
Chapter 2
The Contribution to Experimental
Designs by Kai-Tai Fang

Min-Qian Liu, Dennis K. J. Lin, and Yongdao Zhou

Abstract Professor Kai-Tai Fang has a wide research interest including applications
of number-theoretic methods in statistics, distribution theory, experimental design,
multivariate analysis and data mining. This paper only focuses on his contribution to
experimental design. He proposed the method of visualization analysis for orthogonal
designs in 1970. Inspired by three big military projects in 1978, he cooperated with
Prof. Yuan Wang and proposed a new type of design of computer experiments,
uniform design by utilized the number-theoretic methods. The uniform design can
be also regarded as a kind of fractional factorial design, supersaturated design and
design of experiments with mixture. In the past decades, the theory and applications of
uniform designs have been developed rapidly by Kai-Tai Fang and his collaborators.
In 2008, together with Professor Yuan Wang, Kai-Tai Fang received the 2008 State
Natural Science Award at the Second Level, the highest level award in this kind of
State award in that year. This paper focuses on the contribution of Kai-Tai Fang to
experimental designs such as uniform designs, orthogonal designs, supersaturated
designs and computer experiments.

2.1 Introduction

During the early 1970s, researches from Peking University and the Institute of Math-
ematics, Chinese Academy of Sciences, attempted to promote and apply orthogonal
design to the industrial sector. In 1972, Kai-Tai Fang had the opportunity to go to the
Tsingtao Beer Factory and other factories. He supervised their engineers to apply the
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orthogonal design to industrial experiments. During the consultancy process Kai-Tai
Fang found that the engineers had difficulty to understand statistical methods, espe-
cially in calculating the ANOVA table without the help of computers or calculators in
that time. Therefore, he realized the need for statisticians to simplify the complicated
statistical theory and methods, and proposed the method of “Visualization Analy-
sis” for analytical use on experimental data. Very soon this method was commonly
used in the Mainland. He also suggested to use the range instead of sum of squares
in ANOVA table, called as “the range analysis”, see Fang and Liu [25]. The range
analysis is simple to understand and easy to compute.

During the consultancy process Kai-Tai Fang met many case studies with mul-
tiple factors, large experimental domains and non-linear relationships between the
response and factors. Some experiments can not reach the goal for several years.
Faced with these complicated cases Kai-Tai Fang considered several issues: (1) the
number of levels should be more than 2 (3–5 for example); (2) Considering all the
possible factors in the first stage; (3) ranking importance of the factors and inter-
actions for choosing recommended level-combination. By these considerations he
helped the engineers to solve a number of complicated experiments. Kai-Tai Fang
with his colleague Mr Liu summarized their experience into a Notes for giving
lecture to engineers. Late, this Notes had been published in the journal, see Fang and
Liu [24].

The most difficult problems Kai-Tai Fang met in 1978 can not be solved using the
orthogonal designs. These problems gave a strong motivation for the establishment
of the theory and method of uniform designs.

In summary, Kai-Tai Fang has authored and co-authored 25 monographs and text-
books, and published more than 300 papers, among which 5 monographs and more
than 100 papers are on the research field of experimental designs. The purpose of this
paper is to introduce Fang’s contribution to uniform designs, orthogonal designs and
supersaturated designs. The paper is organized as follows. Sections 2.2–2.5 intro-
duce the contribution to uniform designs, orthogonal designs and supersaturated
designs by Kai-Tai Fang, respectively. Some material is chosen from the paper “A
Conversation with Kai-Tai Fang” by Loie et al. [50].

2.2 The Contribution to Uniform Designs

In 1978, Kai-Tai Fang took part in three major missile-related projects covering
land, sea and aerospace. In these projects the true model between the response and
factors can be numerical expressed by solving a system of differential equations. It
needed a long computation time by a computer. It turned out the idea of computer
experiments. Due to the Cultural Revolution there was no any information about
the design of computer experiments from outside of China. Kai-Tai Fang and Yuan
Wang considered to choose a certain number of experiments in the domain and find
an approximate model to replace the true one. For example, one project needs a
design with 6 factors some of which having at least 18 levels on a large experimental
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domain. Since the experiment was quite expensive and the speed of computer was
quite slow (one experiment in one day), they wanted a design with at most 50 runs.
Again, it was highly challenging. It needed a new method that could approximate a
complicated system by a simple method with required accuracy. The great challenge
was a motivating force to Kai-Tai Fang.

