
Chapter 6
The Construction of Optimal Design
for Order-of-Addition Experiment via
Threshold Accepting

Peter Winker, Jianbin Chen, and Dennis K. J. Lin

Abstract The objective of the order-of-addition (OofA) experiment is to find the
optimal addition order by comparing all responses with different orders. Assum-
ing that the OofA experiment involves m(≥ 2) components, there are m! differ-
ent orders of adding sequence. When m is large, it is infeasible to compare all
m! possible solutions (for example, 10! ≈ 3.6 millions). Two potential construc-
tion methods are systematic combinatorial construction and computer algorithmic
search. Computer search methods presented in the literature for constructing opti-
mal fractional designs of OofA experiments appear rather simplistic. In this paper,
based on the pairwise-order (PWO) model and the tapered PWO model, the thresh-
old accepting algorithm is applied to construct the optimal design (D-efficiency
for the present application) with subsets of size n among all possible size m!. In
practical, the designs obtained by threshold accepting algorithm for 4 ≤ m ≤ 30
with n = m(m − 1)/2 + 1, m(m − 1) + 1, 3m(m − 1)/2 + 1 respectively are pro-
vided for practical uses. This is apparently the most complete list of order-of-addition
(OofA) designs via computer search for 4 ≤ m ≤ 30 in the literature. Their efficien-
cies are illustrated by a scheduling problem.

Keywords D-optimal design · Pair-wise ordering (pwo) mode · Threshold
accepting · Tapered pwo model

P. Winker
Justus-Liebig-University Giessen, Licher Str. 64, 35394 Giessen, Germany
e-mail: Peter.Winker@wi.jlug.de

J. Chen
School of Statistics and Data Science & LPMC, Nankai University, Tianjin 300071, China
e-mail: chenjianbinlzu@163.com

D. K. J. Lin (B)
Department of Statistics, Purdue University, 250 N. University Street,
West Lafayette, IN 47907, USA
e-mail: dkjlin@purdue.edu

© Springer Nature Switzerland AG 2020
J. Fan and J. Pan (eds.), Contemporary Experimental Design,
Multivariate Analysis and Data Mining,
https://doi.org/10.1007/978-3-030-46161-4_6

93

94 P. Winker et al.

6.1 Introduction

The order-of-addition (OofA) experiment has been popularly used when the response
of interest is affected by the addition sequence of materials or components. Consider-
ing the addition of m different materials or components into the system, the different
responses depend on different adding orders. Each permutation of {1, . . . , m} is a
possible adding order, hence there are m! different orders of adding sequences into
the system which yield different responses. The OofA experiments are prevalent in
many scientific and industrial areas, such as chemistry-related areas, bio-chemistry,
food science, nutritional science, and pharmaceutical science.

The purpose of OofA experiment is to find the optimal addition order by compar-
ing all possible responses with different orders. However, it is often infeasible to test
all the m! possible orders when m is large (for example, 10! is about 3.6 millions). In
practice, a number of randomly selected orders are tested, but the empirical experi-
ence indicates that randomly selected orders may not be most informative. Hence the
design problem arises to choose a subset of orders for comparison. A good design
for the OofA experiments will help experimenters to identify the important order
effects, and to find out the optimal addition order with substantially fewer exper-
imental runs. Such an important problem has received a great deal of attention in
the past decades. For example [18] considered the design with pair-wise ordering
(PWO) effects. Based on the PWO model [19] proposed a number of design criteria
and found some OofA designs which have the same correlation structures as the
full OofA designs, for small number of components (m). Peng et al. [17] considered
different types of optimality criteria and discussed the properties of some fractional
designs. Zhao et al. [25] considered the minimal-point OofA designs. Yang et al. [24]
has obtained a number of OofA designs called component orthogonal arrays (COAs)
that are optimal under their component-position model. [13] reviewed the latest work
on the design and model of OofA experiments, and introduced some new thoughts.
[1] proposed another type OofA design named pair-wise ordering distance (PWOD)
arrays that can be used in any models in the literature. Chen et al. [2] introduced
a statistical method to speculate solutions of NP-hard problem involving orders by
making use of design for OofA experiment.

This paper makes use of the threshold accepting algorithm to find the best subset of
size n which implies searching for the optimal value of the objective function among
all m!. This threshold accepting?algorithm provides high quality approximations to
the global optimum. Therefore, designs obtained by our algorithm, involving only
a fraction of all m! possible permutations of components, are powerful for fitting
models in terms of the D-efficiency and are efficient for predicting the optimal order.
An illustrative example is provided to show the advantages of the obtained designs.

The remaining part of this article is organized as follows. Section 6.2 introduces
the PWO model, the tapered PWO model and some optimality criteria. The threshold
accepting algorithm is proposed in Sect. 6.3. The optimal fractional OofA designs
obtained by the threshold algorithm are provided in Sect. 6.4, and a scheduling exam-
ple is discussed in Sect. 6.5. Section 6.6 gives some concluding remarks.

