optimal if and only if it is an OofA-OA.

In Peng et al. (2019), some other design criteria such as the A-criterion (defined as trace(M−1)) and M.S .-criterion 
(defined as trace(M2)) are also considered. Under the PWO model, Voelkel (2019) proposed a modified χ2-criterion to 
measure the orthogonality of OofA designs. It is defined as

χ2(D) =
d−1∑
k=1

d∑
l=k+1

χ2
kl(P D)/ (d (d − 1)) ,

where χ2
kl(P D) = ∑

a=±1
∑

b=±1 (nkl(a,b) − N Ekl(a,b)/m!)2 /(N Ekl(a,b)/m!), nkl(a, b) is the number of two-tuple (a, b)

which appears in the two-column subarray consisting of the k-th and l-th columns of P D , and Ek,l(a, b) is the number 
of the two-tuple (a, b) which appears in the two-column subarray consisting of the k-th and l-th columns of the full PWO 
design Pm . Peng et al. (2019) proved that a fractional OofA design is A- and M.S .-optimal if and only if it has the same 
moment matrix as the full OofA design. From the definitions of OofA-OA and χ2-criterion, it is evident that a fractional 
OofA design has the same χ2-optimality (χ2 = 0), as the full OofA design if and only if it is OofA-OA. With Theorem 4, we 
can conclude the result in Corollary 2 below.

Corollary 2. A fractional OofA design with D-, A-, M.S.- or χ2-optimality must be an OofA-OA.

Theorem 4 and Corollary 2 indicate that no fractional OofA design has equal or better performance than the OofA-OAs 
under the D-, A-, M.S .- or χ2-criterion. This theoretical result strengthens the superiority of OofA-OAs over any other type 
of fractional OofA designs.

5. Performance of OofA-OAs under an alternative model

Another surrogate model for OofA experiments is the component-position (CP) model (Yang et al., 2021). Denote τ ( j)
ci

as 
the effect of the component ci at the j-th position of an order involving m components, where i, j = 1, 2, . . . , m. The CP 
model is established as

y = μ0 +
m∑

i=1

m∑
j=1

x j
ci
τ

( j)
ci

+ ε

with the baseline constraints{
τ

( j)
c1 = 0, for j = 1,2, . . . ,m,

τ
(m)
ci

= 0, for i = 1,2, . . . ,m,

where μ0 is the overall mean, x j
ci

= 1 if, in order δ, the component ci is arranged at position j and 0 otherwise, and 
ε ∼ N(0, σ 2) is a random measurement error. It is desirable that a fractional OofA design can be efficient for both the PWO 
and CP models. Motivated by this, the relative D-efficiencies of the OofA-OAs (compared to their corresponding full OofA 
designs) for the CP model are investigated, where by converting X and M (see Section 4.2) into their counterparts for the 
CP model, the D-efficiency for the CP model is also defined as det(M)1/q . We use DCP-efficiency to denote this D-efficiency 
so as to differentiate it from that for the PWO model. The relative DCP-efficiency of a fractional OofA design is the ratio 
between the DCP-efficiency of this fractional OofA design and that of its corresponding full OofA design. The CP model has 
(m − 1)2 + 1 parameters to be estimated, an OofA-OA with run size smaller than (m − 1)2 + 1 is nonestimable under the CP 
model.

OofA-OAs for m = 4
6
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When m = 4, the CP model has 10 parameters to be estimated. From Table B2, A12
4.1 provides a relative DCP-efficiency 

0.76, and A12
4.2 provides a relative DCP-efficiency 0.

OofA-OAs for m = 5
When m = 5, the CP model has 17 parameters to be estimated. The OofA-OA(12,5,2)’s are nonestimable under the CP 

model. The OofA-OA(24,5,2)’s displayed in Table B4 provide relative DCP-efficiencies varying from 0.76 to 0.85. The OofA-
OA(36,5,2)’s displayed in Table B5 provide relative DCP-efficiencies varying from 0.88 to 0.90.

OofA-OAs for m = 6
When m = 6, the CP model has 26 parameters to be estimated. The OofA-OA(24,6,2)’s are nonestimable under the CP 

model. The OofA-OA(36,6,2)’s displayed in Table B7 provide relative DCP-efficiencies varying from 0.68 to 0.72 and OofA-
OA(48,6,2)’s displayed in Table B8 provide relative DCP-efficiencies varying from 0.78 to 0.82.

Relabeling the components of OofA-OAs does not change their relative DCP-efficiencies. While, the OofA-OAs in Tables B2, 
B4, B5, B7 and B8, have different relative DCP-efficiencies. This implies that non-equivalent OofA-OAs may have different 
performances under the DCP-criterion. These findings show that the proposed method sheds light on potential wide appli-
cations of OofA-OAs beyond the PWO model.

