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Variable selection for kriging in computer experiments
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ABSTRACT
An efficient variable selection technique for kriging in computer experiments is proposed.
Kriging models are popularly used in the analysis of computer experiments. The conven-
tional kriging models, the ordinary kriging, and universal kriging could lead to poor predic-
tion performance because of their prespecified mean functions. Identifying an appropriate
mean function for kriging is a critical issue. In this article, we develop a Bayesian variable-
selection method for the mean function and the performance of the proposed method can
be guaranteed by the convergence property of Gibbs sampler. A real-life application on pis-
ton design from the computer experiment literature is used to illustrate its implementation.
The usefulness of the proposed method is demonstrated via the practical example and
some simulative studies. It is shown that the proposed method compares favorably with the
existing methods and performs satisfactorily in terms of several important measurements
relevant to variable selection and prediction accuracy.

KEYWORDS
Bayesian variable selection;
experimental design;
Gaussian process; Gibbs
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1. Introduction

As science and technology have advanced to a higher
level, computer experiments are becoming increasingly
prevalent surrogates for physical experiments because
of their economy. A computer experiment, however,
can still be time consuming and costly. One primary
goal of a computer experiment is to build an inexpen-
sive metamodel that approximates the original expen-
sive computer model well. The kriging model first
proposed by Sacks et al. (1989) in computer experi-
ments is desirable because of its convenience, flexibil-
ity, and broad generality.

A kriging model mainly contains two parts: a mean
function and a stationary Gaussian process (GP).
Typically, a kriging model either uses a constant as
the mean function (known as the ordinary kriging,
OK) or assumes some prespecified variables in the
mean function (known as the universal kriging, UK).
A computer experiment usually contains a large num-
ber of input variables, so it is important to identify
those (relatively few) variables having significant
impact on the response. The idea of variable-selection
for computer experiments is initialized by Welch et al.
(1992). In their landmark work, attention was focused
on selecting variables with significant impact on the

GP while keeping the mean function as a constant.
Their strategy can be used as a screening tool in the
early stage of experimentation. Following the spirit of
Welch et al. (1992), Li and Sudjianto (2005) developed
a penalized likelihood method and Linkletter et al.
(2006) developed a Bayesian method to screen varia-
bles with significant impact on the GP. After the
screening stage, a more elaborate kriging model with
a complex mean function is desirable.

The focus here is on the next stage—how to appro-
priately select variables (terms) for the mean function
of kriging. It is noteworthy that the aim of selecting
the mean function of kriging is to establish an initial
model with high quality, which would facilitate
advanced analysis such as the sensitivity analysis,
model calibration, model validation, and heuristic
optimization. The popular initial model is the OK
model, and sometimes a UK model with some prespe-
cified variables in the mean function is adopted as the
initial model. Some literature (Hung 2011; Joseph,
Hung, and Sudjianto 2008; Martin and Simpson
2005), however, has shown that both the OK and UK
can be underperformed in terms of prediction accur-
acy when strong trends exist. The main reason is that
a constant mean in the OK may be inadequate to cap-
ture the overall trend, while the prespecified mean
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function in the UK may contain some redundant pre-
dictors. As a result, identifying an appropriate mean
function is crucial for building an accurate kriging
model. The existing literature suggests two major
approaches to accomplish this purpose: the blind krig-
ing (BK) method, which uses a Bayesian forward
selection procedure (Joseph, Hung, and Sudjianto
2008); and the penalized blind kriging (PBK) method,
which uses the penalized likelihood approach for vari-
able selection (Hung 2011). These methods first iden-
tify mean functions as a variable selection problem
and then the built initial models can effectively reduce
the prediction error. The BK and PBK also recom-
mended that one should treat the mean function and
the GP as an integration rather than dealing with
them separately. Both methods, however, suffer from
their own limitations: the theoretical properties of
the BK method are difficult to derive, while the
appealing oracle property of the PBK method only
holds when the design forms a complete lattice.
When the experimental resources are limited, a
complete lattice design is typically infeasible. In this
article, we will focus on variable selection for the
mean function. Although there are some universal
approaches to simultaneously select the active varia-
bles for both the GP and the mean function (see, for
example, Marrel et al. 2008), as will be seen, these
universal approaches provide a preliminary basis for
selecting the mean function.

This article develops a new variable selection
method, the stochastic searched blind kriging (SSBK),
for identifying the proper mean function of kriging.
The SSBK is a Bayesian approach, which allows the
number of candidate variables to be much larger than
the number of runs. The SSBK fully accounts for the
spatial correlation that is inherent to a kriging model
when selecting the mean function. It is shown that
correctly accounting for the correlation has an impact
on the variable-selection result. Moreover, the pro-
posed method is rational and flexible in the sense that
it possesses the Markov convergence property under a
wide class of experimental designs and, hence, does
not suffer from the limitations of the BK and
PBK methods.

The remainder of this article is organized as fol-
lows. Section 2 introduces a hierarchical kriging
model that provides the basis for the SSBK. Section 3
presents a step-by-step algorithm for the SSBK and
describes its implementation details. In Section 4, a
real-life application on piston design analysis
(Hoffman et al. 2003) is used to illustrate the imple-
mentation and performance of the SSBK. Some

simulation studies are conducted in Section 5 to fur-
ther demonstrate the usefulness of the SSBK. Finally,
concluding remarks and further discussions are given
in Section 6.

2. A hierarchical kriging model

In this section, we first describe the UK model, then a
hierarchical setting for variable selection in which the
UK model details are presented. The hierarchical set-
ting introduced here is the same as in Le and Zidek
(2006), with an exception that the idea of variable
selection is incorporated. To make a better presenta-
tion, a concise description without loss of important
elements is given below. Note that the hierarchical
setting introduced here is different from that of
Han and G€ortz (2012) because multi-fidelity experi-
ments are beyond the scope of this article. As alluded
to earlier, however, our method can be used to estab-
lish high-quality initial models for this kind
of experiment.

