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1. Introduction

To provide extra degrees of freedom for estimating the error variance (o2), one traditional design strategy is to add
center points. Under a first-order main-effect model with k experimental factors, suppose one is asked to conduct an
n-run design where n is slightly greater than k + 1. The conventional wisdom is to perform a (k + 1) x k orthogonal
main-effect design, e.g., a Plackett-Burman (Plackett and Burman, 1946) design, and then add (n — k — 1) center points. In
this article, we show that adding center points may not be a favorable plan for estimating o%. We show that to perform
the n x k design as a whole, a better and in fact optimal plan is to choose k column from an n-run orthogonal main-effect
design. Optimality theorems are derived and illustrative examples are given.

As a motivative example, consider a study involving seven factors xi, ..., X7, via a linear first-order model y; =
Bo+ BiXi1 + BaxXia +- - -+ B7Xiz +€;, where ¢;'s are independent and identically distributed (i.i.d.) with mean 0 and variance
o2. Here we have eight effect parameters By, f1. .. .. 7, as well as the error variance o? to estimate. For estimation of
B = (Bo, B1,..., B7)", an eight-run experiment will be sufficient. Suppose we decide to add four additional runs for
estimating o2, thus a total of 12 runs is called for.

How to design such an experiment in 12 runs? The conventional wisdom is to add four center points, to a 274 fractional
factorial design, or here we call it an 8 x 7 “H-design”; see Design A in Table 1(a). We propose an alternative plan:
choose any 7 columns from a 12 x 11 H-design; see Design B in Table 1(b). Throughout, an m-run H-design refers to any
m x (m — 1) matrix H such that [1, H] forms an Hadamard matrix. (Here m is any multiplier of 4; 1 is a column of +1's;
the two levels in the Hadamard matrix are labeled as “+ " and “—".) As will be shown, Design B is more preferable than
Design A in terms of estimating o2. Explicitly, Var(¢?) is smaller under Design B, where &2 is the estimate of 2.

The rest of the paper is organized as follows. In Section 2, we present the explicit problem formulation, and establish
the optimality of Design B in estimating 2. Under various common distributions, theoretical values of Var(&2) have been
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Table 1

Designs A and B for 12 runs and 7 factors.

(a) Design A (b) Design B
- - - + + + - - - - - - - -
+ — — — — + + + - + — - — +
- + - - + - + + + - + - - -
+ + - + - - - - + + - + - -
- - - + - - + + - + + - + -
+ — + — + — - + + - + + — +
- + - - - + - + + + - + + -
+ + + + + + + - + + + - + +
0 0 0 0 0 0 0 — — + + + - +
0 0 0 0 0 0 0 — — - + + + —
0 0 0 0 0 0 0 + — — — + + +
0 0 0 0 0 0 0 — + — — — + +

evaluated for both Designs A and B. It is shown that Design B achieves a substantially less dispersed 62 than Design
A. Section 3 presents the summary of a lengthy simulation study. The simulation results support our theory, and show
that the significance tests achieve more reliable performance under Design B. Section 4 is devoted to a slightly different
scenario, where designs are restricted to be a (saturated) main-effect design supplemented by several follow-up runs. A
theory of the optimal follow-up design is established, and a convenient method is proposed to construct (nearly-)optimal
follow-up designs. Concluding remarks are given in Section 5. All proofs are deferred to the Supplementary Material.

2. Main results

The motivating example is a special case of the setup below. Consider, in general, the linear model
y=XB +e (1)

where ¢;'s are assumed to be i.i.d. with E(¢;) = 0 and Var(¢;) = o?; X = (1, D) with 1 being the intercept column and D
being an n x k design matrix (n > k). The goal here is to estimate both # and o2 in an efficient manner. Two types of
designs above are considered.

Design A: D = [%"] where Hy is any (k + 1) x k H-design and 0 is a (n — k — 1) x k zero-matrix. Note that this design
is conventionally used in industry.
Design B: D consists of any k distinct columns of any n-run H-design.