6. Concluding remarks

Constructing efficient fractional OofA designs has been of great interest due to the economical reason. In this paper, we 
propose a systematic construction method for OofA-OAs, a class of D-, A-, M.S .- and χ2-optimal designs for the predom-
inant PWO model. The proposed construction method has three advantages: (i) it works for any design run size, provided 
the OofA-OA exists, (ii) given m and N , it is capable of constructing non-equivalent OofA-OAs, and (iii) it is user-friendly 
due to its elegant mathematical formulation.

The balance property of the OofA-OAs was also investigated. It is shown that, for example, when removing m − 2 com-
ponents from an OofA-OA, all of the 2 (= 2!) orders of the remaining two components appear equally often in the resulting 
design; and when removing m − 3 components from an OofA-OA, all of the 6 (= 3!) orders of the remaining three compo-
nents appear equally often in the resulting design. Theorem 4 and Corollary 2 show that the OofA-OA is the unique type of 
fractional OofA designs possessing D-, A-, M.S .- and χ2-optimalities for the PWO model. This theoretical result strengthens
the superiority of the OofA-OAs over any other type of fractional OofA designs.

In Section 5, the performances of the OofA-OAs for the CP model are evaluated. OofA-OAs are D-optimal for the PWO 
model but not necessarily D-optimal for the CP model. Nevertheless, many OofA-OAs can provide considerable relative D-
efficiencies (for example, 0.9) for the CP model as indicated in Tables B2, B4, B5, B7 and B8. Similarly, component orthogonal 
arrays (COAs) proposed in Yang et al. (2021) are D-optimal for the CP model but not necessarily D-optimal for the PWO 
model. As discussed in Table 5 in Yang et al. (2021), many COAs can provide considerable relative D-efficiencies (for ex-
ample, 0.9) for the PWO model. This shows that OofA-OAs and COAs are compatible. Xiao and Xu (2021) proposed to use 
Kriging models (including universal Kriging model and mapping-based universal Kriging model) for the OofA problem. We 
performed preliminary simulations designed similar to that of Example 2 in Xiao and Xu (2021). It was shown that OofA-
OAs have generally good performances evaluated by the criteria used in Xiao and Xu (2021). For example, the tabulated 
OofA-OA(N, 6, 2)’s with N = 24, 36 and 48 generally provide R1 as well as R2 higher than 0.95 and RMSE ranging from 1 to 
3, where R1 is the correlation between the actual and predicted responses of all observations, R2 is the correlation between 
the actual and predicted responses of observations in the test set, and RMSE is the root mean squared error of predicted 
responses of observations in the test set. A concrete study on the performances of OofA-OAs for the Kriging models will be 
carried out in our future research.

As pointed by one of the referees, one idea is to minimize the distance between the two sides of the equation (2) instead 
of making it as a constraint. The linear term in the original objective function in (3) can be either dropped or just added 
to the previously stated distance measure. In either case, we can use solvers of integer quadratic programming to find the 
design. It has the same computational complexity as the integer linear programming.

For m ≤ 6, the integer linear programming can handle any run size provided that the corresponding OofA-OA exists. For 
m = 7, the integer linear programming can only handle some limited run sizes (say N < 36). At present, the equation system 
(2) is too precise to find solutions for large m and N by integer linear programming. One possibility to make the integer 
linear programming work for m = 7 with N ≥ 36 or m ≥ 8 is to simplify the equation system (2). To do so, the balance 
properties developed in Theorem 3 can be useful. As has been previously demonstrated, the newly proposed method is 
capable of finding D-efficient OofA-OAs under the CP model, systematic study on efficiently finding OofA-OAs with larger 
D-efficiencies under the CP model is another research direction.
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Appendix A. Proofs

To differentiate the columns in Pm and P D , in the following proofs, we use xij to denote the column of P D corresponding 
to zi j in Pm .

Proof of Theorem 1. Let f(+,+) be the frequency that the two-tuple (+, +) appears in a pair of PWO factors (columns) of 
P D , and f(+,−) , f(−,+) and f(−,−) are similarly defined. From Definition 1 and Remark 1, if OofA design D is an OofA-OA 
of N runs, then f(+,+) = N/3, f(+,−) = N/6, f(−,+) = N/6 and f(−,−) = N/3 for any synergistic pair in P D ; f(+,+) = N/6, 
f(+,−) = N/3, f(−,+) = N/3 and f(−,−) = N/6 for any antagonistic pair in P D ; and f(+,+) = N/4, f(+,−) = N/4, f(−,+) = N/4
and f(−,−) = N/4 for any independent pair in P D .

With the definition of B1,2,3,4, and some algebra calculations,

diag((N/4!)BT
1,2,3,4 B1,2,3,4) = (bT

1 ,bT
1 ,bT

2 ,bT
2 ,bT

3 ,bT
1 ,bT

1 ,bT
3 ,bT

2 ,bT
3 ,bT

1 ,bT
1 ,bT

1 ,bT
2 ,bT

1 )T

with

b1 = (N/3, N/6, N/6, N/3)T ,

b2 = (N/6, N/3, N/3, N/6)T and

b3 = (N/4, N/4, N/4, N/4)T .