2.1. The universal kriging model

Suppose the input vector x 2 X ;X � R
p is the design

region with p distinct factors and C ¼ ff1ðxÞ; :::; fkðxÞg
is the set containing all candidate variables (not
including the intercept) for the mean function, where
k is the number of candidate variables that are func-
tions (e.g., linear and quadratic effects and two-factor
interactions) of the p factors. The UK model consid-
ered here at the screening stage for the mean function
assumes that the output of a computer code YðxÞ is
represented by

Y xð Þ ¼
Xk
i¼1

lifi xð Þ þ Z xð Þ; [1]

where l ¼ ðl1; :::; lkÞT is the vector of unknown
regression parameters and ZðxÞ is a centered station-
ary GP. Given any two points xi and xj, the covari-
ance of YðxiÞ and YðxjÞ is given by cov½YðxiÞ;
YðxjÞ� ¼ cov½ZðxiÞ;ZðxjÞ� ¼ r2Rðxi; xjÞ, where Rðxi; xjÞ
is the correlation function and r2 is the process vari-
ance. The most commonly used correlation function
is perhaps the power exponential correlation function:

R xi; xjð Þ ¼
Yp
u¼1

q
jxiu�xjujau
u ; [2]

where xiu is the uth element of xi; 0<qu<1 and
0<au � 2; u ¼ 1; :::; p. Throughout this article, we
take au ¼ 2 for all u ¼ 1; 2; :::; p. Taking au’s ¼ 2 is
suggested by a number of works (cf., Chen et al. 2016;
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Haaland and Qian 2011; Han, Santner, and Rawlinson
2009; Huang et al. 2016, 2018; Kennedy and O’Hagan
2000; Li and Sudjianto 2005; Linkletter et al. 2006;
Qian and Wu 2008; Zhou, Qian, and Zhou 2011;
Ranjan, Haynes, and Karsten 2011; Tan and Wu
2012). The case au’s ¼ 2 gives a process with infinitely
differentiable paths and is useful when the response is
analytic. Other choices may also be used, for example,
Hung (2011) suggested using au’s ,¼ 1 which helps
with Markovian properties for variable selection.

Suppose the output is observed at n values of the
input factors given by the rows of X ¼ ðx1; :::; xnÞT .
This yields a vector Y ¼ ðYðx1Þ; :::;YðxnÞÞTof observed
outputs. In general, not all the variables in C have sig-
nificant impacts on the output. If the set of variables
fx1ðxÞ; :::;xmðxÞg � C is found to be significant, then
the following model, which includes the intercept term,
is considered for subsequent analysis:

Y xð Þ ¼ b0 þ
Xm
i¼1

bixi xð Þ þ Z xð Þ: [3]

Under Eq. [3], the best linear unbiased predictor
(BLUP) at an untried site x� is

ŷ x�ð Þ ¼ x x�ð ÞT b̂ þ r x�ð ÞTR�1 Y�Fb̂
� �

; [4]

where xðx�Þ ¼ ð1;x1ðx�Þ; :::;xmðx�ÞÞT ; b̂ ¼ ðFTR�1FÞ�1FTR�1Y,
R ¼ ðRðxi; xjÞÞn�n, rðx�Þ ¼ ðRðx�; x1Þ; :::;Rðx�; xnÞÞT ,
and F ¼ ðxðx1Þ; :::;xðxnÞÞT . In Eq. [4], R, r, and b̂

depend on the correlation function Rð�Þ, which
depends on the vector of correlation parameters
q ¼ ðq1; :::; qpÞT . Both the maximum-likelihood
method and Bayesian method are frequently used to
estimate the parameter vector q (see, e.g., Fang, Li, and
Sudjianto 2006; Santner, Williams, and Notz 2003).

2.2. Specifying the priors for variable selection

As previously discussed, some of the k variables in C
may be negligible. This can be captured by augment-
ing the mean function of the UK of Eq. [1] with a k-
indicator vector d of 0’s and 1’s: 0 corresponds to a
negligible variable and 1 corresponds to an active one.
This idea is motivated from the multiple linear regres-
sion context (Chen et al. 2011; George and McCulloch
1993). However, the spatial correlations among the
observations that are inherent to a kriging model will
be taken into account.

First, we treat Eq. [1] as the prior distribution
for the true model, that is, the output vector Y follows
a two-stage hierarchical model whose first stage is
given by

Yjl; d; r2; q
� �

	Nn ~Fl; r2R
� �

; [5]

where Nn denotes an n-dimensional multivariate nor-
mal distribution, ~F ¼ ð~f ðx1Þ; :::;~f ðxnÞÞT with
~f ðxÞ ¼ ðf1ðxÞ; :::; fkðxÞÞT . Second, we place a prior on
½l; d; r2; q�. Here, the prior on l depends on d and
r2, and the priors on d; r2 and q are independent,
that is,

l; d; r2; q
� �

¼ ljd; r2
� �

d½ � r2½ � q½ �: [6]

By introducing the indicator variable di ¼ 0 or 1,
an independent normal mixture prior is placed on
each component of l:

lijdi; r2
� �

	 1�dið ÞN 0; r2s2i
� �þ diN 0; c2i r

2s2i
� �

; for i ¼ 1; :::; k:

[7]

The value of si is set to be small so that, when
di ¼ 0, li is tightly centered on 0 and will not have a
large effect. The much larger variance (by taking
ci 
 1) when di ¼ 1 allows the higher possibility of a
large li. As in Box and Meyer (1986), we set
c1 ¼ � � � ¼ ck ¼ 10. This indicates that an important
effect has an order of magnitude larger than an unim-
portant one. The choice of si follows the fact that a
small coefficient has a standard deviation rsi and will
lie within 063rsi with a very high probability. Thus,
setting si ¼ 1=ð3� rangeðfiðxÞÞ implies that even a
large change in fiðxÞ, as compared with rangeðfiðxÞÞ,
will result in a change in YðxÞ no more than r.

The prior on d reflects a prior on the mean func-
tion. A simple choice might have the elements of d

being independent, so that ½d� ¼Qk
i¼1½di�. When no

information is available, a uniform prior Prðdi ¼ 1Þ ¼
Prðdi ¼ 0Þ ¼ 0:5 is chosen for each i. The prior for r2

is chosen to be a noninformative one ½r2� / 1=r2.
Finally, each component of q is given an independent
standard uniform prior, that is, qi	Uð0; 1Þ for each i.

3. A Bayesian variable selection method for
the mean function of kriging

For the hierarchical setup previously introduced, the
posterior distribution of d, denoted by ½djY�, contains
the information relevant to variable selection. Based
on the output vector Y, the posterior d updates the
prior probabilities on each of the 2k possible values of
d. Identifying a mean function with each d via
ðdi ¼ 1Þ () ðfiðxÞ is includedÞ, those d’s with higher
posterior probabilities identify the promising
mean functions. However, it is usually intractable to
derive a closed form for ½djY�; thus, how to extract
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information from ½djY� is an important issue. In this
section, we first demonstrate that posterior samples
from ½djY� can be conveniently generated by the
Gibbs sampler and present a step-by-step algorithm
for variable selection. The implementation details sur-
rounding the algorithm are then described.

3.1. An algorithm of the stochastic searched
blind kriging

Based on Eqs. [5] through [7] and the priors on d; r2

and q, the following results can be obtained in the
usual way. For clarity, the proof is deferred to
the Appendix.

