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A B S T R A C T

Network monitoring has become increasingly popular in the area of statistical process control due to its wide
applications in fraud detection, corporate management and political behavioral analysis. This paper focuses on
the cases where the communication pattern is significant while changes in specific nodes are negligible. The
important features including the density, reciprocity, degree variability, and transitivity are considered to reflect
the commonly-encountered communication patterns in social networks. The structural statistics are provided for
characterizing the main features. A multivariate control chart is adopted to monitor the structural statistics
simultaneously so as to account for their correlations and to decrease the overall false alarm rate. A performance
evaluation framework is proposed based on the Exponential Random Graph Models (ERGMs) in order to si-
mulate the shifts of communication patterns. The results of the numerical experiments show that the Hotelling T2

control chart for the structural statistics outperforms several benchmark methods especially in detecting the
large shifts of reciprocity and transitivity. The effectiveness of the proposed method is validated through the
analysis of the Enron email communication networks.

1. Introduction

Networks describe the interactions among connected nodes.
Network monitoring is to detect anomalous behaviors among nodes
over time. It has wide applications in corporate governance, political
behavioral analysis and Internet surveillance among others. A typical
strategy for monitoring network data is to apply statistical process
control techniques for monitoring network features. Usually the net-
work features are characterized through structural statistics or statis-
tical model (Savage, Zhang, Yu, Chou, & Wang, 2014; Woodall, Zhao,
Paynabar, Sparks, & Wilson, 2017). For example, the density, the re-
ciprocity, the degree variability, and the transitivity features are very
commonly-used for describing the social relations. These features are
interpreted as the overall frequency of node interactions, tendency of
mutual interactions, node heterogeneity, and clustering effects of
“friends of mine are my friends”, respectively (Frank & Strauss, 1986;
Holland & Leinhardt, 1981; Snijders, Pattison, Robins, & Handcock,
2006). In terms of structural statistics, the total numbers of local
structures such as edges, mutual dyads, 2-stars, and triangles can be
used to summarize these representative features. For statistical models,
the probability of a network is modeled as an exponential function of
these structural statistics, which is widely known as the Exponential

family Random Graph Models (ERGMs) (Frank & Strauss, 1986; Frank,
1991; Hoff, 2005; Hunter, 2007; Snijders et al., 2006; Wasserman &
Pattison, 1996).

Researches on network monitoring can be classified into two cate-
gories, i.e. structural-statistic-based and model-based methods. In the
category of structural-statistic-based methods, Priebe, Conroy,
Marchette, and Park (2005) proposed a scan method for sizes of kth

order neighorhoods. McCulloh and Carley (2011) adopted the Ex-
ponentially Weighted Moving Average (EWMA) and CUmulative SUM
(CUSUM) control charts for average closeness and betweenness metrics.
Neil, Hash, Brugh, Fisk, and Storlie (2013) developed a scan method for
local out-stars and k-paths. Perry (2020) proposed an EWMA-based
control chart for detecting the event of less mutual dyads and more
transitive triplets.

In the category of model-based methods, Heard, Weston, Platanioti,
and Hand (2010) modeled communication counts over time as con-
jugate Bayesian models and detected anomalies based on predictive p-
values. Sparks (2015), Sparks (2016) and Sparks and Wilson (2019)
proposed EWMA- and CUSUM-type control charts for communication
counts smoothed by temporal EWMA models. Azarnoush, Paynabar,
Bekki, and Runger (2016) applied a likelihood-based method to
monitor the logistic regression for edge existences. Zou and Li (2017)
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proposed a Singular Value Decomposition (SVD)-based method to de-
tect the deviation matrix based on the Network State Space Model
(NSSM). Fotuhi, Amiri, and Maleki (2018) proposed the extended T F,2

and a standardized likelihoood ratio test method to monitor Poisson
regression models for edge counts. Yu, Woodall, and Tsui (2018) and
Wilson, Stevens, and Woodall (2019) used composite Hotelling T2 and
Shewhart control charts to detect changes in the Degree-Corrected
Stochastic Block Model (DCSBM). Dong, Chen, and Wang (2019) pro-
posed a score-test method to monitor the multilayer weighted sto-
chastic block model.

Structural-statistic-based approaches impose no dependence as-
sumptions and are easily computable. In previous studies, network
features considered were mostly limited to the density and the degree
variability. Moreover, anomalies of different features were detected
separately without considering their correlations, which can be mis-
leading. The model-based approaches characterized the network for-
mation mechanism by probabilistic models. Communications between
node pairs are assumed to depend on node attributes, fixed global or
local block structure, or latent distances, which limit their applications.
Besides, degeneracy and computational complexity increase the diffi-
culty in practical use of model-based approaches (Handcock, Robins, &

Snijders, 2003). In this paper, we focus on such cases that a regular
communication pattern may occur within different parts of nodes over
time. The significant network features including the density, re-
ciprocity, degree variability, and transitivity are taken in account. The
count statistics of the edges, mutual dyads, stars, and triangles are
monitored simultaneously by a Hotelling T2 control chart with their
correlations considered. To validate the effectiveness of the proposed
method, a performance evaluation framework is provided with normal
and abnormal network features simulated through ERGMs. It should be
noted that there is a similar study by Perry (2020), who did very ex-
cellent work on identifying the hierarchical tendency. Different from
our motivation, the anomaly of his interest is the specific event of lower
mutuality and higher transitivity. As will be shown in the numerical
experiments, his EWMA-based control chart fails to detect the increase
of mutual dyads and is insensitive to the shifts of degree variability and
transitivity parameters.