Note that bij,kl(a, b)T Y D is the frequency of two-tuple (a, b) appearing in (xij, xkl) of P D and (1) is a joint of the following 
equations,

(i) for either i = k or j = l, bij,kl(a, b)T Y D =

⎧⎪⎪⎨
⎪⎪⎩

N/3, if a = + and b = +,

N/6, if a = + and b = −,

N/6, if a = − and b = +,

N/3, if a = − and b = −,

(ii) for either i = l or j = k, bij,kl(a, b)T Y D =

⎧⎪⎪⎨
⎪⎪⎩

N/6, if a = + and b = +,

N/3, if a = + and b = −,

N/3, if a = − and b = +,

N/6, if a = − and b = −,

(iii) for mutually different i, j, k, l, bij,kl(a, b)T Y D = N/4 with a = ± and b = ±.

For proving the “if” part, suppose Y D is a feasible solution of (1), then (i), (ii) and (iii) are valid. Therefore, P D has the 
frequencies of two-tuples required in Definition 1 and thus D is an OofA-OA(N, 4, 2). For proving the “only if” part, if D is 
an OofA-OA, then P D has the frequencies of the two-tuples required in Definition 1 implying that (i), (ii) and (iii) hold for 
Y D . Therefore, Y D is a feasible solution of (1). This completes the proof. �
Proof of Theorem 3. We first prove the case of m = 4. Applying the Gauss–Jordan elimination to (1), it is obtained that

y1 + y24 = N/12, (6)

y2 − y21 − y22 − y24 = −N/12, (7)

y3 + y22 = N/12, (8)

y4 − y22 − y23 − y24 = −N/12, (9)

y5 + y19 + y21 + y22 = N/6, (10)

y6 + y20 + y23 + y24 = N/6, (11)

y7 + y23 = N/12, (12)

y8 − y19 − y20 − y23 = −N/12, (13)

y9 + y20 = N/12 (14)

y10 − y20 − y23 − y24 = −N/12, (15)

y11 + y19 + y20 + y21 = N/6, (16)

y12 + y22 + y23 + y24 = N/6, (17)

y13 + y21 = N/12, (18)
8
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y14 − y19 − y20 − y21 = −N/12, (19)

y15 + y19 = N/12, (20)

y16 − y19 − y21 − y22 = −N/12, (21)

y17 + y19 + y20 + y23 = N/6, and (22)

y18 + y21 + y22 + y24 = N/6, (23)

where (D) is dropped from the notation yi(D)’s for saving space.
For (i). The sum of the left-hand sides of equations (7), (10), (11), (13), (16) and (17) is y2 + y5 + y6 + y8 + y11 + y12 +

y19 + y20 + y21 + y22 + y23 + y24, and the sum of the right-hand sides of these equations is N/2. By checking the orders in 
O 4, orders with c1 preceding c2 appear in 2, 5, 6, 8, 11, 12, 19, 20, 21, 22, 23, 24-th rows in O 4. This shows that the order 
c1c2 appears N/2 times when an OofA-OA(N, 4, 2) is projected onto components c1 and c2. Similarly, it can be verified that 
(i) holds for all of the two orders of any two-component combinations. �

For (ii). The sum of the left-hand sides of equations (7), (13), (16) and (17) is y2 + y8 + y11 + y12, and the sum of the 
right-hand sides of these equations is N/6. By checking the orders in O 4, orders with c3 preceding c1 and c1 preceding 
c2 appear in 2, 8, 11, 12-th rows in O 4. This shows that the order c3c1c2 appears N/6 times when an OofA-OA(N, 4, 2)

is projected onto components c1, c2 and c3. Similarly, it can be verified that (ii) holds for all of the six orders of any 
three-component combinations.

For m ≥ 5, the equation (2) is a joint of the m(m − 1)(m − 2)(m − 3)/24 equations

BT
wi ,w j ,wk,wl

Y D = N/(m!)diag(BT
wi ,w j ,wk,wl

B wi ,w j ,wk,wl ) (24)

with 1 ≤ wi < w j < wk < wl ≤ m and B wi ,w j ,wk,wl is m!/4!-replication of the B1,2,3,4 for m = 4. Therefore, Theorem 3 holds 
for m ≥ 5 as well. �
Proof of Corollary 1. We only need to prove the case of s = 4. When D is projected onto any four components cwi , cw j , cwk

and cwl , if all of the 24 orders of cwi , cw j , cwk , cwl appear equally often in the resulting design, then equation (24) is 
satisfied. This completes the proof. �
Proof of Lemma 1. The proof of Lemma 1 is similar to that of Theorem 1 by noting that (zi j � Y D)T 1m! = xT

i j1N and (zi j �
Y D)T (zkl � Y D) = xT

i j xkl , where 1N is an N-dimensional vector of unity. We omit the details here. �
Proof of Theorem 4. We first prove Theorem 4 with m = 4. Let hij,kl be a 4!-dimensional vector whose r-th entry is 1 if the 
two-tuples (+, +) or (−, −) appears in the r-th row of (zi j, zkl) in P4, and is −1 otherwise, Let