Kai-Tai Fang collaborated with Prof. Yuan Wang and borrowed the idea of
number-theoretic methods to put experimental points uniformly on the domain and
proposed the uniform design after a three-month hard working. Applying the uni-
form design to one of the three projects, 31 runs were arranged for the 6 factors
each having 31 levels, and a satisfactory result was achieved. This method made
that it was possible to calculate an accurate answer in 0.00001 s with the required
accuracy. Eventually, the three projects were successful and won several nationwide
awards. Kai-Tai Fang and Prof. Wang published two papers for introducing the uni-
form design theory in Chinese and English [4, 60], respectively. The new type of
experimental designs was proposed since then. It was both time- and cost-saving and
provided a valuable alternative design in computer experiments as well as laboratory
experiments [17, 18, 23, 38]. During the 1970s, especially just after the Cultural
Revolution in China, many scholars in China were still adhering to the modeling of
the traditional experimental designs for data analysis, however, Kai-Tai Fang used
regression analysis for modelling. Although the uniform design approach was not
quite supported by few scholars in the experimental design, but it was greatly wel-
comed by the engineers. Several years later, the method of uniform designs has being
used extensively in the mainland. Not only was it used for military purposes, but also
it was adopted by and for civilians.

The idea of uniform design was from the overall mean regression model and the
number-theoretic methods (Quasi-Monte Carlo methods). However, the uniformity
is a geometric concept, not a statistical criterion. How to set up a solid theory is a very
difficult target. Kai-Tai Fang had a difficult time during 1990–1996 after he moved
to Hong Kong Baptist University. In fact, 90% of his academic pursuits has focused
on uniform design since 1993. The progress was slow at the beginning. After several
years, his collaboration with several scholars led to the discovery of a breakthrough.

In the following, we introduce the contribution to uniform designs by Kai-Tai Fang
in the aspects of uniformity measures, construction methods of uniform designs and
the relationship among different types of designs. Recently, Fang et al. [26] published
a monograph that introduces the theory of the uniform design in details, and collects
recent development in this direction.

2.2.1 Uniformity Measures

Assume y = f (x) be the true model of a system on a domain X = Cs = [0, 1]s =
[0, 1] × · · · × [0, 1], where x = (x1, . . . , xs) are variables/factors and y is response.
Let P = {x1, . . . , xn} be a set of n design points on Cs . One important issue is to
estimate the overall mean of f (x), i.e., E(y) = ∫

Cs f (x)dx. A natural idea is to use
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the sample mean of P , ȳ(P) = 1
n

∑n
i=1 yi to estimate E(y), where yi = f (xi ), i =

1, . . . , n. The difference between E(y) and the sample mean ȳ(P) has following
upper bound

|ȳ(P) − E(y)| ≤ V ( f )D∗(P), (2.1)

where V ( f ) is the total variation of the function f in the sense of Hardy and Krause
(see Hua and Wang [45]; Niederreiter [54]), and D∗(P) is the star discrepancy of
P proposed by Weyl [63], which does not depend on f . The inequality (2.1) is the
famous Koksma-Hlawka Inequality in quasi-Monte Carlo methods, and it is tight in
some cases. If V ( f ) is bounded in the experimental domain, then one may choose
P with n design points on Cs such that its star discrepancy D∗(P) is as small as
possible and we can minimize the upper bound of the difference in (2.1). Fang [4]
and Wang and Fang [60] called a design to be a uniform design if it has the smallest
star discrepancy in the design space.

However, the star discrepancy has some shortcomings. Kai-Tai pointed out that
it is not invariant under rotation of the coordinates, and is not easy to compute.
He discussed this problem with his colleague Prof. Fred J. Hickernell. Hickernell
[42, 43] used the tool of reproducing kernel Hilbert space, to generalize the defini-
tion of discrepancy and proposed different types of discrepancies. Among them the
wrap-around L2-discrepancy (WD) and centered L2-discrepancy (CD) are popularly
used. Fang et al. [17] gave the following requirements for a reasonable measure of
uniformity.