The contributions of this paper are as follows. First, this paper
comprehensively considers the important features of social networks
and provides statistic candidate sets for both undirected and directed
networks. Second, a multivariate control chart is adopted to monitor
the structural statistics simultaneously so as to account for their

(a) April 9, 2001 (b) May 14, 2001

(c) May 21, 2001 (d) December 17, 2001

Fig. 1. Enron email communication networks of CEOs, presidents, and vice presidents in the weeks around April 9, May 14, May 21, and December 17 in the year
2001.
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correlations and to decrease the overall false alarm rate. Third, we
provide a performance evaluation framework based on the ERGMs in
order to simulate the shifts of density, reciprocity, degree variability,
and transitivity. The results of the numerical experiments show that the
Hotelling T2 control chart for the structural statistics outperforms sev-
eral benchmark methods especially in detecting the large shifts of re-
ciprocity and transitivity.

The organization of this paper is as follows. Section 2 describes the
background and motivations. Section 3 presents the methods for cal-
culating structural statistics for undirected and directed networks as
well as the monitoring strategy. In Section 4, the ERGM-based perfor-
mance evaluation framework is provided. In Section 5, the performance
of the proposed method is compared with several benchmark methods.
The Enron email network data are analyzed to illustrate the effective-
ness of the proposed method in Section 6. Conclusion and future re-
searches are given in Section 7.

2. Background and motivations

It’s common in practice that there is a regular communication pat-
tern over time while active nodes are different. To clarify this type of
anomalies studied in this paper, we introduce the background and
motivations through a real case and a toy example in this section. Then
selection of structural statistics for characterizing the patterns is in-
troduced.

2.1. The Enron email network

The Enron email network is a typical social network that has been
widely studied. We adopt the version of data from Priebe et al. (2005),
which contains the email communications for 184 unique email ad-
dresses of 150 users (mostly executives and some assistants and traders)
from November 1998 to June 2002. Taking the email addresses as the
nodes, directed edges are constructed if there is at least one email from
the sender to the receiver in a week.

To illustrate the problem, we consider the subnetwork composed of
CEOs, presidents, and vice presidents. Networks from 4 weeks in the
year 2001 are presented in Fig. 1. Figs. 1(a–b) correspond to the weeks
around April 6 and May 14, when the company was operating normally.
The communication patterns are similar with emails sent from a few
nodes to many receivers. In Fig. 1(a), communications occur among 17
nodes including the nodes 8, 12, 13, 15, 16, 19, 22, 23, 26, 27, 28, 31,
32, 34, 35, 38, 39. Emails are mostly sent from nodes 16, 23, and 38. In
Fig. 1(b), communications occur among 21 nodes including nodes 2, 7,
8, 10, 12, 13, 14, 16, 18, 19, 23, 26, 27, 28, 31, 32, 33, 35, 36, 37, 38.
Emails are mostly sent from nodes 32 and 37. There are 13 overlapping
active nodes and 12 nodes are active in only one of the networks. In the

meanwhile, the “center” nodes sending out emails in the two weeks are
different. Although the active nodes are different, the communication
pattern and overall communication occurrences are similar. Both net-
works are normal. Fig. 1(c) corresponds to the week around May 21.
The network has a more outspreading communication pattern with
apparently more “center” nodes and more communication occurrences
compared with Figs. 1(a–b). This network is an anomaly, which is right
after the “Secret” meeting at Peninsula Hotel in LA by the leaders on
May 17, 2001. Fig. 1(d) corresponds to the week around December 17,
which is apparently another anomaly. The outspreading communica-
tion pattern is broken. Very few emails are sent among few nodes. Such
anomalous pattern occurred in 2 weeks after Enron filed for Chapter 11
bankruptcy protection.

2.2. A project representation network

To more clearly illustrate the applications, we present a toy example
of project representations in a class. Consider a simplified class network
with a teacher and 16 students. Index the teacher as node 0 and the
students as nodes 1–16. Students are classified into 4 groups A, B, C,
and D to work on different projects. In each week, only 1 group is ar-
ranged to present their project. In the week when the ith group is due to
present, students in the ith group discuss with each other before the
class. In each week, the teacher regularly lectures to all the students,
showing an outreaching star structure from node 0 to nodes 1–16. Fig. 2
illustrates the communication pattern of the class in different weeks.
Group A and Group B respectively represent their projects in the first
2 weeks. Mutual communications occur in Group A in the 1st week and
in Group B in the 2nd week. Although the locations of the mutual
communications are different, networks at =t 1 and =t 2 have the
same structures and are both in-control. In the 3rd week, two students
(nodes 5 and 7) in Group C are absent. The intensive mutual commu-
nication pattern are not present in the network, indicating an anomaly.