H1,2,3,4 = (h12,13,h12,14, . . . ,h23,24),

where hij,kl is ahead of hpq,uv if i < p; or if i = p and j < q; or if i = p, j = q and k < u; or if i = p, j = q, k = u and l < v; 
with 1 ≤ i, j, k, l, p, q, u, v ≤ 4. Since (zi j � Y D)T (zkl � Y D) = (zi j � zkl)

T Y D = hT
i j,klY D and (zi j � Y D)T 1m! = zT

i j Y D = xT
i j1N , 

then (4) and (5) with m = 4 are equivalent to

G T
1,2,3,4Y D =

(
06
ξ

)
. (25)

where G1,2,3,4 = (P4, H1,2,3,4) and ξ is a column vector consisting of the diagonal elements of

(N/4!)H T
1,2,3,4 H1,2,3,4.

Applying the Gauss–Jordan elimination to (25) obtains the same equations as (6)–(23) in the proof of Theorem 3. Therefore, 
(25) is equivalent to (1) implying that, for m = 4, a fractional OofA design has the same moment matrix as the full OofA 
design if and only if it is an OofA-OA.

With a similar argument to the case of m = 4, it is obtained that Theorem 4 holds for m ≥ 5. This completes the 
proof. �
Appendix B. Some selective designs
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Table B1
Matrix BT

1,2,3,4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

bT
12,13(+,+) 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

bT
12,13(+,−) 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

bT
12,13(−,+) 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

bT
12,13(−,−) 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1

bT
12,14(+,+) 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

bT
12,14(+,−) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

bT
12,14(−,+) 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bT
12,14(−,−) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

bT
12,23(+,+) 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

bT
12,23(+,−) 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0

bT
12,23(−,+) 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

bT
12,23(−,−) 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

bT
12,24(+,+) 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bT
12,24(+,−) 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

bT
12,24(−,+) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

bT
12,24(−,−) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

bT
12,34(+,+) 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

bT
12,34(+,−) 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0

bT
12,34(−,+) 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

bT
12,34(−,−) 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1

bT
13,14(+,+) 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

bT
13,14(+,−) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0

bT
13,14(−,+) 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

bT
13,14(−,−) 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1

bT
13,23(+,+) 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

bT
13,23(+,−) 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

bT
13,23(−,+) 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

bT
13,23(−,−) 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

bT
13,24(+,+) 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

bT
13,24(+,−) 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0

bT
13,24(−,+) 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

bT
13,24(−,−) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1

bT
13,34(+,+) 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bT
13,34(+,−) 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0

bT
13,34(−,+) 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0

bT
13,34(−,−) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1

bT
14,23(+,+) 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

bT
14,23(+,−) 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

bT
14,23(−,+) 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0

bT
14,23(−,−) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1

bT
14,24(+,+) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bT
14,24(+,−) 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

bT
14,24(−,+) 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

bT
14,24(−,−) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

bT
14,34(+,+) 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

bT
14,34(+,−) 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

bT
14,34(−,+) 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

bT
14,34(−,−) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1

bT
23,24(+,+) 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

bT
23,24(+,−) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0

bT
23,24(−,+) 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

bT
23,24(−,−) 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 1

bT
23,34(+,+) 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bT
23,34(+,−) 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0

bT
23,34(−,+) 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

bT
23,34(−,−) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

bT
24,34(+,+) 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

bT
24,34(+,−) 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

bT
24,34(−,+) 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0

bT
24,34(−,−) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1
Y. Zhao, D.K.J. Lin and M.-Q. Liu Computational Statistics and Data Analysis 165 (2022) 107320
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Table B2
Two OofA-OA(12,4,2)’s.

Run 1 2 3 4 5 6 7 8 9 10 11 12 DCP

A12
4.1 1 3 6 8 9 12 14 16 18 19 21 23 0.76

A12
4.2 1 2 4 6 9 11 15 16 17 21 22 23 0

DCP: the relative DCP-efficiency compared to the full OofA design.

Table B3
Two OofA-OA(12,5,2)’s.

Run 1 2 3 4 5 6 7 8 9 10 11 12 DCP

A12
5.1 1 6 12 18 57 59 81 83 89 05 107 113 ∗

A12
5.2 2 15 21 31 48 58 72 80 86 91 104 110 ∗

* the run size of the OofA-OA is smaller than the number of parameters in the CP model.

Table B4
Selective 15 OofA-OA(24,5,2)’s.