6 The Construction of Optimal Design for Order-of-Addition … 95

6.2 Preliminary

6.2.1 PWO Model

The order-of-addition (OofA) experiment involves m(≥ 2) components, and there are
m! different orders of adding sequences into the system to yield different responses.
For any pair of components i and j, if the impact of component i preceding j is
different from the impact of component j preceding i, such a difference is called the
effect of pair (i, j). To express the order effect [18] proposed “pseudo factor”. [19]
called it pair-wise ordering (PWO) factor. The PWO factor is defined as

Ii,j =
{

+1 if i precedes j,

−1 if j precedes i.
(6.1)

This indicates whether the component i precedes the component j or not, where
i and j are the components. There are q = (m

2

)
PWO factors, corresponding to all

pairs of component orders. These factors are arranged according to the lexico-
graphic ordering of the components’ indices. For illustration, when m = 4 and a
possible order π = 2143 is given, we have I12(π) = −1, I13(π) = +1, I14(π) =
+1, I23(π) = +1, I24(π) = +1 and I34(π) = −1. Assuming βij is the effect to
response caused by Iij, the PWO model is the first-order model by summing the
effects of all Iij’s, namely:

y = β0 +
∑
i<j

βijIij + ε, (6.2)

where y is the response of interest, ε is a random error assumed to be independent
and to have a normal distribution N (0, σ 2), and p = q + 1 parameters {β0, β12, β13,

. . . , β(m−1)m} should be estimated.
In practice, it is not affordable to test all the m! orders when m is large. Let

π = (π1, . . . , πm) be a permutation of {1, . . . , m} which specifies the order. Denote
� as the subset of size n from all of m! possible orders. Based on the best subset �,
the expected PWO model can be written as

E(y|π) = β0 +
∑
i<j

βijIij(π), π ∈ �. (6.3)

The PWO model has two merits. Firstly, it is easy to interpret: the effect of βij shows
the difference between the impacts of all the possible orders in which i precedes j and
the impacts of all the orders in which j precedes i. Secondly, the PWO model is an
economic model which requires a small number of runs (p = q + 1) compared with
the total number of candidate runs (m!). In order to fit PWO model (6.3) for using
the smallest runs [25] proposed a special type of design with only q + 1 runs (out of

96 P. Winker et al.

m! runs), which is called a minimal-point OofA design, as long as its D-efficiency is
nonzero.

6.2.2 Tapered PWO Model

Although the PWO model is an economical model, the PWO effect has some
weaknesses, for example, the PWO effect I12 in the sequences “1 → 2 → . . .”,
“1 → . . . → 2”, “. . . → 1 → 2 . . .” and “. . . → 1 → . . . → 2 . . .” is assumed to
be the same (I12 = +1). Obviously, these sequences have different sense between
the component 1 and the component 2. It is possible to assume that the impact of
any such pairwise order changes with an increase in the distance between the com-
ponents in the pair in practice. So another model of interest is “tapered PWO model”
as considered as in [17].

For any components i, j(i �= j) and π = (π1, . . . , πm) ∈ �, let h(ij, π) be the
distance between i and j in π , i.e., h(ij, π) = |k − l| if πk = i and πl = j, so that
h(ij, π) ∈ {1, . . . , m − 1}. Denote

zij =
{

ch(ij,π) if i precedes j in π

−ch(ij,π) if j precedes i in π
(6.4)

as the “tapered PWO factor”, where ch = 1/h or ch = ch−1 with known
c (0 < c < 1) for h ∈ {1, . . . , m − 1}. Then, the tapered PWO model can be expressed
as

y = β0 +
∑
i<j

βijzij + ε, (6.5)

where y is the response of interest, ε is a random error assumed to be independent
and to have a normal distribution N (0, σ 2), and β0 and βij are the unknown parame-
ters. For any π = (π1, . . . , πm) ∈ �, the corresponding tapered PWO model can be
represented as

E(y|π) = β0 +
∑
i<j

βijzij(π), π ∈ �. (6.6)

The tapered PWO model is a generalized PWO model, if one chooses ch = 1 for all
h, then the tapering PWO factor (6.4) and the tapered PWO model (6.5) respectively
become the PWO factor (6.1) and the usual PWO model (6.2) of [18] and [19].

Under the PWO model or the tapered model, this paper makes use of the threshold
accepting algorithm to construct the optimal design, for all subsets of size n (≥ q + 1)

among all possible m! order. For simplicity, three particular run sizes of OofA designs
are of interest, even though the proposed algorithm is capable for any n. Recall that
q = (m

2

)
.

6 The Construction of Optimal Design for Order-of-Addition … 97

(a) Minimal-point design: n = q + 1,
(b) Double type design: n = 2 ∗ q + 1,
(c) Triplicate type design: n = 3 ∗ q + 1.

6.2.3 Some Optimality Criteria

There are many criteria for constructing optimal designs in literature. Let X denotes
the model matrix with respect to the pre-specified model, p is the number of columns
of X and n be the run size of X , then, the D-value of a design D is defined by

De(D) = 1
n |X T X | 1

p , which is proportional to the generalized variance of the param-
eter estimators β̂ to be minimized. That is, the volume of the confidence ellipsoid
for β̂ is minimized by maximizing the determinant det(X T X). A-optimal designs
are those designs which minimize the average variance of the estimators β̂ and thus
the criterion trace((X T X)−1). The E-criterion focus on the minimum eigenvalue of
X T X . We will select all possible choices of designs, by considering which one(s)
attain the optimum in terms of these criteria. There are more other optimal design
criteria (see, for example [16]).