Through the Enron case and this toy example, we show that our
interest is the anomaly detection of the communication patterns, which
can be characterized by the occurrences of featured local structures
such as the star, mutual dyads, and triangles. The changes of locations
of communication patterns, i.e. different active nodes, may not induce
an anomaly as long as the overall interactive mode remains unchanged.
Such phenomenon is referred to as the exchangeability in the study of
social network analysis modeling, meaning relabeling the nodes does
not change the numbers of the structures (Lauritzen, Rinaldo, &
Sadeghi, 2018).

2.3. Selection of structural statistics

Under this background, our next question is what structural

Fig. 2. An example of in-control and out-of-control status in a class network.
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statistics should be adopted for analysis. Extensive empirical and the-
oretical studies have shown that the density, the reciprocity, the degree
variability, and the transitivity are the most common and the very
important features for characterizing the communication patterns in
social networks (Barabási & Albert, 1999; Bierstedt & Blau, 1965; Davis,
1970; Frank & Strauss, 1986; Holland & Leinhardt, 1981; Simmel, 1950;
Snijders et al., 2006). The density is the most basic property of a net-
work, which can be characterized by the total number of interactions.
The degree variability reflects the heterogeneity of nodes, corre-
sponding to the variance of the node degrees. It can be characterized by
the number of 2-star structures when the density is fixed (Snijders,
1981). The transitivity is often interpreted as “friends of mine are my
friends”, reflecting the clustering effects among triplets. It can be
characterized by the number of triangles or transitive triplets (Davis,
1970). The reciprocity reflects the tendency of mutual communications
in a directed network and can be characterized by the number of mu-
tual dyads (Bierstedt & Blau, 1965). The calculation of the frequently-
used structural statistics will be introduced in detail in the next section.

The dominant features of a network may differ from one to another.
For small-size networks like the example here, visualized graphs can be
of much assistance to choose proper structural statistics. For networks
with a large number of nodes, a quantitative method is necessary for
choosing the most proper statistics. The presence of a certain structure
may be because it is a dominant feature or simply randomly formed due
to other dominant structures. For instance, the presence of a triangle
formed by nodes 1, 2, and 3 may be due to the presence of the star
1–2–3 and the star 2–1–3 (the concept of the structures will be ex-
plained in detail in Section 3). Therefore, to determine whether a
structural statistic plays a significant role, a hypothesis testing method
is needed. One possible approach is to employ Monte Carlo simulations
to test the significance of the number of the structures, which is a di-
rection for our future research. In the current study, we focus more on
the power of simultaneously monitoring the featured structural statis-
tics compared to other existing methods. Empirically, structural statis-
tics chosen based on the commonly-used features tend to well char-
acterize the communication patterns in a social network.

3. Monitoring structural statistics for undirected and directed
networks

In this section, we introduce the structural statistics for character-
izing the density, reciprocity, degree variability, and transitivity fea-
tures for both undirected and directed networks. Then the monitoring
strategy is provided.

3.1. Structural statistics for undirect networks

For undirected networks, the density, degree variability and tran-
sitivity features can be basically characterized by the numbers of local
structures including edges, 2-stars, and triangles. These structures are
illustrated in Fig. 3. The edge structure describes whether there are
interactions between two nodes. A node and its connected edges form a

star structure. That is, a k-star contains a node and k edges connected
with it. The number of k-stars can be equivalently derived from the
degree distribution as d Ci i i

k, where di is the frequency of degree i and
C is the combination operator. When k takes the value 1, the 1-star
structure is in fact an edge. It is possible that higher order star struc-
tures are dominant. Here we show the basic 2-stars as an example. A
triangle means all three nodes are connected with each other, which
describes the closure effect in triplets. Through the numbers of edges,
stars, and triangles, the main features of a network are summarized
(Snijders et al., 2006).

As discussed in Section 2.3, dominant features of a small-size net-
work can be selected based on visualized graphs. Fig. 4 shows two
examples of networks having dominant star structures and triangular
structures respectively. For large-scale networks, we suggest the adop-
tion of the numbers of edges, 2-stars and triangles as a start, which have
proved to be widely applicable in empirical studies (Lusher, Koskinen,
& Robins, 2013; Snijders et al., 2006).

Denote S Y S Y( ), ( )1 2 and T Y( ) as the numbers of edges, 2-stars and
triangles in network Y, respectively. The count statistics are calculated
as

=

=

=
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+

< <
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where i j h, , are node indexes; the + sign denotes summation over the
index, and +Yi is the degree of node i (Frank & Strauss, 1986).

3.2. Structural statistics for direct networks

The edge direction provides valuable information of node interac-
tions. Taking the degree measure as an example, a higher in-degree
shows higher “popularity” of a person, and a higher out-degree in-
dicates higher “friendliness” of a person. While it is sometimes true, it is
not necessary that a “popular” person is friendly. Monitoring networks
considering edge direction can provide us important insights of changes
of the interacting pattern within the networks, which may be missed if
networks are dealt with as undirected data. A “mixed-2-star” is such a
structure that a node has one edge directed toward it and the other edge
directed away from it. It reflects the correlations between in- and out-
degrees (Lusher et al., 2013).