Run A24
5.1 A24

5.2 A24
5.3 A24

5.4 A24
5.5 A24

5.6 A24
5.7 A24

5.8 A24
5.9 A24

5.10 A24
5.11 A24

5.12 A24
5.13 A24

5.14 A24
5.15

1 3 3 3 3 2 3 3 4 10 2 2 5 5 3 3

2 8 8 5 5 3 8 10 7 13 7 13 15 10 10 8

3 9 18 7 10 9 18 11 22 20 15 15 20 15 12 9

4 18 20 17 14 11 23 14 26 24 17 20 24 17 13 18

5 23 21 22 21 24 25 23 27 27 22 22 26 20 20 23

6 30 25 26 26 28 28 26 30 29 30 25 28 30 21 30

7 33 31 28 36 29 33 36 33 31 33 34 31 33 30 31

8 38 41 35 39 31 45 38 36 36 38 38 41 35 33 33

9 42 45 48 41 41 48 41 48 41 42 45 48 40 36 41

10 45 48 54 49 48 54 43 51 50 45 48 52 43 41 48

11 52 54 57 54 60 56 50 54 57 51 53 57 54 43 53

12 53 59 64 59 61 62 55 64 59 53 55 59 55 49 59

13 59 61 65 64 66 64 61 67 62 60 60 61 57 59 63

14 63 65 69 65 69 67 65 75 72 66 62 67 67 61 71

15 70 70 73 76 78 74 77 77 74 69 72 70 72 70 74

16 73 73 84 80 81 75 82 84 75 79 74 73 73 80 76

17 82 80 86 87 86 82 87 86 84 82 87 76 75 87 82

18 90 87 87 94 88 90 90 90 89 86 89 82 84 90 90

19 92 90 93 101 91 95 102 93 96 92 92 93 93 92 95

20 97 95 102 104 101 97 105 97 97 97 94 95 95 94 97

21 103 100 106 106 106 100 108 101 100 104 99 97 99 105 103

22 113 101 107 111 109 107 109 111 107 114 104 100 107 110 110

23 117 106 109 116 110 112 114 112 109 115 110 114 113 115 112

24 119 117 116 119 117 117 116 116 118 119 117 118 120 119 117

DCP 0.85 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.76

DCP: the relative DCP-efficiency compared to the full OofA design.

Table B5
Selective 15 OofA-OA(36,5,2)’s.

A36
5.1 A36

5.2 A36
5.3 A36

5.4 A36
5.5 A36

5.6 A36
5.7 A36

5.8 A36
5.9 A36

5.10 A36
5.11 A36

5.12 A36
5.13 A36

5.14 A36
5.15

1 6 6 3 3 2 3 3 2 3 2 2 2 3 3 3

2 7 7 4 7 4 5 4 6 5 3 9 3 8 10 6

3 13 8 8 10 10 7 11 11 12 9 11 9 11 11 9

4 16 15 9 15 13 10 12 12 14 11 14 10 12 18 11

5 19 17 11 17 16 12 13 14 15 17 15 11 15 19 14

6 21 22 18 22 21 14 16 15 21 18 19 14 17 23 18

7 24 23 19 23 23 17 19 17 23 19 23 20 23 26 19

8 26 26 23 26 26 21 22 27 25 24 27 22 29 28 21

9 28 27 30 30 29 27 25 29 26 25 30 23 30 31 25
(continued on next page)
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Table B5 (continued)