In this paper, we mainly focus on the D-efficiency under the pre-specified model
(PWO model or tapered PWO model) for simplicity. Likewise, the A−, E−efficiency
can be defined. The larger D-efficiency the better, an optimal design has a D-efficiency
of 1. Throughout this paper, let Dfull denote the D-efficiency of the full design.
For all other designs, the relative D-efficiency Dr = De/Dfull is used here. For the
tapered PWO model, let q = (m

2

) = m(m − 1)/2 and p = q + 1 [17] proposed the
D-efficiency of the design D is

Dr(D) = De(D)[{b0 + (m − 2)b1}m−1(b0 − 2b1)(m−1)(m−2)/2
]1/p , (6.7)

where

b0 = 2{(m − 1)c2
1 + � + c2

m−1}/{m(m − 1)},

b1 = 2Σh{m − h(1) − h(2)}ch(1)
{2ch(1)+h(2)

− ch(2)
}/{m(m − 1)(m − 2)},

and Σh denotes the sum over positive integers h(1), h(2) such that h(1) + h(2) ≤
m − 1. For the PWO model, ch = 1 for all h, b0 = 1 and b1 = 1/3, then the
D-efficiency of the design D (6.7) reduces to

Dr(D) = De(D)/

[
(m + 1)m−1

3q

]1/p

. (6.8)

Our goal here is to maximize the objective functions given in (6.7) and (6.8),
making use of the threshold accepting algorithm as described below.

98 P. Winker et al.

6.3 The Threshold Accepting Algorithm

The problem of finding good OofA designs might be interpreted as a complex discrete
optimization problem. For a given number of m components, the full design matrix
comprises m! rows. For a given objective function, selecting the best subset of size
n implies searching for the largest value of the objective function among all subsets
of size n of a set of size m!, i.e. in a discrete set of size

S =
(

m!
n

)
.

It is obvious, that a full enumeration of this set is beyond available computational
ressources except for very modest values of m and n.

In related problems of finding optimal U -type designs, the use of stochastic local
search heuristics turned out to provide high quality results, which for some instances
with theoretical lower bounds could be shown to be globally optimal [8]. Therefore, it
appears appropriate to follow a similar strategy for the problem of finding good OofA
designs. Specifically, we use an implementation of the threshold accepting heuristic
[3], which is a simplified version of simulated annealing by using a deterministic
acceptance criterion for each local move. It also belongs to the class of local search
methods sequentially moving through the search space by making small changes
to a given design. When comparing a new design with the current one, it allows
downhill moves, i.e. accepts solutions which are (slightly) worse than the previous
one, in order to escape local maxima. By decreasing the threshold, up to which a
worsening of the objective function is allowed in a search step, to zero over the run
time of the algorithm, the algorithm provides high quality approximations to the
global optimum.

A survey on different heuristic approaches which could be used for the present
problem instance can be found in [23], and a detailed description of the thresh-
old accepting algorithm with several applications including some in experimental
design is provided by [20]. Previous applications in the context of experimental
design include the calculation of lower bounds for the star-discrepancy [21], and the
generation of low discrepancy U -type designs for the star-discrepancy [22], several
modifications of the L2-discrepancy [5], for CL2 [4, 7], and for CL2 and W L2 [6, 9].
Furthermore, further details on low-discrepancy designs can be found in [10, 12, 14]

The pseudo code for the threshold accepting implementation used for the OofA
design problem is exhibited in Algorithm 1. Thereby, D stands for the D-criterion to
be maximized. The algorithm remains unchanged if instead of D another objective
function has to be maximized. For an objective function to be minimized, the algo-
rithm can be applied on minus this objective function. In the results section, we will
report the values of the D-criterion relative to the theoretical maximum for the full
PWO design, i.e. the relative D-efficiency Dr .

The threshold accepting algorithm conducts a local search strategy on the set of
all OofA designs with m components and n runs denoted by O(m, n). The initial

6 The Construction of Optimal Design for Order-of-Addition … 99

Algorithm 1 Pseudo-code for Threshold Accepting
1: Initialize nR, nSr and the sequence of thresholds τr , r = 1, 2, . . . , nR
2: Generate starting design O0 ∈ O(m, n)

3: for r = 1 to nR do
4: for i = 1 to nSr do
5: Generate O1 ∈ N (O0) (neighbor of O0)
6: if D(O1) > D(O0) − τr then
7: O0 = O1

8: end if
9: end for
10: end for

design O0 is selected randomly (2:). It should be noted that selecting a “good” initial
design, which might correspond to a local maximum of the objective function does
not improve the performance of the algorithm. Instead, using the best out of some
repeated runs of the algorithm for different randomly selected initial designs might
result in an improved performance and higher robustness as compared to a single
run with a corresponding larger number of iterations.