Types of structures within three nodes in directed networks are
shown in Fig. 5. Similar to undirected networks, the total number of
edges represents the overall density of a directed network. In addition,
the number of reciprocated edges indicates the mutuality between
nodes in the network. In Fig. 5, both the edge from A to B and the edge
from B to A exist, meaning the interaction between A and B is mutual.
The types of directed stars include the in-2-star, out-2-star and mixed-2-
star as shown in Fig. 5. A directed triangle can be either transitive or
cyclic. Given that B is a friend to A and C is a friend to B, if C is a friend

Fig. 3. The edge, 2-star and triangle structures among three nodes in an un-
directed network.

Fig. 4. A network with more stars (left) and a network with more triangles
(right).

P. Zhou, et al. Computers & Industrial Engineering 144 (2020) 106451

4



of A, then they comprise transitive triplets; if A is a friend to C, then
they comprise cyclic triplets. The numbers of edges, reciprocated edges,
in-2-stars, out-2-stars, mixed-2-stars, transitive triplets and cyclic tri-
plets reflect the density, mutuality, in-degree variability, out-degree
variability, potential transitivity, transitivity and cyclicity, respectively
(Robins, Pattison, & Wang, 2009; Snijders et al., 2006; Wasserman &
Pattison, 1996).

Denote S Y M Y S Y S Y S Y Tr Y( ), ( ), ( ), ( ), ( ), ( )in out mix
1 2 2 2 and Cy Y( ) as

the numbers of all edges, mutual dyads, in-2-stars, out-2-stars, mixed-2-
stars, transitive triplets and cyclic triplets, respectively. Corresponding
count statistics can be calculated as

=

=
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where i j h, , are node indexes; +Y i and +Yi are in- and out-degrees.

3.3. The monitoring strategy

The structural statistics for the random network Y can be written in

a vector form as g Y( ). To clarify the concept of the structural statistic
vector, we consider a simple example as shown in Fig. 6. In the un-
directed network in Fig. 6(a), there are 8 edges, i.e. edges 1–2, 1–3, 1–4,
1–5, 1–6, 5–6, 7–5, and 7–6. For the 2-stars, the degrees of nodes 1 to 7
are 5, 1, 1, 1, 3, 3, and 2. Therefore, the number of 2-stars is equal to

+ + + =C C C C 175
2

3
2

3
2

2
2 . For the triangles, we consider all possible

combinations of three nodes and only those having three edges can
form a triangle. In this case, the number is 2. One triangle is formed by
edges 5–6, 6–7, and 7–5, and the other is formed by edges 1–5, 5–6, and
6–1. If we consider the structural statistic vector g Y( ) composed by the
numbers of edges, 2-stars, and triangles, then the value of g Y( ) is (8,
17, 2). In the directed network in Fig. 6(b), the total number of edges is
8 as well, i.e. the directed edges 1 2, 1 3, 1 4, 1 5, 6 1, 5 6, 5 7,
and 7 6. For the out-2-stars, only node 1 and node 5 have at least 2
out-edges. The number of out-2-stars for node 1 is =C 64

2 and the
numbers of out-2-stars for node 5 is 1 (7 5 6). For the mixed-2-stars,
nodes 1, 5, 6, and 7 have both in- and out- edges. The number of mixed-
2-stars for nodes 1, 5, 6, and 7 are 4, 2, 2, and 1. There is an in-2-star
(5 6 7), a transitive triplet (5 7 6 and 5 6), and a cyclic triplet
(1 5 6 1). The structural statistic vector g Y( ) composed of the
numbers of in-2-stars, mixed-2-stars, out-2-stars, transitive triplets, and
cyclic triplets is (1, 9, 7, 1, 1).

In a stable network process, network samples are expected to be
drawn from the same population. The monitoring of networks is es-
sentially to test the null versus alternative hypotheses

= =…= =g g g µ
g µ

H E Y E Y E Y
H E Y

: ( ( )) ( ( )) ( ( )) ,
: ( ( )) ,

g

g

T

t

0 1 2

1 (3)

where µg is a constant equal to the expectation of the statistic vector
g Y( ) when the network process is in control. Changes in any compo-
nent of g Y( ) induce an outlier. Denote the network sample at time t as
yt ( = …t T1, 2, , ) and corresponding structural statistic vector as g y( )t .
The Hotelling T2 statistic for g y( )t is given as

= g µ g µT y y( ( ) ) ( ( ) ),g g gt t t
2 1

(4)

where µg and g are the expectation and variance-covariance matrix for
g Y( ). In practice, µg and g are usually unknown and need to be esti-
mated. A natural and simple way is to estimate them as the mean and
covariance of the samples …g gy y( ), , ( )T1 , i.e. = =µ g y( )g T t

T
t

1
1 and

= = g µ g µy y( ( ) )( ( ) )g g gT t
T

t t
1

1 1 . Notice that the structural sta-
tistics are count data. We assume the vector g Y( )t with k components
follows a multivariate Poisson distribution. Then, the statistic T2 in Eq.
(4) with the estimates inserted has an approximate 2 distribution with
k degrees of freedom as studied in Patel (1973). Therefore, the control
limit is given as

=UCL k( ),2 (5)

where is the probability of false alarm, and k is equal to the number of
structural statistics.

Fig. 5. Directed counterparts of the edge, 2-star and triangle structures among
three nodes in a directed network.