Proposition 1. The full conditional distributions of
l; r2, di ði ¼ 1; :::; kÞ and q can be expressed as fol-
lows:

ljr2; d;q;Y
� �

	Nk Av;Að Þ; [8]

r2jl; d; q;Y
� �

	IG
nþ k
2

;
Y�~Fl
� �T

R�1 Y�~Fl
� �

þ lTD�1l

2

 !
;

[9]

di ¼ xjd �ið Þ; l; r2; q;Y
h i

¼ a
aþ b

� �x b
aþ b

� �1�x

;

for i ¼ 1; :::; k; x ¼ 0 or 1; [10]

qjl; r2; d;Y
� �

/ jRj�1
2 exp � Y�~Fl

� �T
R�1 Y�~Fl

� �
2r2

( )
I 0;1ð Þk qð Þ;

[11]

where IG denotes an inverse gamma distribution, A ¼
r2ð~FT

R�1~F þD�1Þ�1 with D ¼ diagfðcd11 s1Þ2; :::;
ðcdkk skÞ2g, v ¼ r�2~F

T
R�1Y, a ¼ ½ljdi ¼ 1; dð�iÞ; r2;Y�,

b ¼ ½ljdi ¼ 0; dð�iÞ; r2;Y�, ð�iÞ denotes all of the com-
ponents except for the ith one, and IAð�Þ is the indica-
tor function for set A with IAðxÞ ¼ 1 if x 2 A and
IAðxÞ ¼ 0 otherwise.

From Proposition 1, the prior distributions provide
the regularization that the matrix A may be invertible
even if ~F is not of full column rank. With an initial
value (lð0Þ; r2

ð0Þ
; dð0Þ;qð0Þ), the Gibbs sampler, which is

a well-known Markov chain Monte Carlo (MCMC)
method (Shao 2003), can be used to generate the pos-
terior samples of l; r2; d and q by repeated successive
sampling from Eqs. [8] through [11]. Because we
focus on variable selection for the mean function, the
posterior samples of d are of particular interest. It is
known (e.g., Theorem 4.4 of Shao 2003) that, under
regularity conditions, the Markov chain generated by
the Gibbs sampler is aperiodic, invariant, irreducible,
Harris recurrent and, hence, converges to a limiting
distribution. This property leads to the fact that, with

the length of the chain increasing, the empirical dis-
tribution of the realized values of d converge to the
posterior distribution ½djY�, which contains the
information relevant to variable selection. In other
words, decisions about the selection of the mean
functions can be made based on the posterior sam-
ples of d. Specifically, if a sample d� appears in the
posterior samples with a high frequency in a relative
sense, the corresponding mean function could be
promising. This is because, once the chain generated
by the Gibbs sampler mixes well, the value with a
relatively large probability under ½djY� is likely to be
realized with a relatively high frequency. Of course,
there may be several values realized with relatively
high frequencies and all of the corresponding
mean functions should be kept for further investiga-
tions. As previously mentioned, the matrix ~F in
Proposition 1 is not necessarily of full rank, which
implies that a wide class of experimental designs
can be used for the Gibbs sampler. For the sake of
convenience, a step-by-step variable selection algo-
rithm for the mean function of kriging is formu-
lated as follows.

Algorithm A (Stochastic searched blind krig-
ing (SSBK)).

Step 1. Identify all the input factors and the set of
candidate variables C.

Step 2. Initialize lð0Þ; r2
ð0Þ
; dð0Þ; qð0Þ, and jmax (the

maximum number of iterations). Set j¼ 1.
Step 3. Sample lðjÞ from the multivariate normal

distribution ½lðjÞjr2ðj�1Þ
; dðj�1Þ; qðj�1Þ;Y� given by

the right-hand side of Eq. [8].
Step 4. Sample r2

ðjÞ
from the inverted gamma distri-

bution ½r2ðjÞ jlðjÞ; dðj�1Þ; qðj�1Þ;Y� given by the
right-hand side of Eq. [9].

Step 5. Sample dðjÞi from the Bernoulli distribution
½dðjÞi ¼ xjdðjÞð�iÞ; l

ðjÞ; r2
ðjÞ
; qðj�1Þ;Y�, whose density

is given by the right-hand side of formula
[10], for i ¼ 1; :::; k, x¼ 1 or 0, where d

ðjÞ
ð�iÞ ¼

ðdðjÞ1 ; :::; dðjÞi�1; d
ðj�1Þ
iþ1 ; :::; dðj�1Þ

k Þ.
Step 6. Sample qðjÞ from the distribution

½qðjÞjlðjÞ; r2ðjÞ ; dðjÞ;Y�, whose density up to a nor-
malization constant is given by the right-hand
side of formula [11]. Set j ¼ jþ 1.

Step 7. If j>jmax, stop; otherwise, return to Step
3.Step 8. Identify the promising mean functions
based on dð0Þ; dð1Þ; :::; dðjmaxÞ.

A similar algorithm is called the stochastic search
variable selection in the regression context. Because
Algorithm 1 focuses on the variable selection problem
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for the mean function of kriging, we call it the sto-
chastic searched blind kriging (SSBK).

3.2. Details for implementation of the SSBK

In Step 1, the input factors and the set of candidate
variables C are usually subjectively identified based on
the experimenters’ experience. Sometimes, one might
be able to use information from preliminary screening
(e.g., Marrel et al. 2008; Morris 1991; Welch et al.
1992) to help identify the input factors and the set C.
In such a case, the SSBK serves as a follow-up/
enhanced screening procedure.

In Step 2, the initial values of lð0Þ and dð0Þ are set
to be zeros; that is, the SSBK starts from a model
without any active effects in the mean function. The
estimates of r2 and q obtained from the OK (denoted
by r̂2

OK and q̂OK) are used as r2
ð0Þ

and qð0Þ, respect-
ively. The jmax, which is the maximum number of iter-
ations for the Gibbs sampler, should be large enough
so that convergence could be achieved. There are a
variety of methods to detect the convergence of a
Gibbs sequence. In Sections 4 and 5, jmax is set to be
100,000 and the ratio of the Monte Carlo standard
error (MCSE) to the corresponding posterior sample
mean is used to judge whether 100,000 iterations are
sufficient (the computation issues of MCSE can be
found in the Appendix). The examples in Sections 4
and 5 show that 100,000 iterations (thinned by dis-
carding the first 10,000 samples and every four sam-
ples and retaining the next one in the sequence) result
in a reasonably small ratio of the MCSE to the corre-
sponding posterior sample mean.

Step 3 to Step 7 are straightforward. Note that, in
Step 6, the right-hand side of Eq. [11] only gives
½qjl; r2; d;Y� up to a normalization constant, which is
typically difficult to obtain. One popular approach to
solving this sampling problem is to insert the “slice
sampling” into this step (Neal 2003). The slice sam-
pling algorithm is another MCMC method that can
be used to generate samples from a distribution, and
it is also ergodic under some weak conditions. One
appealing feature of the slice sampling is that it only
requires the density function up to a normalization
constant and thus can deal with the sampling problem
encountered in Eq. [11]. Some other sampling techni-
ques that only require the density function up to a
normalization constant, such as the Metropolis-
Hastings algorithm (Hastings 1970), can be adopted
to deal with Eq. [11] as well. Although the distribu-
tion ½l; r2; d; qjY� (up to a normalization constant)
may be obtained in the usual way, we do not

recommend using the slice sampling to deal with it
directly because of its high dimensionality. Also of
note is that Steps 4 and 6 can be modified if other
correlation functions are used. In other words, the
correlation matrix R appearing on the right-hand
sides of Eqs. [9] and [11] is of a general form.