The estimators of 8 and o2 can be obtained by the classical least square methods (Seber and Lee, 2012), namely,

B=(X"X) X"y, and (2)
N 1 _
&% = y' (L — XX'X) Xy (3)
n—p
where p = k + 1 and I, denotes the n x n identity matrix. It is well known that under the aforementioned model
assumptions, ﬂ is always unbiased (under any design), and Var(ﬂ) (XTX) (Seber and Lee, 2012). Note that X' X

is equal to |:8 p(l)k] and nl,, for Designs A and B respectively. Thus Design B attains a slightly smaller Var(fij) for any

1 <j < k. That is, Design B is (slightly) more efficient in estimating all main effects.

For the estimation of o%, it is known that 62 follows x, , - o/(n — p), if €'s follow a normal distribution (Anderson,
1958). Here we study how the choice of design will affect (i) the variance of 42 and (ii) the covariance between &2 and
each ,BJ, under various error distributions. The following result (Bai and Silverstein, 2010) is useful to our work. Recall
that p = k+ 1, I, is the n x n identity matrix, and X = [1, D] is the model matrix. For the &2 given by Eq. (3), it is shown
that:

Lemma 1 (Bai and Silverstein, 2010).

n

A 2 /cr —3
Var(gz)_a‘*(n + n_p Zc) (4)

-D

where (Gi1, G2z, ..., Gna) are the diagonal elements of the matrix I, — X(X"X)~1XT.



J. Peng and D.KJ. Lin / Journal of Statistical Planning and Inference 205 (2020) 1-9 3

Table 2
Theoretical values of Var(62)/c* for Designs A and B under different error distributions and design sizes®.
Distribution” Excess kurtosis Design size (n, p)
(12, 8) (20, 16) (40, 32)

Normal 0 05 /05 0.5 /05 0.25 [ 0.25
Laplace 3 1.13 / 0.75 1.18 / 0.65 0.607 [ 0.325
Exponential 6 177 [ 1 1.85 /0.8 0963 / 0.4
2%3) 4 134 / 0.83 1.40 | 0.7 0.725 | 0.35
t(5) 6 177 /1 1.85 /08 0.963 / 0.4
Log-normal(0, 0.52) 5.90 1.74 [ 0.992 1.83 / 0.795 0951 / 0.397
Log-normal(0, 1) 111 239 /974 255/ 6.05 13.4 [ 3.02
GEV (shape= 0) 24 1.01 /07 1.04 | 0.62 0535 / 0.31
Uniform —1.2 0247 | 04 0.229 | 0.44 0.107 | 0.22
Beta(2,2) —0.857 0319 / 0.429 0.306 | 0.457 0.148 | 0.229
0.5N(0, 1) + 0.5N(0, 22) 1.08 0728 | 0.59 0.744 | 0.554 0378 | 0.277
0.5N(—1,1)4+0.5N(1, 1) —0.5 0.395 / 0.458 0.387 [ 0.475 0.191 / 0.238
0.6N(0, 1)+ 0.2N(—1,2%)+ 0.2N(1,2%) 0.83 0.835 / 0.632 0.858 / 0.579 0.438 [ 0.290

#In the third, fourth, and fifth columns of table, the first number is the value of Var(&z)/a4 for Design A, and the
second number is for Design B.

bEvery error distribution is linearly transformed so that E(¢;) = 0. Note that the kurtosis does not change under linear
transformations.

The error distribution affects Var(62) through the quantity E[ef)/a“ — 3, the so-called excess kurtosis (EK) of ¢;'s. For
normal €'s, the excess kurtosis equals 0, and thus Var(52) = 20*/(n — p). For distributions with a positive EK, Var(6?) is
greater than 20*/(n — p); while for negative-EK distributions, Var(6?) < 2a%/(n — p).

The choice of design affects Var(é¢2) through the quantity Z?Zl Gﬁ When the error distribution has EK=0, from Eq. (4),
a minimum Y !, G2 yields a minimum Var(é?). Specifically, as Y ', GZ increases by 1, Var(6?) increases by the amount
of ¢*-EK /(n—p)*. Note that EK has no upper bound and could be quite large (see Table 2 for examples). As such, > |, G2
plays a critical rule for the purpose of reducing Var(62). On the other hand, when EK<0, Var(6?) is below 20%/(n — p)*
(thus is reasonably small), and EK has a lower bound of —2. In such case, Z?:l Gﬁ is not so critical. Since the error
distribution is typically unknown in practice, we recommend, in general, a design with minimum Z?:] Gﬁ — thus Design
B. This is formulated in Theorem 1.