Fig. 6. Examples for calculating structural statistics of undirected and directed networks.
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4. Performance evaluation framework based on exponential
random graph models

As stated in Section 2, the density, reciprocity, degree variability,
and transitivity are important features describing the communication
patterns. To assess whether a network control chart is capable of timely
detecting the shifts in these features, we provide an ERGM-based per-
formance evaluation framework here. Performances of the proposed
method and other methods will be evaluated through the proposed
framework in Section 5.

4.1. Network simulation

To evaluate the performance of a network control chart, two stages
are involved. The first is Phase I estimation, including setting up an in-
control model, simulating Phase I samples, and estimating process
parameters and control limits. The second is Phase II monitoring, in-
cluding shifting model parameters to simulate out-of-control scenarios,
generating out-of-control samples from a certain time point, calculating
chart statistic and comparing it with the control limits, recording the
Run Lengths (RLs) until detecting an outlier, and calculating the
Average RLs (ARLs). In either stage, simulating network samples plays
an indispensable role. To make the performance evaluation framework
more presentable, we first describe the exponential random graph
model and MCMC-based simulation approach here.

Denote a random graph as Y and its observation as y. The space
containing all possible realizations of the random network Y is denoted
as . The probability of y is assumed to be dependent on its structural
statistic vector g y( ). The ERGM is written as

= = gP Y y exp y
k

( | ) ( ( ))
( , )

,
(6)

where is the parameter vector corresponding to the statistic vector
g y( ), and k ( , ) is the normalizing constant equal to the summation of
the numerator counterparts over all possible samples of Y, i.e.

= gk y( , ) exp( ( ))y (Frank & Strauss, 1986; Frank, 1991;
Hunter, 2007; Snijders et al., 2006; Wasserman & Pattison, 1996). The
parameter can be interpreted as the tendency of the presence of local
structures specified by g y( ). Parameter estimation algorithms can be
referred to in Snijders (2002), Hunter and Handcock (2006), Hunter,
Krivitsky, and Schweinberger (2012).

The idea of the MCMC-based simulation approach is to construct a
Markov chain … …Y Y Y, , , ,t(1) (2) ( ) with the stationary distribution con-
verging to the exponential random graph distribution. Denote the
transition probabilities as

= = =+P y y P Y y Y y( , ) { | },a b t b t a( 1) ( ) (7)

for y y,a b . To guarantee the uniqueness of the stationary dis-
tribution , the transition probability is required to satisfy (Snijders,
2002)

= g glog P y y
P y y

y y( ( , )
( , )

) ( ( ) ( )).
a b

b a
b a

(8)

The key part is the updating rule in moving from the current graph y t( )

to the next graph +y t( 1). The updating rule consists of choosing a pair of
nodes i and j at random and removing or adding an edge between them
according to whether there are already an edge. If the probability of

+y t( 1) is smaller than the probability of the old one, we only sometimes
accept the proposed change to the graph, with a probability that de-
pends on the ratio of how much likely y t( ) is than +y t( 1). The Metropolis-
Hastings (M-H) algorithm is described as follows (Hastings, 1970;
Snijders, 2002).

1. Proposal. Given y t( ), draw a proposal at step +t 1 as y P y~ (·| )t , where

=
+

g
g

P y y y
y

( | ) ( ( ))
exp( ( ))

,t

y I

( )

( )t( 1) (9)

and the notation I refers to a subset of i j i j{( , )| },i.e. the set of
elements of the adjacency matrix to be updated in step t; and

+ I( )t( 1) the set of adjacency matrices with elements equal to yij
t for

+i j I( , ) t( 1). The set + I( )t( 1) is the set of all allowed outcomes of
+Y t( 1), containing 2 I| | elements with I| | being the size of I| |.

2. Updating. Accept the proposal =+Y yt( 1) with probability
min y y( ( , ), 1)t . Otherwise set =+Y yt t( 1) ( ). Here,

=y y y P y y
y P y y

( , ) ( ) ( | )
( ) ( | )

.t
t

t t
( )

(10)

The network at step +t 1 is updated as

= >+y y y y u
y

, if ( , ) ,
, otherwise,

.t
t

t
( 1)

( )

(11)

where u is a sample drawing from the standard uniform distribution,
u U~ [0, 1] .

3. Obtaining samples at convergence. Iteralize the updating step until
convergence. Samples can be drawn at every other H steps, with H
large enough to leave very weak correlation between successive
samples.

4.2. Performance evaluation framework

The two-phase ERGM-based performance evaluation framework is
presented as follows.

Phase I estimation
Step 1. Initial setup. Set the parameters for the in-control model.

Since it is often not clear whether a model parameter vector is proper,
we suggest starting from estimating parameters for an initial network y0

consisting of n nodes with certain structures. Denote the ERGM para-
meter vector estimated for y0 as and denote structural statistic vector
as g0.

Step 2. Network generation in in-control scenario. Randomly draw T
network samples through the M-H simulation algorithm.

Step 3. Estimating control limits. Calculate the structural statistics for
each network sample and obtain the sequence of statistic vectors

…g g g, , , T1 2 . Estimate the mean and variance-covariance matrix based
on the T samples as = =µ gg T t

T t1
1 and

= = g µ g µ( )( )g g gT t
T t t1

1 1 . Calculate the control limit based on
Eq. (5).