Starting from the initial design, a local search step is repeated a substantial num-
ber of times. In each search step, a new candidate design O1 is selected randomly
within a neighborhood of the current design N (O0) ⊂ O(m, n) (5:). The value of
the objective function for the new candidate solution is calculated D(O1). If it turns
out to be larger than the one of the current design O0, it will be accepted and becomes
the current design (7:). However, the new design will also be accepted if it is worse
than the current one, though only up to a certain threshold defined by the current
value of the threshold sequence (τr) (6:). This “threshold accepting” behavior of the
algorithm avoids getting stuck in suboptimal local maxima of the objective function.
Nevertheless, as the sequence of threshold values decreases to zero during the course
of the algorithm, towards the end of a run, only improvements will be accepted. The
current implementation uses an elitist approach, i.e., the best design obtained during
the runtime of the algorithm is reported. For a properly tuned implementation of the
algorithm, this should be equal to or at least quite close to the last design accepted
by the algorithm.

While the overall layout of the algorithm is simple, and it proofed to be robust to
minor modifications of neighbourhood structure and parameter settings, the actual
performance still depends on some problem specific tuning. The three most important
aspects are the choice of local neighbourhoods, the specification of the threshold
sequence, and, for obvious reasons, the total number of iterations the local search step
is repeated within the algorithm. With regard to the definition of neighbourhoods, we
follow the experience from earlier applcations of threshold accepting in experimental
design. Starting with a design O0, a small number of rows (2 in our implementation)
are randomly selected. These rows are exchanged with a row differing only in the
ordering of few elements close to each other. In principle, this definition of local
neighbourhood also allows for a fast updating of the some objective functions as
described in [6] for the first time. However, for the current implementation this feature

100 P. Winker et al.

is not implemented yet. Nevertheless, given the tremendous growth in computational
resources available, it is feasible to conduct repeated runs (10) for each problem
instance with up to 10 000 000 iterations. In the results section, we report the best
result obtained over all these runs. The corresponding designs are provided in the
appendix.

The sequence of threshold values τr , r = 1, . . . , nR is generated according to a
data driven procedure first described in [20]. The rational of the approach is the
observations that when performing local search over a discrete and finite search
space such as O(m, n), also local changes of the objective function can take on only
a finite number of different values. For the threshold accepting steps, all values of
τr falling between two actual occurring differences will result in the same decision.
Therefore, the threshold sequence is obtained by an empirical approximation to the
underlying distribution of local changes of the objective function. To this end, first,
a large number of OofA designs are randomly generated. For each of these designs
a random neighbor is obtained employing the definition of local neighborhoods
introduced before. The absolute value of the difference of the objective function
between the two designs is calculated. The values are sorted in decreasing order
and—given that too large thresholds imply an almost random search process—a
lower quantile of these sequence is used as the actual sequence of threshold values.
For the current application, the 60% of lower values (including zeros if the neighbor
selected happens to be identical to the original design) is used.

6.4 Main Results

The best designs obtained by the threshold accepting algorithm are presented in
Tables 6.1 and 6.2 (for m ≤ 30). Both tables report the number of components m,
the number of runs n, the D-efficiency as compared to the full PWO or full tapered
PWO design, and the relation of n to the number of runs of the full designs. The cor-
responding designs are provided online (www.jlug.de/optimaloofadesigns). Given
that there does not exist a closed form expression for the D-criterion of tapered
PWO designs, we report D-efficiency for tapered PWO designs only up to m = 10.
For larger values of m, the straightforward calculation of the D-criterion fails due to
memory constraints. Therefore, Table 6.2 provides only results for the PWO designs,
although using the algorithm also tapered PWO designs can be obtained for m > 10.
A further constraint is imposed due to the numerical precision when calculating the
values of the objective function. Using standard double precision only values of m
up to about 30 are feasible, but the algorithm could be adjusted to work with higher
precision.

6 The Construction of Optimal Design for Order-of-Addition … 101

Table 6.1 D-efficiency of tapering OofA designs obtained by threshold accepting

Components (m) Runs (n) TA optimized design Share of runs
(n/m!)

D-efficiency
PWO

D-efficiency
Tapered PWO

4 7 0.89613 0.84433 0.2917

4 13 0.98571 0.98585 0.5417

4 19 0.98122 0.98097 0.7917

5 11 0.90267 0.91904 0.0917

5 21 0.97278 0.97848 0.1750

5 31 0.98733 0.98974 0.2583

6 16 0.88107 0.84169 0.0222

6 31 0.97039 0.96663 0.0431

6 46 0.98854 0.98629 0.0649

7 22 0.81196 0.77259 4.3651 × 10−3

7 43 0.96517 0.95798 8.5317 × 10−3

7 64 0.98285 0.98217 12.6984 × 10−3

8 29 0.75717 0.73876 0.7192 × 10−3

8 57 0.95166 0.94345 1.4137 × 10−3

8 85 0.97750 0.97429 2.1081 × 10−3

9 37 0.72626 0.69174 0.1020 × 10−3

9 73 0.93923 0.93100 0.2012 × 10−3

9 109 0.97339 0.96662 0.3004 × 10−3

10 46 0.68087 0.65436 0.0127 × 10−3

10 91 0.92463 0.91838 0.0251 × 10−3

10 136 0.96336 0.95770 0.0375 × 10−3

Note: For each m, the D-efficiency of the obtained design for three experimental runs n are displayed:
(a) the minimal point n = q + 1; (b) double type n = 2q + 1; (c) triplicate type n = 3q + 1; where
q = (m

2

)