Theorem 1. Define Gj; as the ith diagonal element of I, — X(X'X)™'X .

(i) For Design A, Gz = 1/p—1/n(1 < i < p),and Gz = 1 —1/n(p+ 1 < i < n). Therefore Z?:l Gﬁ =
(n —p)(np — 2p + 1) [(np).

(i) For Design B, G = 1 —p/n (1 <i < n). Therefore > i | G2 = (n — p)*/n.

(iii) For any n x p matrix X, 1| G2 > (n — p)?/n.

The values of Var(6?) under different scenarios can thus be theoretically derived, as shown in Table 2. These values
provide intuitive comparisons between Designs A and B in the efficiency of estimating 2. Note that the values of 2?21 Gﬁ
in Theorem 1 do not depend on the choice of H-design in Designs A and B. Nor do the values in Table 2. R

We next evaluate Cov(&2, ;)'s under different designs. As will be shown below, 62 is uncorrelated with every 8; (j > 1)
under both Designs A and B.

Lemma 2.

3
Ee]

Cov(B, 62) = (X"X) "X "[G11, Gaz ... Gpp] (5)

n—p

where Cov(B. 62) = [Cov(c”rz, Bo). Cov(62, B1), ..., Cov(G2. Bk)T, and G is the ith diagonal element of I, — X(X"X)'X".
With the G;'s for Designs A and B given in Theorem 1, itlis easy to verify that X" [G;1. Gag, . . ., Gpp]T =[n—p.0,...,0]"
7‘10 p“?p,l

Cov(fi. c;z) = Eel3 [(n—p)/n.0..... 0]" for both designs. As a result, the estimation of o is uncorrelated with all the
main effects under either Design A or B.

for both designs. On the other hand, (X" X)™! equals [ :| for Design A and n‘llp for Design B. It follows that

3. Simulation study

Some simulation results are provided here to demonstrate our theories in Section 2. Two examples with different
design sizes are given. Section 3.1 studies the case with (11, p) = (12, 8) and Section 3.2 studies (n, p) = (40, 32). Under
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Fig. 1. Sampling distributions of 6* under Designs A and B for different error distributions, when (n, p) = (12, 8) (dashed curve: Design A; solid

curve: Design B).

Table 3
Quantiles of the sampling distribution of 62, when (n. p) = (12, 8).

(a) When the error distribution is Laplace

Percentage 5% 10% 20% 50% 80% 90% 95%

Quantile under Design A 0.103 0.164 0.276 0.678 1.498 2.205 2991

Quantile under Design B 0.142 0.216 0.346 0.761 1.510 2.072 2.660
(b) When the error distribution is £(5)

Percentage 5% 10% 20% 50% 80% 90% 95%

Quantile under Design A 0.129 0.197 0.315 0.692 1.419 2.042 2.805

Quantile under Design B 0.150 0.226 0.355 0.758 1.459 2.008 2610

two common distributions: Laplace and t(5), the numerical results support our conclusion in Section 2 that Design B
provides more efficient estimates of o than Design A. In addition, it is found that Design B, as compared with Design A,
achieves a more reliable type-I error and a higher power for the t- and F-tests.

3.1. Case-I: (n,p) = (12, 8)

Under different error distributions, we evaluate the sampling distributions of both Designs A and B (with 12 runs and
7 factors). The sampling distribution of 62 is obtained via the following way. Set the true g = 2, Bi=05(1<j=<7),
and o? = 1. Each time, draw a sample of ¢;’s from the given distribution, generate y;’s under the given design, and then
estimate o2 using Eq. (3). Run this procedure for 100,000 times. The sampling distributions of 62 under the given design
and error distribution can thus be obtained.

Fig. 1 shows the kernel-smoothed densities (Wand and Jones, 1994) for the sampling distributions of &2, under both
Designs A and B and different error distributions. The result for each distribution is displayed in Fig. 1, where the density
for Design B is represented by a solid curve, and the density for Design A is represented by a dashed curve.