Phase II monitoring
Step 1. Initial setup. Set the change point as . Determine the model

parameter with potential shifts after time and denote the shifted
parameter as .

Step 2. Network generation. Draw a random network sample at time t
as

=
= >

y
P Y y t
P Y y t

~
( | ), if ,
( | ) if .

t

(12)

Calculate network statistic gt and calculate the Hotelling T2 statistic as
Tt

2 by Eq. (4). Compare Tt
2 with the UCL obtained from Phase I. Stop

network sampling and record t as the RL if >T UCLt
2 . Otherwise,

draw a new sample for time +t 1.
Step 3. Evaluating ARLs. Repeat the network generation step for N

times and obtain N RLs. Calculate ARL as = =ARL RLN i
N

i
1

1 to evaluate
the performance of the network control chart.

The above framework is applied to the evaluation of the proposed
Hotelling T2 control chart for network structural statistics in detecting
shifts of ERGM parameters. It can be easily extended to the evaluation
of other network control charts by replacing the structural statistic
calculation and control limit estimation parts with their counterparts.
This simulation framework will be adopted in the next section for
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comparing different control charts in detecting the shifts of density,
reciprocitydegree variability, and transitivity.

5. Numerical experiments for performance comparison

To validate the effectiveness of the proposed monitoring strategy,
we compare our method with the EWMA-based control chart proposed
by Perry (2020), which is designed for detecting the hierarchical ten-
dency present in directed networks. The EWMA control charts for the
average and standard deviation of the degree measure in Hosseini and
Noorossana (2018) are also considered as benchmarks with a slight
modification of the degree measure into out-degrees. Shifts of mu-
tuality, out-degree variability and transitivity are simulated as the out-
of-control scenarios through the proposed ERGM-based performance
evaluation framework.

We consider a communication network in a company with in-
formation distributed from directors to employees, which presents an
outspreading pattern as shown in Fig. 7. Mutual and transitive com-
munications occur among the directors. Here, the reciprocity, out-de-
gree variability and transitivity features are considered. An ERGM with
the numbers of mutual dyads, out-2-stars, and transitive triplets as the
modeling terms is fitted to this directed network as the in-control
model. The model parameters are 0.25, −1.68, and 0.69. Control limits
are obtained to achieve an ARL0 of 370 based on 1000 simulation runs
for the four control charts. As for the EWMA control charts, the com-
monly-used values of 0.05, 0.10, and 0.20 are chosen for the smoothing
parameter . For the out-of-control scenarios, we consider the increases
of the reciprocity, out-degree variability, and transitivity. The model
parameter for the number of mutual dyads is increased by 0.20, 0.40,
and 0.60; the parameter for the number of out-2-stars is increased by
0.10, 0.20, and 0.30; and the parameter for the number of transitive
triplets is increased by 0.05, 0.10, and 0.15. Run lengths with values
larger than 1000 are returned as 1000. The ARLs corresponding to the
different control charts are listed in Table 1. The smallest ARL for each

out-of-control scenario is bolded. The ARL0 values are reported in the
“none” scenario, which indicates no shifts in the network features.

From Table 1, we can see that the Hotelling T2 control chart for the
numbers of mutual dyads, out-2-stars, and transitive triplets performs
comparably well with the EWMA control chart for average degree with

of 0.05 in most scenarios. EWMA control chart for average degree is
more efficient in detecting the shifts of out-degree variability and small
shifts of reciprocity and transitivity. By contrast, the Hotelling T2 con-
trol chart for the structural statistics detects the large shifts of re-
ciprocity and transitivity more promptly. As for the EWMA-based
control chart for hierarchical tendency, the underlined ARLs indicate
the performance largely decreases with the increase of the mutual
dyads. This is because Perry’s control chart is designed to detect the
hierarchical tendency, which is the occurrence of both reduced mutual
dyads and increased transitive triplets. In these scenarios, the number
of mutual dyads increases, leading to a lower alarm probability.

In this section, we have investigated the performances of several
monitoring methods for directed networks. It is noticeable that the
proposed ERGM-based performance evaluation framework can also be
extended for evaluating methods for monitoring undirected networks.
Although not presented here, we have conducted extensive numerical
experiments for undirected networks. Methods were compared in-
cluding the Hotelling T2 control chart for the number of edges, 2-stars,
and triangles, the DCSBM-based approach by Wilson et al. (2019), and
the EWMA control charts for the average and the standard deviation of
degree measure by Hosseini and Noorossana (2018). The Hotelling T2

control chart for the structural statistics is shown to perform the best in
detecting the shifts of transitivity and perform satisfactorily in detecting
the medium and large shifts of density and degree variability.

6. Application to the Enron email communication network

We illustrate the proposed method by applying it to the analysis of
the Enron email communication networks. We notice that a very large
proportion of nodes are inactive during the early and late period, pro-
viding little meaningful information on company operation.
Considering the major events including the financial scandal were lar-
gely concentrated in the year 2001, we focus on the 53 networks from
that year.