C1 It is invariant under permuting factors and/or runs.
C2 It is invariant under rotation of the coordinates.
C3 It can measure not only uniformity of P over Cs , but also the projection uni-

formity of P over Cu , where u is a non-empty subset of {1, . . . , s}.
C4 There is some reasonable geometric meaning.
C5 It is easy to compute.
C6 It satisfies the Koksma-Hlawka-like inequality.
C7 It is consistent with other criteria in experimental design.

It has been known that the star discrepancy satisfies C1, C3, C4 and C6 and that both
the WD and CD satisfy the requirements C1−C7. Later, Zhou et al. [70] considered
the following two additional requirements for a uniformity measure.

C8 Sensitivity on a shift for one or more dimensions.
C9 Less curse of dimensionality.

Zhou et al. [70] also showed that CD does not satisfy the requirement C9 and WD
does not satisfy the requirement C8. Then, they proposed another type of discrepancy,
called mixture discrepancy (MD). The MD can satisfy C1−C9, which means that
the MD can overcome the shortcomings of WD and CD, and MD may be the more
reasonable measure of uniformity.

In many physical or practical situations, it prefers to have an experimental domain
with a finite number of levels. Then, it is requested to give some discrepancies for
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experimental domain with finite candidates directly. Hickernell and Liu [44] and
Fang et al. [20] proposed a discrepancy, called discrete discrepancy, which is also
defined by a special kernel. Qin and Fang [57] further discussed the property of
the discrete discrepancy and the construction methods of uniform designs. Besides,
Zhou et al. [71] proposed the Lee discrepancy for finite numbers of levels. The
discrete discrepancy is better for two-level designs and the Lee discrepancy can be
used for multi-level designs.

It is known that a measure of uniformity plays a key role in the theory of uniform
designs, Kai-Tai Fang, Fred J. Hickernell and their collaborators proposed different
types of discrepancies, which greatly develop the theory of uniform designs. Based
on those discrepancies, many relationships between uniform designs and other type
of designs were shown by Kai-Tai Fang and his collaborators.

Given a type of discrepancies, a tight lower bound is useful for the construction
of uniform designs, since it can be served as a benchmark during the searching
procedure. Kai-Tai Fang and his collaborators gave many lower bounds for different
types of discrepancies, see [28, 32, 35, 37].

2.2.2 Construction Methods of Uniform Designs

For the convenient use of uniform designs in practice, uniform design tables are very
useful. Kai-Tai Fang and his collaborators Mingyao Ai, Gennian Ge, Fred J. Hick-
ernell, Runze Li, Min-Qian Liu, Xuan Lu, Chang-Xing Ma, Jianhui Ning, Jianxin
Pan, Hong Qin, Yu Tang, Yuan Wang, Xiaoqun Wang, Peter Winker, Aijun Zhang,
Yongdao Zhou, etc., gave many construction methods, which include the following
three approaches: (i) Quasi-Monte Carlo methods [4, 16, 73]; (ii) Combinatorial
methods [9, 11–13, 13]; (iii) Numerical search [35, 64, 65, 68, 69].

The Quasi-Monte Carlo methods are popularly used to construct uniform designs,
since the first group of uniform designs were generated from the number-theoretic
methods. Among them, the good lattice point (glp) method and the glp method
with power generator are firstly used by Fang [4]. The main idea of glp method for
constructing an n-point s-factor design is to find a generator vector (h1, . . . , hs),
where hi is coprime with n and is h1, . . . , hs are different with each other. Then, the
i th run of a glp set is determined by di j = ih j (mod n), which means a glp set is
fully determined by the generator vector. One may find a best generator vector under
some uniformity criterion. Moreover, given the parameters including the number
of runs n and the number of factors s the uniformity of the design constructed by
the glp method may have some space to improve. For example, based on a glp set,
[73] showed that the linear level permutation technique can improve the space-filling
property under the uniformity criterion and maximin distance criterion.