In Step 8, those mean functions that appear in
dð0Þ; dð1Þ; :::; dðjmaxÞ with large frequencies (the top five,
say) shall be identified as the promising ones.
Sometimes, an “optimal” mean function needs to be
determined, then some model selection criteria can be
adopted. In this article, we use the cross-validation
prediction error (CVPE) and root-mean square predic-
tion error (RMSPE) criteria, which are popular for
computer experiments, to further discriminate the
promising mean functions. The CVPE criterion selects
the mean function that minimizes

CVPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

y xið Þ�ŷ �ið Þ xið ÞÞ2;
	s

where ŷð�iÞðxiÞ is the BLUP (see Eq. [4]) of the corre-
sponding kriging model after removing the ith data
point. If n0 testing points x�1; :::; x

�
n0 are available, the

RMSPE evaluates

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n0

Xn0
i¼1

y x�ið Þ�ŷ x�ið ÞÞ2:
	s

Then the mean function that minimizes the
RMSPE value can be selected. We will use the RMSPE
criterion as the primary criterion, although other cri-
teria can be used in a similar manner.

Remark 1. The computational cost of Algorithm 1 is
dominated by Steps 3 and 6 because they involve com-
putation of the inverse of the information matrix and
the correlation matrix. In this work, the Cholesky fac-
torization algorithm is used to calculate the inverse of
matrices. This implies that the computational com-
plexity of the inverse of the information matrix and
that of the correlation matrix are Oðk3Þ and Oðn3Þ,
respectively (Fang, Li, and Sudjianto 2006). Hence the
computational complexity of Algorithm 1 is Oðk3Þ þ
Oðn3Þ (jmax is taken to be 100,000 throughout this
work), which could be time-consuming when k and/
or n are not small. Single-site Gibbs sampling schemes
(e.g., those proposed by Chang, Chen, and Chi 2016;
Chen et al. 2011, 2013; and Huang et al. 2017), which
sample the variables in a component-wise manner so
that calculation of the inverse of matrices can be
avoided, provide potential alleviation to the computa-
tional complexity and are appropriate topics for
future research.
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4. A practical example

This section applies the proposed SSBK to analyze a
practical computer experiment. The ultimate goal of
the study is to perform robust design optimization
(Hoffman et al. 2003). To accomplish this goal, the
availability of a good initial model is a necessity. Li
and Sudjianto (2005) and Fang, Li, and Sudjianto
(2006) adopted the OK model as the initial model.
Joseph, Hung, and Sudjianto (2008) considered using
the BK to build an initial model that is more accurate
than the OK model. The objectives here are to illus-
trate the implementation of the SSBK and compare
the performance of the SSBK with that of the BK,
OK, and UK models. It turns out that the SSBK
successfully identifies initial models that are
more promising.

Piston slap is an unwanted engine noise caused by
piston secondary motion. That is, the departure of a
piston from the nominal motion prescribed by the
slider crank mechanism. A computer experiment was
performed by varying six factors to minimize the pis-
ton slap noise. The factors are set clearance between
the piston and the cylinder liner (x1), location of peak
pressure (x2), skirt length (x3), skirt profile (x4), skirt
ovality (x5), and pin offset (x6). Because each com-
puter experimental run requires intensive computa-
tional resources (because the power cylinder system is
modeled using the multibody dynamics code
ADAMS/Flex including a finite-element model and it
takes 24 h for each run), a uniform design was
employed to plan a computer experiment with 12
runs. The experimental design and the response data
are displayed in Table 1. Note that this uniform
design is a space-filling design where different factors
may have different number of levels. For more details
on the theory of uniform designs and their applica-
tions in computer experiments, refer to Fang et al.
(2000, 2006).

4.1. Implementing the SSBK

We next illustrate the steps in Algorithm A.
[Step 1] Following Joseph, Hung, and Sudjianto

(2008), the candidate set C consists of all the linear
main effects, quadratic main effects, and all the two-
factor interactions under the orthogonal polynomial
coding (Wu and Hamada 2009) so that there are 72
variables in C. Here the two-factor interactions include
the linear-by-linear, linear-by-quadratic and quadratic-
by-quadratic interactions. For j ¼ 1; :::; 6, we use the
notations xjl and xjq to denote the linear main-effect
and quadratic main-effect of xj, respectively. The two-

factor interactions can then be defined as the products
of these variables. For example, the linear-by-quad-
ratic interaction between x1 and x3 is x1lx3q.

[Step 2] Set lð0Þ ¼ 0; r2
ð0Þ ¼ 3:7322; dð0Þ ¼ 0; qð0Þ ¼

ð0:31; 0:99; 0:79; 0:99; 0:99; 0:49Þ and jmax ¼ 10; 000.
The initial values for r2

ð0Þ
and qð0Þ follow the max-

imum-likelihood estimators derived in Joseph, Hung,
and Sudjianto (2008).

[Step 3–Step 7] These steps can be conducted in a
mechanistic fashion using the results in Proposition 1.

[Step 8] Those mean functions with the top five
highest frequencies are selected as the promising ones
(the remaining ones have small frequencies no more
than 0.01 for this example, hence we discard them).

4.2. The results

The maximum ratio of the MCSE to the correspond-
ing posterior sample mean among the 72 variables in
C is 0.0362, which appears to be sufficiently small. So
it is assurable that jmax ¼ 100; 000 (thinned by dis-
carding the first 10,000 samples and every four sam-
ples and retaining the next one in the sequence) is
long enough. The selection results of the SSBK are
displayed in Table 2. In addition, the performances of
the BK, OK, and UK (reported in Joseph, Hung, and
Sudjianto 2008) are displayed as well. In Table 2, the
column labeled “Model” represents the selected effects
in the mean function; the column labeled “Freq” rep-
resents the frequency of the corresponding mean
function in the posterior samples of d; the column
labeled “CVPE ðq̂Þ” represents the CVPE value of the
corresponding model and the maximum-likelihood
estimate of q in the parentheses; because an additional
100 testing points are available from the website
http://www.personal.psu.edu/ril4/DMCE/MatlabCode/,
the RMSPE values of the corresponding models can
be calculated, which are listed in the last column.
Three values in the “Freq” column are denoted as N/
A because they cannot be calculated. The terms in the