Based on the plots of the Enron email networks, we found the
communications show a strong outspreading pattern, with some mutual
and transitive structures. Fig. 8 shows two networks from the 13th and
40th weeks as an example. The numbers of mutual dyads, out-2-stars,
and transitive triplets are calculated to characterize the main features of
the networks. We use the networks from the first 20 weeks as the Phase
I data, based on which the mean and variance-covariance matrix are
estimated. The Hotelling T2 statistics are then calculated by Eq. (4). The
Poisson assumption for the structural statistics and the Chi-squared

Fig. 7. The company communication network.

Table 1
ARLs corresponding to the Hotelling T 2 control chart for the numbers of mutual dyads, out-2-stars, and transitive triplets (multi-stat T 2), the EWMA-based control
chart for the hierarchical tendency (Perry), the EWMA control chart for the average out-degree (average degree), and the EWMA control chart for the standard
deviation of out-degrees (sd degree)

multi-stat Perry average degree sd degree

T2 = 0.05 = 0.10 = 0.20 = 0.05 = 0.10 = 0.20 = 0.05 = 0.10 = 0.20

none 370.37 364.64 360.35 377.13 371.45 371.10 369.29 369.58 371.29 369.94
mutual + 0.20 200.00 768.90 710.93 597.30 179.14 228.02 266.92 328.64 378.73 346.07
mutual + 0.40 50.00 966.67 970.83 857.67 80.92 116.83 134.44 326.02 362.18 332.15
mutual + 0.60 29.41 966.67 985.00 981.93 37.97 52.08 71.92 292.79 313.88 345.07

out-2-star + 0.10 79.37 177.93 156.73 141.43 11.53 13.76 14.23 67.99 87.52 105.18
out-2-star + 0.20 16.95 123.27 102.13 108.87 3.42 3.69 4.07 21.79 24.27 27.33
out-2-star + 0.30 3.87 166.93 188.17 198.93 1.86 1.93 2.05 8.57 12.23 11.73
transitive + 0.05 147.06 153.70 226.10 239.33 129.60 169.94 186.73 298.95 419.15 330.92
transitive + 0.10 52.63 111.87 113.10 182.73 40.21 44.08 65.51 203.57 238.74 255.69
transitive + 0.15 1.56 76.10 128.17 154.57 15.92 18.69 20.52 81.75 106.97 132.87
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distribution for the Hotelling T2 statistic are validated by the Quantile-
Quantile plots in Fig. 9. Sample points of the structural statistics gen-
erally lie within the 95% confidence interval in Fig. 9(a–c), and all
points of the Hotelling T2 statistic lie within the 95% confidence in-
terval in Fig. 9(d). The correlations among the three statistics are sig-
nificant by the Pearson correlation test with p-values smaller than 0.05.
The control limit is obtained as =UCL (3)0.9973

2 , i.e. 14.16.
To validate its efficiency, we compare the proposed method with the

DCSBM-based method by Wilson et al. (2019) and the EWMA-based
control chart for the hierarchical tendency by Perry (2020). The
DCSBM-based method is applicable for weighted undirected networks.
Therefore, we use the number of emails between two people as the edge
weights. There is no significant pattern of communities. Hence all nodes

are assumed to belong to one community. DCSBM P and control charts
are constructed to monitor the propensity of node interaction and the
variability of the interaction rate. The control charts are shown in
Fig. 10, where the four subfigures (a–d) are the Hotelling T2 control
chart, Perry’s EWMA-based control chart, and the Shewhart control
charts for the P and parameters.

Many anomalies are detected through the Hotelling T2 control chart
and the Shewhart control chart for the P parameter of DCSBM, with 12
and 14 outliers respectively. The dates for the outliers are listed in
Table 2. The overlapping dates for outliers detected by the T2 and P
control charts are May 21, Oct. 22, Nov. 19, Dec. 10, signalling the
“secret” meeting at Peninsula Hotel in LA on May 17, the informal
probe of Enron by the SEC on Oct. 17, Enron restating its third quarter

Fig. 8. The Enron email communication networks for the 13th and 40th weeks in the year 2001.

(a) Poisson distribution for the number of mu-

tual dyads

(b) Poisson distribution for the number of out-

2-stars

(c) Poisson distribution for the number of

transitive triplets

(d) Chi-squared distribution for the Hotelling

T 2 statistics
Fig. 9. Quantile-Quantile plots for the structural statistics and the Hotelling T 2 statistics.
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earnings on Nov. 19, and Enron filing for bankruptcy on Dec. 2. It can
be seen from Table 2 that anomalies detected by the Shewhart control
chart for P parameter are mostly around July and December while most
outliers detected by the Hotelling T2 control chart are around October
and November. It is well known that the burst of the financial scandal is
on Oct. 16 when Enron reports a $618 million third-quarter loss, fol-
lowed by sequential events such as formal investigations and bank-
ruptcy protection application. In this specific case, the Hotelling T2

control chart for the numbers of mutual dyads, out-2-stars, and tran-
sitive triplets is sensitive enough to detect crucial events and not so
sensitive as to signal insignificant issues. By contrast, the DCSBM P
control chart detects some other relatively insignificant events while
missed several important events. The DCSBM control chart and the
EWMA-based control chart for the hierarchical tendency are much less
effective. However, it should be noticed that Perry (2020) also studied
the Enron email networks and his control chart well detected a series of
important anomalies in the year 2001. The reason that his method fails
in this case is that the data processing methods are different. In his
study, the Enron email communication networks are aggregated on a
daily basis and nodes are chosen at a wider range. In our study, the
networks are aggregated on a weekly basis for a smaller group invol-
ving executives, assistants, and traders. Such different conclusions

indicate the aggregation methods may contribute to an improved or
reduced performance. This is a future direction worth deep exploration.