From 2000, Kai-Tai Fang began the collaboration with Gennian Ge from Suzhou
University and Min-Qian Liu from Nankai University to link up combinatorial
designs and uniform designs. Combinatorial construction methods are powerful to
construct uniform designs under the discrete discrepancy, i.e., the resulting designs
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by those methods reach the minimum values of discrete discrepancy in many cases.
The main tool of the combinatorial methods is the equivalence between an asymmet-
rical uniform designs with constant number of coincidences between any two rows
and a uniformly resolvable design (URD). Therefore, given a URD, we can obtain
a uniform design without any computational search. There are some miscellaneous
known results on the existence of URDs, readers can refer to [11, 13] and the refer-
ences therein for these results. The combinatorial methods can construct symmetric
and asymmetric uniform designs, as well as supersaturated uniform designs. Some
proposed construction methods by Kai-Tai Fang and his collaborators employed the
following tools.

(A) Resolvable balanced incomplete block designs [9, 12, 13]
(B) Room squares [8]
(C) Resolvable packing designs [10, 27]
(D) Large sets of Kirkman triple systems [10]
(E) Super-simple resolvable t-designs [14]
(F) Resolvable group divisible designs [11]
(G) Latin squares [34]
(H) Resolvable partially pairwise balanced designs [36]

Here, (A)–(E) introduced the approaches for constructing symmetrical uniform
designs, and (F)–(H) for asymmetrical cases. Most of those construction methods
can obtain uniform designs under the discrete discrepancy.

The combinatorial methods only work for some special parameters n, s and
q1, . . . , qs . It is worth to give some construction methods of uniform designs for
any given parameters. Kai-Tai Fang invited Peter Winker from Germany, a doctoral
student then and a professor now, to cooperate for the numerical searching meth-
ods, which can satisfy such a requirement. Peter Winker is one of the experts on the
threshold-accepting (TA) method. Winker and Fang [64] applied the TA for calcula-
tion of the star discrepancy and Winker and Fang [65] applied the TA for numerical
searching uniform designs. This method uses the hard thresholds to accept the new
solution in the neighborhood of current solution rather than some probability to
accept the new solution in the simulation annealing method. Fang and Ma [29] and
Fang et al. [31] used the TA algorithm to find uniform design tables under the WD
and CD, respectively. Fang et al. [28] reexpressed the formulas of the WD and CD
as functions of column balance, and also as functions of Hamming distances of the
rows. And they also developed an efficient updating procedure for the local search
heuristic threshold accepting based on these formulations of the WD and CD. Later,
Fang et al. [35] proposed an efficient balance-pursuit heuristic algorithm to find many
new uniform designs, especially with high levels. It was seen that the new algorithm
is more powerful than the existing traditional threshold accepting algorithm. Fang
et al. [32] also used the balance-pursuit heuristic algorithm to obtain many uni-
form designs. This algorithm uses some combinatorial properties of inner structures
required for a uniform design. Moreover, Fang et al. [15] constructed uniform designs
via an adjusted threshold accepting algorithm under the mixture discrepancy.
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Later, Zhou et al. [69] reformed the optimization method for searching uniform
designs into a zero-one quadratic integer program problem, and used some local
searching methods to obtain the solution of such a problem, as well as the corre-
sponding uniform design. Moreover, Fang et al. [23] found that many orthogonal
designs can be generated by TA under the CD. Their results imply the so called
“uniformly orthogonal design” by Fang and Ma [29], “Uniform fractional factorial
designs” by Tang et al. [59].

2.3 More About Uniform Designs

In this section, more aspects of uniform designs are shown. We will show the con-
tribution of Kai-Tai Fang on the topic of the connection between uniform designs
and other types of designs, uniform designs for experiments with mixture and the
application of uniform designs.

2.3.1 Connection Between Uniform Designs and Other Types
of Designs

The uniform design theory was first proposed from Quasi-Monte Carlo method, and
it is a deterministic method. It seems that the uniform design theory is totally different
with orthogonal designs which have much statistical meaningfulness. Based on many
research results of uniform designs, Kai-Tai Fang came up with the conjecture that
most orthogonal designs are uniform in a certain sense. If this conjecture is true, we
could link up orthogonal design with uniform design and obtain a vast development
potential for uniform designs.