Table 1. Piston slap noise data.
Run x1 x2 x3 x4 x5 x6 y

1 71.00 16.80 21.00 2.00 1.00 0.98 56.75
2 15.00 15.60 21.80 1.00 2.00 1.30 57.65
3 29.00 14.40 25.00 2.00 1.00 1.14 53.97
4 85.00 14.40 21.80 2.00 3.00 0.66 58.77
5 29.00 12.00 21.00 3.00 2.00 0.82 56.34
6 57.00 12.00 23.40 1.00 3.00 0.98 56.85
7 85.00 13.20 24.20 3.00 2.00 1.30 56.68
8 71.00 18.00 25.00 1.00 2.00 0.82 58.45
9 43.00 18.00 22.60 3.00 3.00 1.14 55.50
10 15.00 16.80 24.20 2.00 3.00 0.50 52.77
11 43.00 13.20 22.60 1.00 1.00 0.50 57.36
12 57.00 15.60 23.40 3.00 1.00 0.66 59.64
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“Model” column are selected by the competing meth-
ods, while the values in the “CVPE ðq̂Þ” and “RMSP”
columns are calculated using The DACE Toolbox
developed by Zhou, Qian, and Zhou (2011) in Matlab.
It is interesting to observe that all the identified mod-
els in the “Model”column follow the three key variable
selection principles, that is, effect hierarchy, effect
sparsity, and effect heredity.

4.3. Comparisons

The SSBK identifies five promising models with the top
five highest frequencies. The best model, in terms of the
RMSPE value, is the model x1l; x4q; x1lx5q; x1lx6l, which
has the highest frequency. Compared with the model
x1l; x1lx6l; x1qx6l identified by the BK, the best model
identified by the SSBK has smaller RMSPE and CVPE
values. That is, the SSBK successfully identifies a more
accurate model in terms of both the RMSPE and CVPE
criteria for this case study. It is worth noting the model
with the fourth highest frequency is also better than
that identified by the BK in terms of both the RMSPE
and CVPE criteria. This strongly recommends that a
handful of models that have relatively high frequencies
should be checked for further investigation. Neither the
OK nor UK models perform well in this study.

5. Simulation studies

To further judge the value of the SSBK, some simula-
tive experiments with known functions are conducted.
Example 1 considers three common cases with differ-
ent complexities so that the flexibility of the SSBK can
be assessed. Example 2 revisits the simulation study in
Hung (2011), where the PBK method was adopted.
The simulation study in Marrel et al. (2008) is revis-
ited in Example 3. The purposes of including
Examples 2 and 3 are to compare the SSBK with the
PBK and the methodology of Marrel et al (2008),
respectively. As will be seen, the SSBK performs satis-
factorily in terms of several important simulation
measurements and compares favorably with the

competitors. The performances of the frequently used
OK and UK models are also evaluated as references.
As expected, both the OK and UK models did not
perform satisfactorily when the responses are believed
to have large trends.

Example 1. We generate the simulative data from the
following three models:

Model I: y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ ZðxÞ;
Model II: y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x21

þb5x22þ b6x23 þ ZðxÞ;
Model III: y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x21

þb5x22 þ b6x23 þ b7x1x2
þb8x1x3 þ b9x2x3 þ ZðxÞ,

where x ¼ ðx1; :::; x10ÞT . For each model, the regres-
sion coefficients are selected at random from [–20,
–10] [ [10, 20] to represent large trends in the mean
function, and ZðxÞ is assumed to be a centered sta-
tionary GP whose correlation function is given by Eq.
[2] with qi generated from U(0, 1) and ai ¼ 2 for
i ¼ 1; :::; 10. The process variance r2 is set to be one.
For each model, three factors (x1, x2, and x3), are
assigned as active ones in the mean functions.
However, the three models have different complexity:
Model I considers the case where linear main effects
are active; Model II considers the case where the lin-
ear main effects and quadratic main effects are active;
while Model III considers the case where not only the
main effects but also all of the two-factor interactions
among x1, x2 and x3 are active. Without loss of gener-
ality, the design region is taken to be ½0; 1�10 and the
candidate set C consists of all the main effects plus all
the two-factor interactions among x1; :::; x10. The
experimental design is a 50-run uniform design with
50 levels for each factor, which can be conveniently
generated by existing computer codes (e.g., Chen et al.
2016 and Huang et al. 2016). A 50-run maximin dis-
tance Latin hypercube design (Johnson, Moore, and
Ylvisaker 1990) was also tested for this example and
similar simulation results were obtained. Basically,

Table 2. Summary of the selection and prediction results in the piston slap noise example.
Method Model Freq. CVPE(q̂Þ RMSPE

SSBK x1l; x4q; x1lx5q; x1lx6l 0.0700 0.6506(0.21,0.99,0.90,0.99,0.98,0.12) 0.9744
x1l; x2q; x4q; x6q; x2qx3l; x2qx3q 0.0315 0.7284(0.02,0.91,0.99,0.94,0.38,0.38) 2.0019
x1l; x1lx5q; x1lx6l 0.0305 1.3629(0.21,0.99,0.61,0.99,0.99,0.15) 1.4349
x1l; x2q; x4q; x1lx5q; x1lx6l 0.0250 0.9631(0.42,0.99,0.90,0.99,0.99,0.12) 0.9999
x1l; x2q; x4q; x1lx5q 0.0200 0.9882(0.42,0.99,0.90,0.99,0.99,0.12) 1.0805

BK x1l; x1lx6l; x1qx6l N/A 1.1168(0.99,0.99,0.91,0.27,0.99,0.63) 1.0038
OK N/A 1.4511(0.31,0.99,0.79,0.99,0.99,0.49) 1.3626
UK (linear) x1l; x2l; x3l; x4l; x5l; x6l N/A 1.1607(0.87,0.99,0.84,0.99,0.99,0.91) 1.5109

The CPU time of implementing the SSBK procedure for this example is about 3,409 s on a PC with 2.10 GHz triple-core AMD Phenom II N830 CPU and
8 GB memory.
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space-filling designs would be desirable for computer
experiments. The training and testing data sets are
generated as follows.

1. Let fx1; :::; x50g be the points in the uniform
design and fx51; :::; x550g be the points of the 500-
run maximin distance Latin hypercube design.
The latter can be conveniently generated using
The Design of Experiments Toolbox in Matlab.

2. Simulate a vector Y ¼ ðYðx1Þ; :::;Yðx550ÞÞT as a
realization of a 550-dimensional multivariate normal
distribution with the mean vectors and covariance
matrices constructed via Models I; II and I II. Denote
the realization values by y ¼ ðyðx1Þ; :::; yðx550ÞÞT .

3. Thus, fðx1; yðx1ÞÞ; :::; ðx50; yðx50ÞÞg consists of the
training data set and fðx51; yðx51ÞÞ; :::; ðx550; yðx550ÞÞg
consists of the testing data set.