7. Conclusion and future researches

Motivated by cases where the overall communication pattern is
significant while changes for specific nodes are negligible, we studied
the method for detecting anomalous patterns featured by the density,
reciprocity, degree variability, and transitivity. We suggested mon-
itoring the features through the structural statistics including the
numbers of edges, mutual dyads, 2-stars, and triangles. The Hotelling T2

control chart was adopted to monitor those count statistics with their
correlations considered. Our method is flexibly applicable to the mon-
itoring of both undirected and directed networks simply by selecting
the count statistics of the undirected or directed versions. An ERGM-
based evaluation framework was proposed for assessing the perfor-
mance of network control charts in detecting the changes of these im-
portant features.

We compared our method with benchmark methods by conducting
numerical experiments following the ERGM-based evaluation frame-
work. Control charts for comparison were the Hotelling T2 control chart
for the numbers of mutual dyads, out-2-stars, and transitive triplets, the
EWMA-based control chart for the hierarchical tendency, the EWMA
control chart for the average out-degree, and the EWMA control chart
for the standard deviation of out-degrees. Overall, the Hotelling T2

control chart and the EWMA control chart for average degree with of
0.05 perform comparably well in most scenarios. The Hotelling T2

control chart detects the large shifts of reciprocity and transitivity more
promptly. The EWMA control chart for average degree is more efficient
in detecting the shifts of out-degree variability and small shifts of re-
ciprocity and transitivity.

We applied the proposed method to the analysis of the Enron email
communication networks. The data was aggregated for the year 2001 on
a weekly basis. As a comparison, we applied the Shewhart control chart
for the P and parameters of the DCSBM, for which the data were

Fig. 10. The control charts for the Enron email communication network.

Table 2
Dates for the outliers detected by the Hotelling T 2 control chart for structural
statistics, the EWMA-based control chart for hierarchical tendency, the
Shewhart control charts for the P and parameters of the DCSBM

Method Date

T2 5/21 6/4 8/20 9/24 10/1 10/8 10/15
10/22 11/5 11/12 11/19 12/10

EWMA None
DCSBM-P 5/21 6/11 6/25 7/23 8/6 8/13 8/27

9/3 10/22 11/19 12/3 12/10 12/17 12/24
DCSBM- 8/20 12/31
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aggregated as weighted undirected networks. The EWMA-based control
chart for the hierarchical tendency was also plotted. It turned out the
proposed method effectively detected the important events when and
after the crucial Enron financial scandal. By contrast, the Shewhart
control chart for the P parameter signaled several relatively insignificant
dates and missed some important events. The Shewhart control chart for
the parameter and the EWMA-based control chart for the hierarchical
tendency were incapable of detecting crucial events.

The main contributions of this paper are summarized as follows.
First, we proposed a Hotelling T2 control chart for multiple structural
statistics that is flexibly applicable to the monitoring of undirected and
directed networks. Second, we provided an ERGM-based performance
evaluation framework for simulating shifts in density, reciprocity, de-
gree variability, and transitivity. We illustrated the superiority of the
proposed method through both numerical experiments and a real case.
The results showed that the proposed method has a generally good
performance and is exceptionally advantageous in detecting large shifts
of reciprocity and transitivity.

As pointed out in previous sections, a quantitative approach to se-
lecting dominant structural statistics and the effects of aggregation to
monitoring performance are two important directions worthy of further
investigation. Besides, the networks considered in this paper are binary.
Extensions can be made to weighted networks. The method proposed in
this paper belongs to the category of statistic-based approaches. Another
possibility is to model the network samples as ERGMs and then monitor
the model parameters, which belongs to the category of model-based
approaches. The structural statistics adopted in this paper can be used as
model terms. Although these structural statistics are sufficient statistics
for ERGMs, the model-based approach may not perform as well as the
proposed structural-statistic approach in detecting the anomalous com-
munication patterns if the model is fitted to each individual network. The
reason is that the structural statistics at different time points may differ a
lot while the parameters may not differ in the same degree. For instance,
considering an undirected network dependent on the number of triangles,
the triangle counts at time =t 8 and time =t 15 are 30 and 80 respec-
tively. The ERGM parameters for the two networks reflect the tendencies
of the first network having 30 triangles and the second network having
80 triangles. Through monitoring the triangle count, the network at

=t 15 can be easily detected. However, the difference of ERGM para-
meters may not be significant unless both parameters reflect the tendency
of the networks having 30 triangles. To overcome the issue discussed
here, a potential method is to make use of the information of all in-
control sample data to estimate the ERGMs instead of fitting ERGMs in-
dividually. Corresponding monitoring strategies can be explored. In ad-
dition, anomaly detection methods for autocorrelated networks can be
developed based on temporal version of the ERGMs as a future direction.
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