The results indicate that with a rather small number of runs, highly efficient designs
can be obtained. For Case (a), the minimal-point design n = q + 1; all designs reach
at least 80% of the efficiency of the full design, though with only a small fraction
of runs, especially for large m, n/m! becomes almost zero—a substantial saving.
For example, for m = 20 and n = 191, we have n/m! = 0.0785 × 10−15. Hence, if
the practitioner attempts to save resource and time, the minimal-point design is a
good choice. For Case (b), the double type design n = 2q + 1; all designs reach at
least 95% of the efficiency of the full design, while the corresponding n/m! is also
almost zero. For example, for m = 20 and n = 381, we have n/m! = 0.1566 × 10−15.
We recommend the experimenter who seeks designs with high D-efficiency to use
the double designs when the resource and time allow. For Case (c), the triplicate
type design n = 3q + 1; the optimal designs attain at least 97% of the efficiency of
the full design, while the run size n/m! is near zero. For example, for m = 20 and

102 P. Winker et al.

Table 6.2 D-efficiency of OofA designs obtained by threshold accepting for m > 10

Components (m) Runs (n) TA optimized design
D-efficiency (PWO)

Share of runs (n/m!)

11 56 0.80170 1.4029 × 10−6

11 111 0.95969 2.7808 × 10−6

11 166 0.98228 14.1586 × 10−6

12 67 0.78958 0.1399 × 10−6

12 133 0.95646 0.2777 × 10−6

12 199 0.98081 0.4154 × 10−6

13 79 0.77952 0.0127 × 10−6

13 157 0.95238 0.0252 × 10−6

13 235 0.97934 0.0377 × 10−6

14 92 0.76463 1.0553 × 10−9

14 183 0.94925 2.0991 × 10−9

14 274 0.97744 3.1430 × 10−9

15 106 0.75398 0.0811 × 10−9

15 211 0.94704 0.1614 × 10−9

15 316 0.97637 10.2417 × 10−9

16 121 0.74091 0.0058 × 10−9

16 241 0.94420 0.0115 × 10−9

16 361 0.97389 0.0173 × 10−9

17 137 0.73361 0.3852 × 10−12

17 273 0.94096 0.7675 × 10−12

17 409 0.97229 1.1499 × 10−12

18 154 0.72681 0.0241 × 10−12

18 307 0.93764 0.0480 × 10−12

18 460 0.97088 0.0718 × 10−12

19 172 0.71426 1.4139 × 10−15

19 343 0.93483 2.8197 × 10−15

19 514 0.96900 14.2254 × 10−15

20 191 0.70542 0.0785 × 10−15

20 381 0.93160 0.1566 × 10−15

20 571 0.96728 0.2347 × 10−15

25 301 0.65850 1.9405 × 10−23

25 601 0.91783 3.8746 × 10−23

25 901 0.95955 5.8087 × 10−23

30∗ 871 0.90459 3.2837 × 10−30

30 1306 0.95064 4.9236 × 10−30

Note 1: For each m, the D-efficiency of the obtained design for three experimental runs n are
displayed: (a) the minimal point n = q + 1; (b) double type n = 2q + 1; (c) triplicate type n =
3q + 1; where q = (m

2

)
.

Note 2: Using standard double precision only values of m up to about 30 are feasible (for m = 30
it depends on n), but the algorithm could be adjusted to work with higher precision

6 The Construction of Optimal Design for Order-of-Addition … 103

n = 571, we have n/m! = 0.2347 × 10−15. The triplicate designs are recommended
due to a high D-efficiency, if there are no restrictions on the experimental conditions.
In general, all the obtained three experimental designs with a small number of runs
(n = q + 1, 2q + 1, 3q + 1) achieve a high level of D-efficiency when the underlying
model is the PWO or the tapered PWO model.

6.5 Example: Scheduling Problem

The purpose of the scheduling problem is to schedule the resources and tasks to
be optimized with regard to one or more objectives. A popular class of scheduling
problem is the “job scheduling” problem, which seeks an optimal order of these
jobs. Consider m jobs requiring processing in a certain machine environment, the
scheduler hopes to sequence these jobs under given constraints. Let pi (i = 1, . . . , m)

represents the processing time of job i on a machine, ωi being pre-specified weights,
which reflects the importance of job i relative to the other jobs in the system. A
schedule π = (π1, . . . , πm) is a permutation of {1, . . . , m} which specifies the order
in which to process jobs. The completion time of the operation of job j is denoted
as Cj(π) = ∑j

i=1 pi, and the total cost function (total weighted completion time) is
denoted by W = ∑m

k=1 Wk = ∑m
k=1 ωkC2

k , where Wk denotes the cost function of
job k. The objective is to find a optimal job-order such that the total cost function W
is minimized.

For illustration, a simple example of job scheduling for a single machine model
with m = 3 is discussed. Suppose the processing times are 5, 3 and 2 h for the 1st job,
2nd job and 3rd job, respectively, and the weights (cost coefficients) of these jobs are
6, 8, 7, respectively. Consider the job-order 1 → 2 → 3, the completion time for job
1 is C1 = p1 = 5hr, the completion time for job 2 is C2 = p1 + p2 = 5 + 3 = 8hr,
the completion time for job 3 is C3 = p1 + p2 + p3 = 5 + 3 + 2 = 10hr. Thus the
job-order 1 → 2 → 3 has a total cost function: W = 6 × 52 + 8 × 82 + 7 × 102 =
1362.