Fig. 1(a) shows the distributions of 62 when each ¢; follows a standard normal distribution. As expected, the
distributions of &2 are the same under Designs A and B. Fig. 1(b) shows the distributions of &2 when ¢ follows
Laplace(0, 1)/ﬁ (the divisor +/2 is for normalizing ¢; so that o2 = 1). It is evident &2 is less dispersed under Design B,
which agrees with Theorem 1. (Under Design A, 62 is more skewed towards the right.) As another way of comparison,
the quantiles of 2 under Designs A and B are displayed in Table 3(a). Almost all the quantiles are closer to the true value
(6 = 1) under Design B, which clearly indicates that Design B achieves a less dispersed estimate of error variance.

Fig. 1{c) and Table 3(b) exhibit the distributions of 62 when ¢; follows a t(S)/\/g distribution (the divisor /3 is chosen
to guarantee o2 = 1). The pattern here is very similar to that under Laplace distribution. Both the density plots and
quantiles indicate that 62 is slightly less dispersed under Design B.

The difference in the sampling distributions of 52 under Designs A and B generally becomes more evident when n and
p increase, as will be shown below (Section 3.2).

3.2. Case-lI: (n, p) = (40, 32)

Consider Designs A and B of a different size: (n, p) = (40, 32). The sampling distributions of 62 are demonstrated
in Fig. 2 and Table 4, which are analogies of those in Case I. We follow the simulation settings in Section 3.1: 100,000
random samples were drawn to generate each plot and table. The true o2 is set as 1 and S8 is set as (2, 0.5, ..., 0.5).
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Fig. 2. Sampling distributions of &2

curve: Design B).

under Designs A and B for different error distributions, when (n, p) = (40, 32) (dashed curve: Design A; solid

Table 4
Quantiles of the sampling distribution of 62, when (n. p) = (40, 32).

(a) When the error distribution is Laplace

Percentage 5% 10% 20% 50% 80% 90% 95%

Quantile under Design A 0212 0.290 0.414 0.794 1.450 1.960 2.480

Quantile under Design B 0.307 0.397 0.531 0.886 1.401 1.748 2.084
(b) When the error distribution is t(5)

Percentage 5% 10% 20% 50% 80% 90% 95%

Quantile under Design A 0.249 0.326 0.446 0.784 1.365 1.825 2.356

Quantile under Design B 0.306 0.397 0.528 0.876 1.383 1.740 2.096

The patterns here are very similar to those in Section 3.1 (with perhaps slightly more evidence). Under either Laplace
or t(5) errors, the sampling distribution of &2 is apparently more concentrated towards the true value 1 under Design B
than under Design A. (In fact, under Design B, the sampling distribution of 52 deviates less than that under normality.)

In many situations, the reliability of significant tests, such as t- and F-tests, are of interest. Intuitively, a more efficient
estimate of o2 will yield more reliable test results. To confirm this, we next evaluate the powers of t- and F-tests under
both Designs A and B. Set the significance level at 0.05. Let fj's (1 < j < p — 1) gradually deviate from 0 while fixing
the intercept By = 2. For each true B, draw 100,000 random samples of y from model (1) under both Designs A and B.
Determine whether each sample of y falls in the critical regions of (i) the t-test for Hp : 8; = 0 and (ii) the F-test for
Hp:pj=0(forall 1 <j <p—1), and then estimate the powers of t- and F-tests for this particular 8. Simulations have
been conducted, for (n, p) = (12, 8) and (40, 32) respectively, under different settings of B. The results are summarized
in Appendix.

The simulations show that under t(5) distribution (positive EK), the type-I error is always controlled by the significance
level under Design B, while the type-I error considerably exceeds the significance level under Design A (especially for the
F-test). Moreover, as long as 8 is not too small, Design B achieves a higher power than Design A. It is also shown that
results under uniform error distribution (negative EK), the type-I error is well-controlled under both Design A and Design
B. On the other hand, Design B still achieves a higher power than Design A under uniform errors. As pointed out by one
referee of our work, the higher power under Design B is partially ascribed to its higher D-criterion. It will be explored
in the future how the advantages of Design B in significance tests are connected to the fact that Design B attains the
minimum Y | G2,

In summary, this section compares the sampling distributions of 42 for Designs A and B, under different scenarios. The
numerical results demonstrate that Design B achieves a less dispersed 62; this supports the theory in Section 2. It is also
shown that Design B achieves robust type-I errors (i.e., the type-I errors are closer to the significance level) and higher
powers of t- and F-tests, as compared to Design A.