A36
5.1 A36

5.2 A36
5.3 A36

5.4 A36
5.5 A36

5.6 A36
5.7 A36

5.8 A36
5.9 A36

5.10 A36
5.11 A36

5.12 A36
5.13 A36

5.14 A36
5.15

10 31 31 32 33 34 32 30 32 34 35 34 31 33 34 27

11 35 33 34 35 37 34 34 33 36 38 38 36 35 38 34

12 39 38 38 38 39 36 36 40 38 39 39 38 36 40 39

13 41 41 40 41 41 38 38 41 39 44 41 41 38 43 42

14 46 45 43 45 44 44 43 43 47 45 45 43 41 45 43

15 48 46 48 46 50 45 47 46 48 48 46 45 45 50 47

16 51 48 52 50 51 53 50 49 49 49 50 47 49 51 50

17 53 51 55 53 55 56 55 52 51 54 52 49 52 56 54

18 58 53 59 55 60 58 59 57 56 56 55 56 55 60 59

19 59 62 61 62 62 63 61 64 62 58 60 57 62 62 60

20 62 64 63 64 64 65 63 65 64 63 62 65 64 66 61

21 63 69 68 70 69 68 65 67 67 65 63 67 70 68 63

22 70 70 70 71 71 74 70 72 71 72 69 72 73 73 65

23 71 71 73 73 74 79 77 75 76 74 72 77 74 74 68

24 73 73 76 74 78 85 81 77 77 79 73 79 82 75 76

25 75 78 81 82 84 86 83 78 83 83 78 82 87 83 80

26 80 82 83 87 87 88 85 82 87 85 82 85 90 87 81

27 90 87 90 90 89 94 90 87 90 89 89 87 92 90 90

28 91 89 93 94 93 96 92 93 92 90 93 90 93 95 92

29 94 91 95 95 98 98 96 99 94 94 95 92 98 98 95

30 95 96 101 98 100 100 101 104 99 99 98 94 100 99 101

31 98 98 103 100 105 106 105 108 101 101 100 102 103 102 105

32 100 100 106 103 106 107 108 110 104 106 103 104 108 108 106

33 103 103 109 107 109 111 109 111 105 107 109 106 109 112 111

34 110 109 113 109 116 116 110 115 111 111 116 111 113 113 115

35 117 117 116 116 118 117 116 119 114 113 118 113 119 117 117

36 120 120 120 120 120 119 118 120 119 116 120 119 120 118 120

DCP 0.90 0.89 0.89 0.89 0.89 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

DCP: the relative DCP-efficiency compared to the full OofA design.

Table B6
Selective 15 OofA-OA(24,6,2)’s.

Run A24
6.1 A24

6.2 A24
6.3 A24

6.4 A24
6.5 A24

6.6 A24
6.7 A24

6.8 A24
6.9 A24

6.10 A24
6.11 A24

6.12 A24
6.13 A24

6.14 A24
6.15

1 1 1 1 3 15 31 56 4 25 22 70 16 4 12 44
2 6 18 15 18 30 95 83 46 46 25 78 58 25 58 85
3 54 29 46 45 67 130 108 65 92 118 81 108 46 85 141
4 112 69 93 69 114 160 160 143 146 124 102 110 53 118 180
5 136 113 119 161 121 170 174 156 162 128 105 133 92 122 199
6 177 133 148 187 137 194 200 171 190 210 127 149 117 138 216
7 216 192 173 263 191 225 223 219 222 255 185 229 146 158 218
8 258 227 227 265 231 252 251 248 255 288 225 273 183 165 253
9 272 263 266 286 308 270 253 267 260 311 227 284 222 209 262
10 283 321 330 325 317 314 288 330 285 339 279 308 233 271 271
11 328 352 348 375 321 337 350 341 330 365 292 315 322 325 300
12 347 395 397 392 352 373 364 379 381 399 332 361 347 338 335
13 376 415 404 408 376 381 385 400 388 412 337 384 415 379 379
14 442 425 421 425 392 408 422 423 399 443 358 407 428 420 387
15 463 440 428 437 418 426 448 462 449 464 362 430 453 444 426
16 473 462 454 507 434 484 475 484 461 499 399 444 458 446 434
17 509 532 498 509 515 542 486 526 485 516 419 488 498 488 462
18 532 539 527 546 531 568 505 533 495 535 478 519 525 546 488
19 555 553 539 600 576 592 576 555 517 556 506 551 541 577 498
20 579 584 541 612 595 606 580 580 591 582 529 583 548 651 583
21 620 593 615 617 612 612 606 644 613 620 571 600 559 669 604
22 661 612 642 633 646 682 627 658 643 635 600 636 636 676 651
23 683 633 661 647 649 692 658 685 690 657 629 649 663 683 706
24 706 647 697 709 704 703 718 718 713 690 692 698 689 708 720
DCP * * * * * * * * * * * * * * *

* the run size of the OofA-OA is smaller than the number of parameters in the CP model.
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Table B7
Selective 15 OofA-OA(36,6,2)’s.