For the SSBK, we run 100,000 iterations for each
repetition and identify the model yielding the smallest
RMSPE value among those models whose mean func-
tions have the top five highest frequencies in the pos-
terior samples as the best one. The maximum ratio of
the MCSE to the corresponding posterior sample
mean across all repetitions is no larger than 0.0195 so
it is assurable that 100,000 iterations (thinned by dis-
carding the first 10,000 samples and every four sam-
ples and retaining the next one in the sequence) are
adequate for the SSBK to achieve convergence. The
simulation results are summarized in Table 3.

In Table 3, five measurements are employed to
evaluate the performance: average of active effect iden-
tified rate (AEIR), average of inactive effect identified
rate (IEIR), average size of the identified mean function
(MEAN), the mean of the 1,000 RMSPE values
(MRMSPE), and the standard deviation of the 1,000
RMSPE values (SRMSPE). Clearly, AEIR is the larger
the better, IEIR, MRMSPE, and SRMSPE are the
smaller the better, and MEAN is the target the better.
The AEIR, IEIR, and MEAN values are calculated by
the competing methods, while MRMSPE and SRMSPE
are calculated using The DACE Toolbox in Matlab.

The performance of the SSBK, as expected, is get-
ting worse as the complexity of the true model
increases. But even for the worst case (Model III), the
SSBK has an AEIR value larger than 80 percent, an
IEIR value about 15 percent, and a MEAN value not
significantly larger than the size of the true mean
function. Although the SSBK does not perform the
best in terms of all the measurements across all the
three cases, it has the best MRMSPE and SRMSPE
values. This indicates that the models identified by the

SSBK are more accurate than the OK and UK models.
On the contrary, the OK method, which completely
misses the active effects, has the worst MRMSPE and
SRMSPE values. On the other hand, the UK methods
may perform well in terms of the MRMSPE values
when they achieve perfect AEIR values, but their per-
formance greatly deteriorates when they have low
AEIR values. Besides the above measurements, the
corrected Akaike information criterion (AICC) for
variable selection is also examined for this example.
The AICC value is computed as

AICC ¼ �2 log Lþ 2n
m1 þm2 þ 1

n�m1 �m2 � 2
;

where L is the maximum value of the likelihood func-
tion for the model, m1 is the number of variables in
the regression function and m2 in the covariance
function. The AICC value is the smaller the better
and such a criterion is suitable for evaluating the per-
formance of kriging models because it not only takes
the mean functions into account but also the spatial
correlations (Hoeting et al. 2006). The means and
standard deviations of the AICC values produced by
the competing methods across the repetitions are
visualized in Figure 1. To make the comparison
results distinguishing, values that are larger than 100
are not displayed in Figure 1, so there may be no data
points for some competitors (e.g., the OK under
Model I). The data points in Figure 1 make it clear
that the proposed SSBK performs the best with respect
to the AICC criterion.

Table 3. Summary of simulation results in Example 1.
Model Method AEIR (%) IEIR (%) MEAN MRMSPE

I SSBK 98.50 6.37 6.904 0.6339(0.2098)
OK 0.00 0.00 0.000 1.5370(3.6516)
UK (linear) 100.00 11.29 10.000 0.7486(0.2441)
UK (linearþ

quadratic)
100.00 27.42 20.000 0.7651(0.2723)

II SSBK 92.25 9.43 11.099 0.6907(0.2935)
OK 0.00 0.00 0.000 7.2544(9.4429)
UK (linear) 50.00 11.86 10.000 7.0319(7.1919)
UK (linearþ

quadratic)
100.00 23.73 20.000 0.7500(0.3675)

III SSBK 83.13 15.04 15.904 0.9590(0.7763)
OK 0.00 0.00 0.000 25.5810(19.8205)
UK (linear) 33.33 12.50 10.000 20.3162(16.0509)
UK (linearþ quadratic) 66.67 25.00 20.000 19.0608(11.4181)

AEIR is the average rate at which all of the active effects in the true
mean function are correctly identified.

IEIR is the average rate at which inactive effects in the true mean func-
tion are identified.

MEAN is the average number of the effects in the selected
mean functions.

MRMSPE is the mean of the RMSPE values (the value in the parentheses
is the standard deviation).

AEIR is larger the better; IEIR & MRMSPE are small the better; MEAN is tar-
get the better.

The CPU time of implementing the SSBK procedure for one repetition is
about 1,020 s on a PC with 2.10 GHz triple-core AMD Phenom II N830
CPU and 8 GB memory.
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This example clearly demonstrates that selecting
important variables for the mean function is critical to
establishing an accurate kriging model.

Example 2. Consider the simulation study with a
known function in Hung (2011). The known model is
defined on a 12-dimensional (p¼ 12) input space
½0; 1�12, where the first six variables, x1; :::; x6, have
decreasing effects on the computer experiment output
and the remaining variables, x7; :::; x12, are irrelevant.
The true model is

y xð Þ ¼ 0:4x1 þ 0:3x2 þ 0:2x3 þ 0:1x4 þ 0:05x5 þ 0:01x6 þ �;

[12]

where �	Nð0; r2�Þ with r�¼0.05. Response values are
generated independently using Eq. [12], the experimental
designs are Latin hypercube designs (McKay, Beckman,
and Conover 1979) with 12 variables and sample sizes
n¼ 50, 80, and 100, and the candidate set C consists of
all the first-order main effects. For each fitted model, the
RMSPE value is calculated according to 100 randomly
generated testing points. For the SSBK, the identifying
rule is the same as in the previous example; and for the
PBK, the Lasso penalty (Tibshirani 1996) and adaptive
Lasso penalty (Zou 2006) are employed.

Based on 500 repetitions, the simulation results are
summarized in Table 4, where the results of PBK
(Lasso), PBK (adaptive Lasso), OK, and UK were pre-
viously published by Hung (2011). The maximum

ratio of the MCSE to the corresponding posterior
sample mean across all repetitions is no larger than
0.0126, so it is assurable that 100,000 iterations

Figure 1. The left panel: the means of the AICC values of the competing methods (the smaller the better); the right panel: the
standard deviations of the AICC values of the competing methods (the smaller the better). Values larger than 100 are
not displayed.

Table 4. Summary of simulation results in Example 2.
Sample size Method AEIR (%) IEIR (%) MEAN MRMSPE

n ¼ 50 SSBK 79.60 6.27 5.152 0.0541(0.0043)
PBK (Lasso) 74.49 10.02 5.090 0.2133(0.0065)
PBK

(adaptive Lasso)
74.81 9.54 5.090 0.2115(0.0063)

OK 0.00 0.00 0.000 0.2237(0.0065)
UK 100.00 100.00 12.000 0.2282(0.0067)

n ¼ 80 SSBK 81.60 6.03 5.258 0.0519(0.0039)
PBK (Lasso) 75.00 3.72 4.720 0.2108(0.0062)
PBK

(adaptive Lasso)
75.28 4.45 4.790 0.2113(0.0063)

OK 0.00 0.00 0.000 0.2220(0.0062)
UK 100.00 100.00 12.000 0.2266(0.0061)

n ¼ 100 SSBK 82.57 6.00 5.314 0.0514(0.0040)
PBK (Lasso) 75.11 0.89 4.560 0.2084(0.0062)
PBK

(adaptive Lasso)
75.39 0.78 4.570 0.2092(0.0061)

OK 0.00 0.00 0.000 0.2220(0.0061)
UK 100.00 99.61 12.000 0.2238(0.0061)

AEIR is the average rate at which all of the active effects in the true
mean function are correctly identified.