Kai-Tai Fang collaborated with several scholars and led to the discovery of a
breakthrough. First, Kai-Tai Fang and Peter Winker found that such a conjecture was
true in many cases, i.e., many existing orthogonal designs are also uniform designs.
The result is based on the measure of uniformity proposed by Fang’s colleague,
Fred J. Hickernell. This discovery was of mutual benefit to both Hickernell and Fang.
For Hickernell, his proposed measure of uniformity was initially not appreciated by
many researchers in Quasi-Monte Carlo field but his measure became important in
theory of uniform designs. For Fang, the measure of uniformity helped to prove that
many existing orthogonal designs are uniform designs.

It still had one step to complete the proof of such a conjecture, i.e., we need a
mathematical proof. Then, Kai-Tai Fang invited Rahul Mukerjee, Professor of the
Indian Institute of Management in Calcutta, to HKBU for the collaboration in this
topic. Rahul is a worldwide expert in the filed of experimental design. After two
weeks, Rahul told Kai-Tai that the conjecture is not always true, even for a two-level
factorial case. However, he showed an excellent result that it exists some relation-
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ship between uniformity and orthogonality. Usually, the wordlength pattern and the
criterion “minimum aberration” are popularly used to measure the orthogonality of a
regular design, and the CD can be used to assess the uniformity of a design. Kai-Tai
and Rahul established an analytic relationship between the CD and wordlength pat-
tern for regular designs. This discovery was immediately published in a top statistical
journal, Biometrika, see Fang and Mukerjee [33]. It opened up an entirely new area
that linked up uniform design and factorial design, an area in which Kai-Tai Fang
collaborated with Chang-Xing Ma and others, and published more than 20 papers
during 1999–2004. For example, Ma et al. [53] showed that the equivalence between
the uniformity and orthogonality is only true in some special cases.

Tang et al. [59] gave the relationship between the CD and the generalized
wordlength pattern of a three-level fractional factorial design, and also showed that
minimum aberration designs have low discrepancies on average. Later, Zhou and
Xu [72] obtained the close relationship between any discrepancy defined by the tool
of reproduced kernel Hilbert space and the generalized wordlength pattern, which
can measure the orthogonality of a nonregular design.

Moreover, Zhang et al. [67] used the majorization framework to generalize and
unify classical criteria for comparisons of balanced lattice designs, which include
fractional factorial designs, supersaturated designs and uniform designs. Fang and
Ma [30] showed the relationship between uniformity, aberration and correlation in
regular fractions 3s−1. Furthermore, Ma et al. [52] used the CD to efficiently detect
the isomorphism of fractional factorial designs.

Furthermore, the blocking design is an important type of experimental designs.
Blocking experiments emphasize the balance among blocks, treatments or groups.
Such a balance is easy to intuitively understand, and has a simple formula in data
analysis. However, it needs to be proven in theory. Under the guide of Prof. Kai-
Tai Fang, Liu and Chan [46] used the discrete discrepancy to prove that balanced
incomplete blocking designs are the most uniform ones among all binary incomplete
block designs. Liu and Fang [47] considered a certain kind of resolvable incomplete
blocking designs, obtained a sufficient and necessary condition for such a blocking
design is the most uniform in the sense of a discrete discrepancy measure, proposed
a construction method for such designs via a kind of U-type designs, and set up
an important bridge between resolvable incomplete blocking designs and U-type
designs.

2.3.2 Uniform Designs for Experiments with Mixture

Usually, the experimental domain of uniform designs is a hypercube. Kai-Kai Fang
and Yuan Wang firstly considered uniform designs for experiments with mixture
[38, 61], i.e., the experimental domain becomes a simplex. Later, Fang and Yang
[39] discussed uniform designs of experiments with restricted mixtures.

For constructing uniform design of experiments with mixtures, the uniformity
criterion should be given first. There are two types of uniformity criteria, indirect
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and direct methods. One indirect method for measuring the uniformity of designs
with mixtures is to measure the uniformity of the corresponding design on the hyper-
cube Cs−1 by a special transformation, see the F-discrepancy in Fang and Wang
[38]. Ning et al. [56] proposed another uniformity criterion, DM2-discrepancy, for
direct measuring the uniformity of designs with mixtures. Ning et al. [55] gave some
construction method for the uniform designs with mixture on simplex.