A36
6.1 A36

6.2 A36
6.3 A36

6.4 A36
6.5 A36

6.6 A36
6.7 A36

6.8 A36
6.9 A36

6.10 A36
6.11 A36

6.12 A36
6.13 A36

6.14 A36
6.15

1 7 11 16 23 29 11 16 27 22 8 2 22 49 16 43

2 14 24 26 37 51 25 21 42 25 27 6 65 60 19 49

3 28 41 34 43 78 64 32 43 49 71 59 74 73 44 71

4 90 57 68 53 82 65 66 53 59 90 63 98 94 57 81

5 117 81 83 56 109 104 74 66 75 106 77 118 96 67 96

6 141 91 94 88 132 108 101 74 107 121 84 128 116 74 98

7 146 105 141 95 145 138 121 119 120 126 158 182 139 129 122

8 188 125 152 96 167 149 160 129 133 138 174 216 171 143 164

9 199 154 183 176 170 164 174 159 152 182 198 223 188 159 192

10 240 157 197 203 209 201 226 174 177 190 208 228 196 161 197

11 264 200 203 207 214 255 236 177 197 200 231 243 203 192 207

12 276 215 253 221 267 281 252 211 216 230 263 265 236 236 225

13 291 224 264 230 290 285 268 225 224 237 267 299 244 252 229

14 302 272 284 265 313 308 283 235 258 263 274 305 251 298 267

15 323 282 298 282 326 330 317 249 288 291 286 318 273 299 289

16 328 307 315 291 342 361 327 270 293 310 302 320 290 321 305

17 343 342 347 293 346 390 338 303 322 323 328 341 319 341 331

18 372 353 361 314 367 402 371 311 353 335 364 346 324 346 360

19 388 374 386 340 383 407 399 349 374 363 381 363 343 378 368

20 397 407 404 360 406 413 400 357 407 410 395 382 360 392 377

21 410 413 426 394 426 423 411 380 419 423 412 385 368 409 400

22 455 415 445 398 443 430 431 400 423 429 439 396 405 439 414

23 463 441 480 439 449 482 452 419 456 450 478 413 425 475 423

24 484 456 510 452 479 492 465 460 478 489 508 479 437 496 472

25 496 463 516 457 499 517 492 486 506 514 531 481 444 502 486

26 509 487 521 480 504 521 494 520 531 533 550 495 482 521 487

27 550 496 556 499 516 529 517 532 549 557 571 521 546 530 512

28 562 520 574 505 536 588 538 555 551 564 578 543 561 545 521

29 588 557 603 522 559 593 584 573 558 578 616 550 572 585 550

30 602 590 617 545 606 606 593 592 571 613 625 574 602 598 573

31 617 604 636 631 610 625 612 599 610 621 629 582 610 612 606

32 636 628 657 637 611 634 658 603 635 633 651 609 636 637 618

33 651 669 665 659 639 678 677 632 638 651 672 630 639 655 655

34 688 689 685 672 643 689 679 688 649 660 684 643 683 674 668

35 691 712 697 695 663 701 705 693 679 692 709 676 695 689 683

36 700 717 716 698 720 711 720 709 698 717 716 694 709 720 713

DCP 0.72 0.71 0.70 0.69 0.69 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68 0.68

DCP: the relative DCP-efficiency compared to the full OofA design.

Table B8
Selective 15 OofA-OA(48,6,2)’s.

Run A48
6.1 A48

6.2 A48
6.3 A48

6.4 A48
6.5 A48

6.6 A36
6.7 A48

6.8 A48
6.9 A48

6.10 A48
6.11 A48

6.12 A48
6.13 A48

6.14 A48
6.15

1 3 8 13 23 8 25 3 27 16 32 7 2 2 5 6

2 16 23 19 33 45 52 5 41 21 57 32 13 24 11 37

3 45 33 35 44 48 53 20 78 28 66 83 63 35 15 52

4 64 69 60 47 55 58 23 86 32 86 84 70 38 37 65

5 70 84 69 54 62 74 36 105 63 97 99 83 55 40 70

6 77 85 75 89 73 89 38 106 101 102 104 100 62 45 84

7 102 92 83 90 82 107 63 115 107 113 110 104 102 61 87

8 105 105 96 133 95 114 90 122 113 133 136 119 120 63 100

9 124 141 125 141 100 124 110 162 145 139 140 157 129 111 121

10 131 152 150 182 144 138 131 176 154 145 164 163 139 120 125

11 133 167 177 190 155 190 136 196 168 154 165 166 159 138 144

12 167 169 178 195 157 201 145 200 170 161 174 189 169 177 188

13 183 202 183 204 175 230 191 218 188 170 208 197 204 188 199

14 188 209 198 224 195 235 207 226 197 190 213 216 210 195 204

15 198 215 218 241 204 246 215 239 207 198 228 219 221 201 206
(continued on next page)
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Table B8 (continued)