The purpose of the job scheduling problem is to find the optimal sequence from
all possible solutions to minimize the total penalty. This is the same as the goal
of the OofA problem. Hence we can consider the job scheduling problem as an
OofA experiments problem. The PWO model can be used as the approximate model
to deal with the job scheduling problem. If we have the prior information of the
cost function, we can compute the costs of all possible job orders and compare all
possible different orders to learn the dependence of the response on the order. For
the illustrative example, since there is only m! = 3! = 6 potential orders, one can
evaluate all possible order to find the optimal order. However, with m components to
add, an exhaustive search of all permutations requires m! runs of experiments, which
is usually not affordable. So the design problem arises to choose a subset of orders
for comparison.

104 P. Winker et al.

Next, we discuss a case that 10 jobs are to be sequenced on a single machine with
quadratic penalty function of its completion time. The pre-specified weights and pro-
cessing times of these jobs are randomly generated from χ2

1 , such
as p = (0.1451700, 0.7428453, 7.1142859, 1.8774267, 7.1185982, 1.1431286,

10.5172882, 2.1484186, 2.4950454, 2.8989094), ω = (2.2094712, 7.1116628,

0.4190 265, 6.7777317, 1.2965368, 1.5379331, 0.7221195, 1.7368003, 0.5205548,

0.3908880). With 10 components, it is infeasible to conduct all possible orders (tests)
10! ≈ 3.6 million. This is especially true for physical experiments and some expen-
sive computer experiments. To fit the PWO model for using the smallest runs to save
costs, we use the minimal-point OofA design n = (10

2

) + 1 = 46 runs obtained from
our algorithm in this paper. Under the quadratic penalty function, the 46 runs design
and the corresponding total cost are shown in Table 6.3. Upon using the least squares
approach, the parameters β̂ij in PWO model (6.2) are estimated. Ultimately, an OofA
experiment is to find the optimal addition order. According to the method proposed
by [2], the active variables are very critical for selecting the optimal orders. Con-
sidering all of degree of freedom for the minimal-point design are used to estimate
the parameters in PWO model, there is no remaining degree of freedom to estimate
the standard deviation. The Lenth ([11]) method is used here to identify the active
variables, we take the pseudo standard error (PSE) to estimate the standard devia-
tion. Upon calculating the Lenth statistics: tPSE,i = β̂ij/PSE, the active variables are
tabulated in Table 6.4.

The favorable pattern “i precedes j” indicates an edge from i to j. From the
favorable patterns of all active variables, one can always generate the corresponding
directed graph by sequentially considering the significant parameters according to
the absolute values of the active variables’ estimated effects. In other words, we first
consider the directed edge determined by the most significant parameter (the largest
effect), then consider the directed edge from the second significant parameter (the
second largest effect), and so on. In this procedure, we omit the active variables that
are contrary to the current generated directed graph. Take the sequence ‘1628’ as
example, we sequently consider the active variables β̂2,8 (966.425), β̂2,6 (775.033),
β̂1,6 (700.148), β̂1,8 (624.832). In this way, we omit the active variable β̂1,8, because
it is contrary to the generated sequence ‘1628’.

From the favorable patterns exhibited in Table 6.4, the directed graph of 10 jobs
results in Fig. 6.1. According to the Fig. 6.1, the first five components of an optimal
sequence are ‘16284’, and the remaining optimal possible job orders can be obtained
by permutating the last components ‘3, 5, 9, 10, 7’, hence the possible numbers of
order is 5!/2 = 120. One of possible optimal orders is 1 −→ 6 −→ 2 −→ 8 −→
4 −→ 5 −→ 9 −→ 10 −→ 7 −→ 3, and the cost function is 1958.716.

We randomly select 100 runs from 10! and compute the costs of these 100 runs.
As a comparison, we randomly select 54 (we already run 46 experiments to collect
the data, for fairness, 100 − 46 = 54 possible runs are selected) possible orders from
our possible 120 orders, the results are showed in Fig. 6.2a. It can be seen that the
costs of our method are smaller than the costs of randomly selected. This highlights
the merit of our approach.

6 The Construction of Optimal Design for Order-of-Addition … 105

Table 6.3 The job-orders and total costs for a 10 job scheduling problem
Run Order Cost (W)