4. Optimal follow-up design

As a sequel, we study the design problem following an initial main-effect design. Suppose an experimenter has first
conducted a saturated main-effect experiment with an p x k design, Dy (recall that p = k + 1). It is well known that
under the effect sparsity assumption (Box and Meyer, 1986), a saturated main-effect design is useful for identifying
the significant factors. Many inference methods are available under effect sparsity, for example, Daniel (1959), Dong
(1993), Lenth (1989), Ye et al. (2001), and Miller (2005). However, the effect sparsity assumption may not hold in some
situations (see, e.g., Hurley, 1995). In such cases, a follow-up experiment is needed to provide extra degrees of freedom
for estimating error variance.
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Our goal is to find an optimal (n—p) x k design Dy, so that the combined design D = I];o achieves an efficient estimate
a

of both B and o2, Again, D is slightly larger than Dy, i.e., n exceeds p by only a few runs. Assume that Dy is an H-design,
and each element of D, is within the interval [—1, 1]. In the following discussion, denote X = (1, D), Xy = (1, Dy), and
X, = (1, D,), where 1 is the intercept column.

Remark 1. The conventional choice of D, is (n—p) runs of center points (so that Design A is the combined design). Design
B is not considered in this section, because it does not include any p x k orthogonal sub-design.

In essence, we have three criteria for finding an optimal D,: (A) maximize the eff1c1ency ofﬂ (B) minimize the quantity
ZI 1 G2 (see the discussion in Section 2), and (C) minimize the absolute value of Cov(62, ,BJ.) for each]

For item (A), the estimation of B, the variance-covariance matrix ofﬁ is proportional to (XTX/n) . Thus it is desirable
to maximize the moment matrix X' X/n in terms of, say, the conventional D-criterion:

argmax |X'X/n| v
Dgy
where |-| denotes the determinant of matrix. Note that X'X = X]Xo + X, Xs = plp, + X, Xo. By the Sylvester’s
determinant identity, |XTX/p‘ = ‘ln p +XGXT/p| As each element of X, is within the interval [—1, 1], it is easy to

see that XﬂXT/p < I;—p in the Loewner order (i.e., I,_p — XoX, /p is positive semi-definite). It follows that

Theorem 2. For the follow-up design problem, the combined design achieves the D-optimum if and only if XX, = pln_p.
Such D-optimal combined design has a D-criterion of

X" x/n[? = B g,

Note that XﬂXﬁT = pl,_p holds if and only if (i) each element of D, equals 1 or —1 and (ii) the rows of X, are orthogonal
to each other. In particular, the equality holds when D, is a fraction of any H-design.

For item (B), the purpose of minimizing the quantity Z?:l we derive a lower bound of this quantity among all
possible follow-up designs:

i’

Theorem 3. For any choice of Dy, it holds that

Zc,, > (6)

In general. such lower bound may not be attainable. A convement method is proposed here of which the resulting
designs achieve or nearly achieve the lower bound in Z?:l i and are D-optimal in estimating ,8 First, obtain a design
D; which consists of any n — p distinct rows of Dg. Second, obtain the desired D, by randomly rearranging the factor
indices, i.e., the columns of D;.

By Theorem 2, the resulting D,'s are D-optimal. They are also highly efficient in estimating o2, and here is an example.
Consider the previous case wheren = 12 and k = 7 (and thus p = 8). 10,000 designs are generated using the above
method. For the obtained designs, the distribution of Z, e is shown as the boxplot in Fig. 1. The solid horizontal line
in the graph indicates the lower bound of Z C2 (see The01em 2), which is 1.5. The dashed line indicates the quantity
under Design A, which is 3.375. It is evident that the obtained designs are nearly optimal, and are much more preferable
than Design A in terms of minimizing Z (see Fig. 3).