2.3.3 Application of Uniform Designs

The achieved breakthrough in relation to uniform designs by Kai-Tai Fang and his
collaborators won an international recognition. For example, the Handbook of Statis-
tics (Volume 22) included the topic of uniform designs as a chapter, see Fang and
Lin [19]. The Encyclopedia of Statistics Science (Second Edition) had chosen the
aspect of uniform design as an entry, see Fang [5]. Both the Handbook of Engineer-
ing Statistics and the International Encyclopedia of Statistical Science by Springer
also invited Kai-Tai Fang to write a chapter on uniform design for engineers, see
Fang and Chan [7] and Fang [6], respectively. Moreover, Encyclopedia on Statistics
in Quality and Reliability also invited Kai-Tai Fang to introduce the topic of uni-
form experimental designs, see Fang and Hickernell [3]. Uniform designs also won
national acclaim. The Uniform Design Association of China (UDAC), as a branch
of the Chinese Mathematical Society, was founded in 1994. The UDAC organized
the national conferences, training courses, workshops and other activities to meet
the calls to promote the applications of uniform designs.

In application-wise, there were numerous successful applications of uniform
designs in China. With the keyword “uniform design”, you can find thousands of
published case studies from the academic database China national knowledge infras-
tructure (CNKI), which collects most of the important academic journals in China.
The application of uniform designs by Ford Motor Co. Ltd in USA is an exemplary
application of this method. In Ford, Dr. Agus Sudjianto introduced to Kai-Tai Fang
that the technique had become a critical enabler for them to execute “Design for
Six Sigma” to support the new product development, in particular, for the automo-
tive engine design. Moreover, it was told that computer experiments using uniform
designs have become the standard practices at Ford Motor Co. Ltd to support the early
stage of the production design before the availability of the hardware. As a result,
Fang et al. [17] published a textbook/monograph entitled “Design and Modeling for
Computer Experiments”, in which many case studies were from the real cases in
Ford Motor Co. Ltd. In 2001 the 50th Gordon Research Conference: the Statistics
in Chemistry & Chemical Engineering invited the topic “Uniform design for sim-
ulation experiments” as one of the nine topics, and each topic was given 3.5 h for
introduction and discussion. Kai-Tai Fang, Professors Dennis K. J. Lin and Yizhen
Liang (a chemist) formed a panel for this topic.

From the website of CNKI, there are 5660 papers used uniform designs to solve
their problems between the period 2000–2018, see Fig. 2.1. There are also more than
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Fig. 2.1 The number of
publications with the topic of
uniform designs in CNKI
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2000 citations of uniform designs from ISI Web of Science. Moreover, from the
Google Scholar, the number of the citations of Kai-Tai Fang’s publications is more
than 14,000 times, and most of them are the citations of the papers about experimental
designs, especially the topics of uniform designs.

2.4 The Contribution to Orthogonal Designs

During the process of promoting the common use of orthogonal designs, Kai-Tai Fang
encountered quite a number of complicated multi-factor and non-linear issues. The
engineers were unable to identify a satisfactory combination values of the parameters
for a long time. An example was a porcelain insulator factory in Nanjing. The factory
had a team whose job is to assign the conduction of the experiments continually
for identifying a satisfactory combination values of the parameters. Although they
achieved much knowledge in their experiments, they still failed to get a suitable
combination of the values of the parameters to satisfy the requirement. At that time,
the factory received a large number of orders for glass insulators but was unable to
deliver the products. In view of the complexity of the issue, Kai-Tai Fang adhered to
the principle of “big net catching big fish”, and he conducted a 25-run experiment
and arranged the six 5-level factors by an orthogonal design.

Such a design is a saturated design, which can not estimate all the main effects of
the six factors, as well as none of the interaction effects can be estimated. However, in
those 25 runs, all the responses of a special level-combination fulfill all the require-
ments. That was a great news to the factory in-charge. Should one liken the outcome
to winning the US lottery or was it significant? In fact, using an orthogonal design
to conduct 25 experiments actually represented 15,625 experiments, thus greatly
increasing the probability of attaining an ideal technical/manufacturing condition.
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The power of fractional factorial designs is that the experimental points have a good
representation. Since then, Kai-Tai Fang used the same strategy to solve many of
the “lasting, major and difficult” problems of the factories. This success encouraged
Kai-Tai Fang to initiate the theory and method of uniform designs.