IEIR is the average rate at which inactive effects in the true mean func-
tion are identified.

MEAN is the average number of the effects in the selected
mean function.

MRMSPE is the mean of the RMSPE values (the value in the parentheses
is the standard deviation).

AEIR is larger the better; IEIR & MRMSPE are smaller the better; MEAN is
target the better.

The CPU times of implementing the SSBK procedure for one repetition
are about 2,224 s, 3,682 s and 5,529 s for n ¼ 50; 80 and 100,
respectively.
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(thinned by discarding the first 10,000 samples and
every four samples and retaining the next one in the
sequence) are adequate for the SSBK to achieve con-
vergence. Again, the five simulation measurements,
AEIR, IEIR, MEAN, MRMSPE, and SRMSPE, are
adopted to evaluate the performance.

It is shown that the SSBK is the best in terms of
MRMSPE and SRMSPE. Compared with the PBKs,
the SSBK results in better values in terms of AEIR
and MEAN. When the sample size is large
(n ¼ 80 or 100), the IEIR value of the SSBK is larger
than those of the PBKs. That is, the SSBK may tend
to include more inactive effects into the mean func-
tion than the PBKs when the sample size is large.
However, when the sample size is small (n¼ 50), the
IEIR values of the PBKs greatly increase, while the
SSBK is robust to IEIR values.

Example 3. Consider the simulation study with a
known function in Marrel et al. (2008). The known
function, called the g-function of Sobol, is defined for
d input variables taking values on ½0; 1�d:

gSobol X1; :::;Xdð Þ ¼
Yd
k¼1

gk Xkð Þ where gk Xkð Þ ¼ j4Xk�2j þ bk
1þ bk

and bk � 0:

Due to its complexity (strongly nonlinear and non-
monotonic relationship) and the availability of analyt-
ical sensitivity indices, the g-function of Sobol is a
well-known test example in the studies of global sensi-
tivity analysis algorithms (Saltelli, Chan, and Scott
2000). Following Marrel et al. (2008), we choose bk ¼
k, the candidate set C consists of all the first-order
main effects and different dimensions of input varia-
bles are considered, from 4 to 20: d ¼ 4; 6; :::; 20. For
each dimension d, we generate a training sample
formed by NLS ¼ d � 10 simulations of the g-func-
tions of Sobol using the Latin hypercube design
(McKay, Beckman, and Conover 1979). Using these
training data, two kriging models are built: one fol-
lowing the proposed SSBK and one using the method-
ology of Marrel et al. (2008). In this example, the
predicability coefficient Q2 is computed to evaluate
the performance of the established models. Q2 corre-
sponds to the classical coefficient of determination R2

for a test sample, that is, for prediction residuals:

Q2 Y; Ŷ
� �

¼ 1�
Pntest
i¼1

yi�ŷi
� �2

Pntest
i¼1

�Y � yi
� � ;

where Y ¼ ðy1; :::; yntestÞT denotes the ntest observations
of the test set and �Y is their empirical mean, Ŷ ¼

ðŷ1; :::; ŷntestÞ
T represents the kriging model predicted

values at the test set (see Eq. [4]). For each method,
the Q2 coefficient is computed on a random test sam-
ple of NTS ¼ 1,000 points. For each dimension d, this
procedure is repeated 50 times to obtain an average
performance in terms of Q2, which is the larger the
better. The standard deviation of Q2, which is the
smaller the better, is also a good indicator of the
robustness of each method.

Based on 50 repetitions, the means of Q2 and the
corresponding standard deviations of the competitors
are visualized in Figure 2, where the results of Marrel
et al.’s method were previously reported by Marrel
et al. (2008). The maximum ratio of the MCSE to the
corresponding posterior sample mean across all repeti-
tions is no larger than 0.0446, so it is assurable that
100,000 iterations (thinned by discarding the first
10,000 samples and every four samples and retaining
the next one in the sequence) are adequate for the
SSBK to achieve convergence. From Figure 2, it is plain
that the proposed SSBK compares very favorably with
the methodology of Marrel et al. (2008) in terms of the
Q2 criterion. The performance of the OK, the UK with
linear main effects and the UK with linear main effects
plus quadratic effects are also evaluated. As expected,
their Q2 values are small (typically less than 0.6); hence,
their simulation results are omitted to save space.

Remark 2. More insights and discussions regarding
the simulation are given as follows:

1. In our simulation studies, the best models are
identified among the top-posterior-frequency
models using the RMSPE criterion. It turns out
that the best models by the RMSPE criterion are
always the ones with the highest posterior fre-
quencies. This also occurs for the practical
example in Section 4. However, it is recom-
mended that a handful of relatively high-fre-
quency models should be retained because
sometimes the best models may not be identified
with the highest posterior frequencies (George
and McCulloch 1993).

2. Parameter tuning may further improve the effi-
ciency of the SSBK. In this article, we set ci ¼ 10
and it works well in our examples. As did Beattie,
Fong, and Lin (2002), we have also tested ci ¼
5; 100 and 500. Unfortunately, ci ¼ 5 does not
outperform ci ¼ 10 while ci ¼ 100 or 500 often
causes singularity problems (see the matrix A in
Proposition 1). A possible efficient tuning strategy
is to tune ci and si simultaneously (see Chen et al.
2011, 2013; Beattie, Fong, and Lin 2002). A
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tuning strategy may add additional computational
complexity. As noted in Remark 1, single-site
Gibbs sampling schemes that diminish the expen-
sive computation of the matrix inverse may
deserve further study to alleviate the computa-
tional load.

3. Example 3 shows that the proposed SSBK com-
pares favorably with the methodology of Marrel
et al. (2008). However, it should be added that
the methodology of Marrel et al (2008) is more
general than the proposed SSBK in the sense that
their idea aims to select important variables for
both the mean function and the covariance func-
tion. Marrel et al. (2008) is based on a stepwise-
type algorithm, which could be often stuck in
local optimal mean functions. On the contrary,
the proposed SSBK takes all possible mean func-
tions into consideration and, therefore, has
greater opportunities to obtain the optimal mean
functions. In other words, general methodologies
like Marrel et al. (2008) may require more chal-
lenging computational algorithms to deal with the
high-dimensional problem although they are the-
oretically appealing.