For item (C), the criterion of minimizing Cov(a R ,8)— ‘ this criterion only matters when the error distribution is skewed.

(For symmetric distributions, E[e?) = 0, and according to Lemma 2, Cov(&?2, ,8j) is always 0 for any choice of design.) Under
skewed error distributions, Design A still achieves Cov(G2, fj) = 0 for each 1 < j < k (see Section 2). As for follow-up

designs obtained by the above algorithm, Cov(&2, Eij)'s are no longer equal to 0. However, our empirical study indicates
that the correlations are typically very small.
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In summary, this section discusses how to choose a follow-up design for an H-design so that the combined design is (A)
D-optimal, (B) achieves minimum Zle Gﬁ or (C) achieves zero-correlation between &2 and all main effects. Optimality
theories are given regarding the three criteria respectively. We have proposed a convenient construction of designs that

are optimal in terms of criterion (A) and nearly optimal in terms of criteria (B) and (C).

5. Concluding remarks

This article studies the choice of an n x k design for estimating both factor effects () and error variance (o2) via a
linear main-effect model, when the number of runs (n) is slightly greater than the number of factors (k). The main focus
is to find the optimal design for best estimating o2. The conventional Design A (an H-design appended by center points)
and a proposed Design B (the projection of a larger H-design) are under study. The main conclusion is that compared with
Design A, Design B typically achieves a more reliable estimate of o2, denoted by 6%. We demonstrate this conclusion via
an optimality theory on the criterion Var(é?), as well as simulation studies to compare the sampling distributions of &2 for
Designs A and B. More simulation results indicate that the ¢- and F-tests are more reliable (in terms of power and type-I1
error) under Design B, as compared to Design A. We also consider a practical scenario where the design is constrained
to be a follow-up of a main-effect saturated design. Theories on the follow-up designs are established, and a convenient
algorithm has been proposed to generate follow-up designs which are optimal in estimating 8 and (nearly-)optimal in
estimating o2.

There are some limitations of our work. This paper assumes that n and p are both multipliers of 4. Future work needs
to be done for more flexible design sizes. In addition, note that when n is much greater than p, different designs will not
vary much in the efficiency of estimating o2: from Lemma 1, the effect of ELI Gﬁ on Var(6?) is shrunk by the multiplier
(n — p)~2. Our results are only useful when n — p is small compared to n. Furthermore, the mean-squared error (MSE)
is used here as the estimator of o2. If the model is inadequate (such as when some important interaction effects are
excluded in the model) MSE will be a biased estimator of the pure error variance. In this case, it is recommended to
estimate ¢ with partial replications, so that the lack-of-fit is separated from pure error. See, for example, Gilmour and
Trinca (2012), Tsai and Liao (2014), Jones and Montgomery (2017), and Leonard and Edwards (2017).

When the model is adequate (the lack-of-fit is small relative to the pure error variance) and a small n — p is desirable,
our work provides useful guidance for practitioners to properly choose a design, so as to efficiently estimate error variance
and identify the active factors. It is anticipated that some of the proposed techniques here, e.g., the methods of proving
the optimality theory, will be useful for a wider class of models (such as those models with interaction or higher-order
effects).

It is notable that there can be more than one Hadamard matrices given the design size, so that the choice of Designs A
and B is generally not unique. While it does not affect the theoretical properties of Designs A and B under the assumptions
in Section 2, the choice of underlying Hadamard matrices does matter in the presence of nuisance interaction effects. In
terms of this, it is recommended to use a Plackett-Burman design for the underlying Hadamard matrix of Design B, as
explained below. Lin and Draper (1992, 1993) showed that in a Plackett-Burman design, the absolute correlations between
the two-interactions and the main effects are typically small. For example, with n = 12, the maximum absolute correlation
between two-way interactions and main effects is only 1/3 (Lin and Draper 1993). Thus, if Design B is obtained by choosing
partial columns of a Plackett-Burman design, the nuisance (two-way) interaction effects will not substantially bias the
main effects. On the other hand, in Design A, the interactions and the main effects will have higher absolution correlations
because of the center points. Thus, the main effects estimates are typically more biased under Design A than under Design
B. As for the statistical power in the presence of nuisance interaction effects, note that Design B has a higher D-criterion
while it inflates the estimation of error, on the contrary. In view of this, whether Design B or A is more powerful depends
on the specific design size and magnitude of nuisance effects.
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Appendix. More simulation results

Tables A.1 and A.2 compares the performance of Designs A and B, in terms of the t- and F-tests. See Section 3.2 for
how the tables were obtained.