Run A48
6.1 A48

6.2 A48
6.3 A48

6.4 A48
6.5 A48

6.6 A36
6.7 A48

6.8 A48
6.9 A48

6.10 A48
6.11 A48

6.12 A48
6.13 A48

6.14 A48
6.15

16 229 220 220 244 211 260 269 242 237 204 233 239 227 224 232
17 245 226 238 252 222 266 281 247 255 230 241 246 232 234 241
18 250 247 249 283 230 274 298 274 264 267 252 264 241 235 264
19 274 254 267 292 248 281 307 308 292 270 283 265 258 263 281
20 284 260 280 297 257 291 321 321 299 290 291 290 259 271 290
21 290 277 292 310 272 327 344 342 333 314 310 329 321 282 312
22 309 309 325 333 282 332 360 356 337 326 318 331 332 291 320
23 325 321 332 356 295 340 371 366 374 341 320 354 351 296 329
24 331 335 352 362 314 353 375 371 385 342 330 367 357 300 337
25 358 337 358 369 354 362 377 375 406 354 348 374 382 314 385
26 372 354 368 394 357 371 393 387 413 363 369 377 388 343 405
27 408 364 383 416 381 399 395 391 417 370 388 385 395 359 407
28 411 383 388 446 406 403 408 396 431 408 399 417 420 380 413
29 418 399 395 457 424 429 422 422 438 430 413 422 428 394 421
30 433 419 443 476 438 437 443 443 475 445 418 429 441 432 430
31 443 425 448 482 439 447 473 451 482 450 453 467 455 437 436
32 466 436 468 503 449 462 490 480 490 459 457 468 457 452 442
33 511 444 476 509 460 483 502 492 507 478 470 476 480 469 485
34 536 470 488 514 468 501 512 497 528 487 480 493 489 474 520
35 558 476 503 519 485 505 514 507 535 492 481 509 503 509 537
36 559 488 518 521 518 520 547 530 540 519 494 517 511 532 557
37 569 497 531 568 541 528 565 539 551 527 507 535 540 550 582
38 579 505 552 580 569 546 581 546 573 557 513 538 542 560 588
39 594 567 573 599 573 575 586 575 575 563 555 552 555 562 594
40 598 585 577 604 591 596 638 586 581 589 579 564 573 585 608
41 617 591 606 628 601 605 649 603 611 594 588 578 579 590 632
42 634 621 649 633 636 631 654 604 615 613 593 590 584 596 637
43 639 626 657 660 654 633 658 628 630 619 623 609 619 602 662
44 654 642 669 667 655 640 679 646 631 644 624 612 641 625 664
45 674 671 673 678 673 672 686 656 658 657 625 630 656 677 678
46 697 679 686 679 694 683 698 687 672 672 690 633 662 681 697
47 702 701 705 694 699 704 704 690 680 685 691 670 664 707 701
48 712 720 719 714 719 710 714 716 696 699 709 695 691 709 711
DCP 0.82 0.80 0.80 0.80 0.80 0.79 0.79 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78

DCP: the relative DCP-efficiency compared to the full OofA design.

Table B9
Selective 15 OofA-OA(24,7,2)’s.

Run A24
7.1 A24

7.2 A24
7.3 A24

7.4 A24
7.5 A24

7.6 A24
7.7 A24

7.8 A24
7.9 A24

7.10 A24
7.11 A24

7.12 A24
7.13 A24

7.14 A24
7.15

1 5 290 669 56 214 14 117 11 361 230 44 11 83 30 387
2 777 467 783 282 337 449 199 286 671 289 392 148 361 145 524
3 836 482 870 378 416 741 404 387 780 481 588 489 634 469 749
4 928 522 1042 711 483 1452 581 504 999 810 975 664 654 563 787
5 1408 902 1323 891 693 1563 851 821 1086 1113 1104 707 890 835 1053
6 1492 1092 1474 1271 1010 1751 1060 1030 1359 1271 1425 778 1570 1050 1279
7 1900 1350 1637 1589 1160 2016 1240 1696 1506 1323 1539 1066 1720 1124 1433
8 1945 1387 2016 1962 1375 2278 1403 2088 1574 1460 1624 1639 2064 1165 1749
9 2099 1538 2131 1972 1417 2342 1593 2260 1794 1784 1761 1732 2380 1501 1764
10 2236 1642 2192 2125 1563 2387 2102 2321 2192 1999 2061 2021 2474 1797 1805
11 2424 1760 2350 2295 1754 2505 2428 2431 2344 2015 2158 2078 2512 1846 1942
12 2545 1871 2742 2460 1914 2979 2515 2715 2501 2230 2364 2704 2630 2033 2163
13 2568 2170 2897 2621 2113 3064 2625 3080 2538 2436 2409 2774 2910 2428 2279
14 2740 2503 2915 2685 2612 3101 2654 3222 3547 2750 2856 3080 3114 2542 2598
15 2817 2734 3291 3019 2878 3171 2887 3284 3644 2948 2953 3098 3256 2601 2966
16 2983 3049 3592 3318 3040 3771 2952 3467 3653 3118 3038 3192 3461 2774 3311
17 3422 3419 3614 3429 3268 3832 3439 3756 3830 3255 3345 3290 3729 3623 3396
18 3587 3670 3900 3605 3534 3862 3479 3867 3923 3429 3571 3476 3766 3916 4015
19 3709 4165 3979 4131 4012 4095 3852 4097 4141 3705 3658 3838 3892 4163 4184
20 3886 4206 4108 4404 4020 4208 4139 4209 4173 3992 3822 3986 4160 4227 4372
21 4095 4742 4433 4538 4086 4384 4227 4452 4352 4497 3980 4097 4311 4479 4482
22 4305 4809 4501 4562 4230 4686 4359 4633 4545 4797 4189 4511 4490 4818 4579
23 4342 4846 4566 4720 4608 4860 4678 4866 4806 4854 4441 4712 4524 4859 4887
24 4404 5003 4884 5028 4686 4965 4727 5006 4888 4926 4755 4971 4928 5005 4932
DCP * * * * * * * * * * * * * * *

* the run size of the OofA-OA is smaller than the number of parameters in the CP model.
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