1 4 5 10 2 3 8 9 6 7 1 7463.671

2 8 3 4 10 6 5 9 2 7 1 10754.214

3 3 1 8 10 6 2 9 5 7 4 12674.186

4 9 6 4 10 8 7 3 5 2 1 14862.981

5 8 2 10 6 4 7 9 1 3 5 4318.170

6 9 2 7 3 6 5 10 1 8 4 15859.299

7 3 9 1 7 8 5 4 10 2 6 20486.508

8 1 5 6 2 9 3 10 4 7 8 8041.683

9 6 10 2 4 3 9 1 8 7 5 4193.411

10 10 6 7 2 1 8 5 4 3 9 9654.549

11 8 9 7 5 1 10 3 4 2 6 21368.549

12 10 8 2 6 4 3 5 7 1 9 5686.498

13 10 2 1 7 8 5 9 3 6 4 12976.774

14 7 4 9 1 3 10 6 5 8 2 16184.010

15 5 6 8 2 1 4 10 9 3 7 4205.401

16 9 3 7 8 6 4 2 1 5 10 14663.133

17 7 1 6 4 2 8 3 5 10 9 6363.397

18 8 5 9 2 10 1 3 6 7 4 12750.318

19 8 6 4 9 3 10 1 2 7 5 5912.879

20 3 8 2 7 1 4 5 6 9 10 9265.334

21 10 4 1 3 2 6 9 7 5 8 6175.202

22 4 2 8 1 7 3 9 10 5 6 4791.054

23 4 6 7 8 2 9 5 3 10 1 7447.334

24 10 3 7 6 1 9 5 4 2 8 21755.562

25 5 2 9 8 4 3 1 6 10 7 5465.729

26 3 6 8 1 10 7 4 5 2 9 15743.304

27 3 5 8 9 4 10 1 7 6 2 17428.615

28 10 9 2 7 4 6 3 8 5 1 9745.608

29 7 10 5 8 3 9 1 2 6 4 23354.098

30 1 6 3 5 4 2 7 10 9 8 8598.878

31 10 3 7 4 1 8 9 5 6 2 19101.778

32 4 6 1 3 10 8 9 5 7 2 11780.016

33 3 9 4 1 2 5 10 6 8 7 5984.161

34 6 1 5 7 8 9 10 3 2 4 19423.341

35 1 3 10 7 2 4 9 5 8 6 13212.515

36 1 3 7 2 6 8 4 9 10 5 10300.234

37 8 2 9 3 7 4 10 6 1 5 9889.003

38 4 9 6 8 10 7 1 2 5 3 6620.735

39 7 10 2 8 3 1 6 4 9 5 11364.447

40 10 5 7 8 6 4 3 2 9 1 18716.247

41 9 5 6 3 8 7 10 4 2 1 22834.160

42 8 6 7 4 5 10 1 2 3 9 10426.000

43 1 4 8 6 9 7 2 10 3 5 5203.967

44 7 8 9 1 4 6 10 2 3 5 9175.293

45 9 3 8 5 6 7 10 1 2 4 22223.030

46 10 8 1 9 4 7 6 5 3 2 12630.479

106 P. Winker et al.

Table 6.4 The active variables for 10 jobs scheduling

Active variables Estimator of the
effects

Signs of the effects Favorable patterns

I1,2 −442.110 − 1 precedes 2

I1,6 −700.148 − 1 precedes 6

I1,8 624.832 + 8 precedes 1

I1,10 −492.119 − 1 precedes 10

I2,3 −1110.545 − 2 precedes 3

I2,4 −431.188 − 2 precedes 4

I2,5 −1314.436 − 2 precedes 5

I2,6 775.033 + 6 precedes 2

I2,7 −1349.35 − 2 precedes 7

I2,8 −966.425 − 2 precedes 8

I2,10 −858.088 − 2 precedes 10

I3,4 631.513 + 4 precedes 3

I3,6 476.540 + 6 precedes 3

I3,10 452.552 + 10 precedes 3

I4,5 −1343.049 − 4 precedes 5

I4,7 −562.938 − 4 precedes 7

I4,8 785.005 + 8 precedes 4

I4,9 −714.446 − 4 precedes 9

I4,10 −1039.873 − 4 precedes 10

I6,7 −674.048 − 6 precedes 7

I7,10 641.382 + 10 precedes 7

Fig. 6.1 Directed Graph

6 The Construction of Optimal Design for Order-of-Addition … 107

(a) 100 from 10! and 120 possible orders (b) different sample sizes

Fig. 6.2 Boxplots of different sample sizes

As a comparison benchmark, a sample of n = 100 orders was randomly chosen
(from all possible 10! orders) and their corresponding costs were evaluated. Among
these 100 costs, the minimal cost was recorded. We repeat this process for 50 times.
These 50 minimal costs were displayed as the first boxplot in Fig. 6.2b. Similarly, the
same process is applied to n = 200, 500, 1000, 2000 and 5000 respectively. Their
boxplots for minimal costs are also displayed in Fig. 6.2b. As expected, the larger n,
the smaller minimal cost is found (with more consistency as well). As compared to our
finding, we randomly chose 54 orders (out of the obtained result of 120 orders). Their
corresponding costs were evaluated and the minimal cost is recorded. We also repeat
this process for 50 times and the results is displayed as the last boxplot in Fig. 6.2b.
It is clear that the performance of the proposed method with 100 (= 46 + 54) runs is
as good as the random sample with 5000 runs. This more or less confirms the validity
of the proposed method.

6.6 Conclusion

Order-of-addition (OofA) experiments have increasingly received a great deal of
attention in scientific and industrial applications. This paper uses threshold accepting
algorithm to provide a class of minimal-point designs with n = q + 1 runs, a class
of double type design with n = 2q + 1 runs and a class of triplicate type design with
n = 3q + 1 runs under the PWO model and tapered PWO model, respectively. The
D-efficiency of these designs are shown in Tables 6.1 and 6.2. As a matter of fact,
the threshold accepting algorithm can be used to construct the optimal design among
any size n under any other models, such as, the triplet-order model [15] and the
component-position model [24].