Appendix B. Supplementary material: proofs

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2019.04.011.



8 J. Peng and D.KJ. Lin / Journal of Statistical Planning and Inference 205 (2020) 1-9

Table A.1
Powers of t- and F-tests under different #'s for Designs A and B, when (n, p) = (12, 8).

(a) When the error distribution is t(5)

True B t-test for f F-test

Under Design A Under Design B Under Design A Under Design B
Bi=0(1<j<31) 0.0656 0.0457 0.0799 0.0468
B =08 (1<j<31) 0.2423 0.2991 0.334 0.4108
B=16(1=j=31) 0.621 0.7609 0.7932 0.9016
Bi=24(1<j<31) 0.8824 0.9555 0.9574 0.9904
fi=32(1=<j=31) 0.9679 0.9916 0.9902 0.9987
f1=05, =0 (2=<j=31) 0.4665 0.5944 0.1664 0.1702
pr=1p6=0(2=j=31) 0.9085 0.9676 0.4473 0.5556
Br=158=0(2<j<31) 0.9874 0.9981 0.7283 0.8539
pr1=2p=0(02=j=31) 0.9977 0.9998 0.8934 0.9627

(b) When the error distribution is Uniform

True B t-test for F-test

Under Design A Under Design B Under Design A Under Design B
Bi=0(1<j<31) 0.0320 0.0542 0.0191 0.0554
Bi=05(1<j<31) 0.1543 0.2528 0.1763 0.3496
Bi=1(1=<j=31) 0.5429 0.724 0.7797 0.9201
fi=15(1<j<31) 0.898 0.9776 0.9977 0.9998
B=2(1=<j=31) 0.9943 1 1 1
=08 p=0(2<j=<31) 0.3636 0.5324 0.064 0.1602
Br1=168=0(2=<j=<31) 0.9348 0.9908 0.2772 0.4876
=24 =0(2<j<31) 0.9998 1 0.6723 0.85
p1=328=002=<j<31) 1 1 0.9472 0.9879

Table A.2
Powers of t- and F-tests under different 8's for Designs A and B, when (n, p) = (40, 32).

(a) When the error distribution is t(5)

True B t-test for f F-test

Under Design A Under Design B Under Design A Under Design B
Bi=0(1<j<31) 0.0784 0.0475 0.1333 0.0468
Bi=02(1<j=<31) 0.2141 02114 0.4507 0.4518
Bi=04(1=j=<31) 0.5461 0.62 0.8976 0.9733
fi=06(1<j<31) 0.8362 0.907 0.992 0.9999
B =08 (1=<j=31) 0.9611 0.9876 0.9994 1
=04, f=0(2<]j<31) 0.5457 0.6206 0.1736 0.0832
B =08, 8=0(2=<j=<31) 0.9628 0.9876 0.3001 0.2338
pr=12f=0(2<j<31) 0.9992 1 0.4961 0.5199
Br=16,f=0(2<j<31) 1 1 0.6941 0.7912

(b) When the error distribution is Uniform

True B t-test for f F-test

Under Design A Under Design B Under Design A Under Design B
Bi=0(1<j=<31) 0.0348 0.0501 0.0116 0.0512
fi=02(1=j=31) 0.1439 0.196 0.242 0.4234
B=04(1<j=31 0.4948 0.5968 0.9891 0.9854
£i=06(1<j<31) 0.8529 0.9158 1 1
Bi=08(1=j=<31 0.9829 0.9944 1 1
=04, f=0(2<j<31) 0.4948 0.5973 0.022 0.0841
p1=08, =0(2=<j=<31) 0.9827 0.9947 0.0858 0.2194
Ar=12p=0(2<j=<31) 1 1 0.3072 0.49
=16 £=0(2<j<31) 1 1 0.6932 0.7886
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