There are many criteria for assessing the property of orthogonal designs, such
as minimum aberration [41], which is based on the wordlength pattern and can
only be used for the comparison of regular designs. For extending such a criterion
for nonregular designs, Kai-Tai Fang and Chang-Xing Ma used the MacWilliams
identities to obtain the generalized wordlength pattern and the corresponding gen-
eralized minimum aberration criterion [51]. Independently, Xu and Wu [66] also
obtained the generalized wordlength pattern by ANOVA models. The obtained gen-
eralized wordlength patterns by the two different ways are equivalent to each other
for symmetrical nonregular designs. Additionally, the result in Xu and Wu [66] still
works for asymmetrical designs. Later, Fang et al. [40] gave an effective algorithm
for generation of factorial designs with generalized minimum aberration.

Moreover, Kai-Tai Fang cooperated with Lingyou Chan and Peter Winker to con-
sider the relationship between orthogonal designs and optimal designs. They verified
that each orthogonal array is an optimal design for a special polynomial regression
models, see Chan et al. [1]. Liu et al. [49] showed the connections among different
criteria for asymmetrical fractional factorial designs. Fang et al. [22] provided a the-
oretical justification for the optimal foldover plans for two-level designs, including
the regular 2s−p, nonregular, saturated and supersaturated designs.

2.5 The Contribution to Supersaturated Designs

A supersaturated design is essentially a fractional factorial design in which the num-
ber of potential effects is greater than the number of runs. A supersaturated design
can be firstly used to screen the important factors in an experiment. Cooperated with
Dennis K.J. Lin and Min-Qian Liu, Kai-Tai Fang gave a new criterion, E( fNOD)-
criterion, for comparing supersaturated designs from the viewpoint of orthogonality
and uniformity, see Fang et al. [20]. They also showed that the E( fN O D)-criterion
is the generalization of the popularly used E(s2) and aveχ2 criteria for two- and
three-level supersaturated designs, respectively. Moreover, Kai-Tai Fang also gave
other criteria for assessing supersaturated designs such as Ave(| f |), Ave( f 2) and
fmax , see Fang et al. [21].

Based on those criteria, Kai-Tai Fang and his collaborators gave many construc-
tion methods for multi-level and mixed-level supersaturated designs and investigated
the properties of the obtained designs. The construction methods include the fractions
of saturated orthogonal arrays (FSOA) method, the cyclic construction method, col-
lapsing a U-type uniform design to an orthogonal array, and the global optimization
algorithm, the threshold accepting algorithm, and the aforementioned combinato-
rial methods, see [2, 8, 10, 13, 14, 20, 21, 58]. Those results have high citations
according to the ISI web of science. Moreover, Liu and Fang [48] used a uniform
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mixed-level supersaturated design to study a case in computer experiments, and
explored the efficiency of supersaturated designs for screening important factors and
building the predictors.

2.6 Conclusion

Kai-Tai Fang’s contribution in the field of experimental designs includes the theoret-
ical development and practical application of orthogonal designs, uniform designs
and supersaturated designs. Moreover, he also has some contribution on other types
of designs. For example, he showed that the optimal representative point method via
quantizer is superior to using other methods (including orthogonal array) to design
outer array points in Taguchi’s product-array designs, see [62]. In a word, among
his contributions, the most important one of Kai-Tai Fang is that he first proposed
the uniform design with Yuan Wang. Uniform design becomes an important type of
experimental designs which has great theoretical significance and application value.
The uniform experimental design can be regarded as a fractional factorial design
with model uncertainty, a space-filling design for computer experiments, a robust
design against the model specification, a supersaturated design and can be applied
to experiments with mixtures. Moreover, in the era of big data, experimental designs
will also play an important role for the analysis of big data. Uniform designs also
have such a chance to be used for dealing with their problem. For example, one can
use uniform designs for the subsampling of big data.
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