108 P. Winker et al.

It is shown that a threshold accepting implementation can be used to generate
highly efficient designs for OofA experiments. Here, the analysis was restricted to
consider PWO designs. However, the framework is general enough to allow the
construction of efficient designs taking into account higher orders. For improving
the performance of the algorithm for larger values of m and n, the implementation
has to be modified both with regard to the generation of random OofA designs and
their mapping to the corresponding Z-matrices and with regard to the updating of
the objective function for small modifications of a design in a neighbourhood. These
improvements of the algorithm will allow tackling also larger problem instances and
higher orders regarding the sequence of additions.

Acknowledgements All designs obtained can be found in website: www.jlug.de/
optimaloofadesigns. This work was partially supported by the National Science Foundation
via Grant DMS 18102925. The work of Jianbin Chen was supported by the National Natural
Science Foundation of China (Grant Nos. 11771220). Professor Kai-Tai Fang has been a true leader
in our society and has been a strong supporter of young fellows. His original work on uniform
design had a significant impact on this work. It is our great privilege to contribute this work on
computer experiments to this special issue in honor of his 80th birthday.

References

1. Chen, J.B., Han, X.X., Yang, L.Q., Ge, G.N., Zhou, Y.D.: Fractional designs for order of
addition experiments. Submitt. Manuscr. (2019)

2. Chen, J.B., Peng, J.Y., Lin, D.K.J.: A statistical perspective on NP-Hard problems: making
uses of design for order-of-addition experiment. Manuscript (2019)

3. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose algorithm appearing superior
to simulated annealing. J. Comput. Phys. 90, 161–175 (1990)

4. Fang, K.-T., Lin, D.K.J.: Uniform experimental designs and their applications in industry.
In: Khattree, R., Rao, C.R. (eds.) Handbook of Statistics, vol. 22, pp. 131–170. Elsevier,
Amsterdam (2003)

5. Fang, K.-T., Lin, D.K.J., Winker, P., Zhang, Y.: Uniform design: theory and application. Tech-
nometrics 42, 237–248 (2000)

6. Fang, K.-T., Lu, X., Winker, P.: Lower bounds for centered and wrap-around L2-discrepancies
and construction of uniform designs by Threshold Accepting. J. Complex 19, 692–711 (2003)

7. Fang, K.-T., Ma, C.-X., Winker, P.: Centered L2 discrepancy of random sampling and latin
hypercube design, and construction of uniform designs. Math. Comput. 71, 275–296 (2002)

8. Fang, K.-T., Maringer, D., Tang, Y., Winker, P.: Lower bounds and stochastic optimization
algorithms for uniform designs with three or four levels. Math. Comput. 75(254), 859–878
(2005)

9. Fang, K.-T., Tang, Y., Yin, J.: Lower bounds for wrap-around L2-discrepancy and constructions
of symmetrical uniform designs. Forthcomming (2004)

10. Fang, K.-T., Wang, Y.: Applications of Number Theoretic Methods in Statistics. Chapman and
Hall, London (1994)

11. Lenth, R.V.: Quick and easy analysis of unreplicated factorials. Technometrics 31, 469–473
(1989)

12. Lin, D.K.J., Sharpe, C., Winker, P.: Optimized U-type designs on flexible regions. Comput.
Stat. Data Anal. 54, 1505–1515 (2010)

13. Lin, D.K.J., Peng, J.Y.: The order-of-addition experiments: a review and some new thoughts
(with discussion). Qual. Eng. 31(1), 49–59 (2019)

6 The Construction of Optimal Design for Order-of-Addition … 109

14. Liu, M.Q., Hickernell, F.J.: E(s2)-optimality and minimum discrepancy in 2-level superdatu-
rated designs. Statistica Sinica 12, 931–939 (2002)

15. Mee, R.W.: Order of addition modeling. Statistica Sinica. In press (2019)
16. Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York (1993)
17. Peng, J.Y., Mukerjee, R., Lin, D.K.J.: Design of order-of-addition experiments. Biometrika. In

press (2019)
18. Van Nostrand, R.C.: Design of experiments where the order of addition is important. In: ASA

Proceedings of the Section on Physical and Engineering Sciences, pp. 155–160. American
Statistical Association, Alexandria, Virginia (1995)

19. Volkel, J.G.: The design of order-of-addition experiments. J. Qual. Technol. (2019) https://doi.
org/10.1080/00224065.2019.1569958

20. Winker, P.: Optimization Heuristics in Econometrics. Wiley, Chichester (2001)
21. Winker, P., Fang, K.-T.: Application of Threshold Accepting to the evaluation of the discrepancy

of a set of points. SIAM J. Numer. Anal. 34, 2028–2042 (1997)
22. Winker, P., Fang, K.-T.: Optimal U -type designs. In: Niederreiter, H., Hellekalek, P., Larcher,

G., Zinterhof, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, pp. 436–488. Springer,
New York (1997)

23. Winker, P., Gilli, M.: Applications of optimization heuristics to estimation and modelling
problems. Comput. Stat. Data Anal. 47, 211–223 (2004)

24. Yang, J.F., Sun, F.S., Xu, H.: Component orthogonal arrays for order-of-addition experiments.
Submitt. Manuscr. (2019)

25. Zhao, Y.N., Lin, D.K.J., Liu, M.Q.: Minimal-point design for order of addition experiment.
Submitt. Manuscr. (2019)