6. Concluding remarks and further discussions

Computer experiments have received a great deal of
attention in the literature since the pioneering work

of McKay, Beckman, and Conover (1979) and Sacks
et al. (1989). Variable selection in computer experi-
ments has become a promising research topic. In
most cases, kriging is used as a metamodeling tech-
nique in computer experiments and variable selection
based on kriging can be usually conducted in two
stages: (1) selecting variables with significant impact
on the GP and then (2) selecting variables (terms) for
the mean function. Stage (2) is important due to the
strong trends potentially existing in the response. In
this article, we propose a Bayesian variable selection
method, called the SSBK, for the mean function of
kriging. A novel property of the SSBK is that, within
the postulated Bayesian framework, the posterior
probabilities of the “most likely” models are larger
than the posterior probabilities of the “less likely”
models in a relative sense. This is guaranteed by the
well-known Markov convergence property of the
Gibbs sampler. A practical example and some simula-
tion studies show that the SSBK compares favorably
with the BK method of Joseph, Hung, and Sudjianto
(2008) and the PBK method of Hung (2011). Also,
the SSBK may improve the efficacy of the existing
computer experiment software (in this work we use
The DACE Toolbox in Matlab) by providing reason-
able mean functions for them.

More insights should be noted on the advantages
of using the SSBK over the BK of Joseph, Hung, and
Sudjianto (2008) and the PBK of Hung (2011). The

Figure 2. The left panel: the means of the Q2 values of the competing methods (the larger the better); the right panel: the stand-
ard deviations of the AICC values of the competing methods (the smaller the better).
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theoretical properties of the BK method are difficult
to derive because of the forward selection manner.
For the PBK method, its appealing oracle property
only holds when the used experimental design forms
a complete lattice (Hung 2011). When the experimen-
tal resources are limited, however, a complete lattice
design is typically infeasible. In contrast, the proposed
SSBK possesses the Markov convergence property
under a wide class of experimental designs. As shown
in Sections 4 and 5, the superiority of the SSBK is
demonstrated over the BK and PBK. The advantages of
using the SSBK over the “universal” approach, like the
methodology of Marrel et al. (2008), are also discussed.
However, the relationship between the Markov conver-
gence property and the selection consistency remains
to be determined, which deserves further investigation.
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Appendix

A.1. Proof of Proposition 1

The joint distribution of all variables, denoted by
½l; r2; d;q;Y�, can be expressed as

l; r2; d;q;Y
� �

¼ Yjl; r2;q
� �

ljd;r2
� �

d½ � r2½ � q½ �; [13]

where

Yjl; r2; q
� �

/ r�njRj�1
2 exp � Y�~Fl

� �T
R�1 Y�~Fl

� �
= 2r2ð Þ

n o
;

[14]

ljd; r2
� �

/ r�kjDj�1
2 exp �lTD�1l= 2r2ð Þ
 �

; [15]

d½ � ¼ 2�k; r2½ � / 1=r2; q½ � ¼ I 0;1ð Þk qð Þ: [16]

Eq. [14] results from Eq. [5], Eq. [15] results from Eq. [7]
and the independence assumption for each component of l,
Eq. [16 results from the assumptions presented in the last
paragraph of Section 2.2.

The full conditional distribution of l up to a normaliza-
tion constant can be expressed by omitting the irrelevant
terms on the right-hand side of Eq. [13], that is,

ljr2; d;q;Y� � / Yjl;r2;q� �
ljd; r2� �

/ exp � Y�~Fl
� �T

R�1 Y�~Fl
� �

þ lTD�1l

h i
= 2r2ð Þ

n o
/ exp � 1

2
lTr�2 ~F

T
R�1~F þD�1

� �
lþ r�2YTR�1~Fl

� 

:

Then Eq. [8] follows from Lemma B.1.1 of Santner,
Williams, and Notz (2003). Similarly,

r2jl; d; q;Y� � / Yjl; r2; q� �
ljd;r2� �

r2½ �
/ r2ð Þ� nþkð Þ=2þ1½ �

exp � Y�~Fl
� �T

R�1 Y�~Fl
� �

þ lTD�1l

h i
= 2r2ð Þ

n o
:

By Wu and Hamada (2009), the last term of the above
expression is the density kernel of an inverted gamma dis-
tribution, hence Eq. [9] follows.
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Next, by omitting the terms on the right-hand side of
Eq. [13] that are irrelevant to d, we have

dijd �ið Þ;l;r2; q;Y
h i

/ ljdi; d �ið Þ; r2
h i

di; d �ið Þ
� �

:

Eq. [10] follows from the fact that the distribution of di
is Bernoulli and ½di; dð�iÞ� ¼ 2�k.

Finally, by omitting the terms on the right-hand side of
Eq. [13] that are irrelevant to q, we have

qjl;r2; d;Y
� �

/ Yjl;r2;q
� �

q½ �:
Then Eq. [11] is straight forward.

A.2. Computation issues of MCSE

Without loss of generality, let X ¼ fX1;X2; :::g be a Gibbs
sequence with a target distribution p having support X , and
g be a real-valued, p-integrable function. Under regularity
conditions, the Gibbs sequence X and the function g will
admit a central limit theorem, that is,ffiffiffi

n
p

�gn � Epgð Þ!d N 0; r2g
	 �

;

where �gn ¼ n�1Pn
i¼1 gðXiÞ; “!d ” denotes convergence in

distribution, Epg ¼
Ð
XgðxÞpðdxÞ and r2g ¼ varfgðX1Þgþ

2
P1

i¼2 covpfgðX1Þ; gðXiÞg. Suppose that the Gibbs sampler

algorithm is run for a total of n ¼ anbn iterations and
define

�Yj ¼ 1
bn

Xjbn
i¼ j�1ð Þbnþ1

g Xið Þ for j ¼ 1; :::; an:

That is, the sequence is broken into an blocks of equal
size bn. Then the batch means estimate of r2g is

r̂2
g ¼

bn
an � 1

Xan
j¼1

�Yj � �gn
� �2

:

Jones et al. (2006) showed that, if the batch size and the
number of batches are allowed to increase as the overall
length of the simulation increases by setting bn ¼ bnhc and
an ¼ bn=bnc, then r̂2

g is a consistent estimator. Often h ¼
1=2 (i.e., bn ¼ b ffiffiffi

n
p c and an ¼ bn=bnc) is a convenient

choice. The Monte Carlo standard error (MCSE) of �gn is
calculated by

MCSE �gnð Þ ¼ r̂gffiffiffi
n

p :

It is easy to see that MCSEð�gnÞ!
p
0 as n ! 1. Hence, if

the MCSE is sufficiently small, for example,
jMCSEð�gnÞ=�gnj � 0:05, one may conclude that the sequence
is convergent.
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