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A B S T R A C T

With the quick development of sensors and information technologies enabling Industry 3.5, network data, which
represent the interactions among related entities, have extensively emerged in manufacturing and service in-
dustries. Statistical process monitoring serves as an efficient tool for supporting accurate and timely decision-
making in Industry 3.5. Applying statistical process monitoring approaches for monitoring networks significantly
facilitates the early detection of potential failures in complex relational systems, and therefore has been in-
creasingly studied in recent years. Selection of an effective network monitoring method relies on the evaluation
of performances of candidate methods. However, researches on systematically evaluating and comparing net-
work monitoring methods are very few. Especially, the capability of frequently collecting data with the assis-
tance of modern measuring devices tends to induce autocorrelations among networks. Yet performance eva-
luation methods for autocorrelated networks are severely lacked. This paper proposes a performance evaluation
method for network monitoring based on the separable temporal exponential random graph models, which is
applicable to both independent and autocorrelated networks. Further, the effects of neglecting autocorrelations
on the detection power of network control charts are studied as an application of the proposed method. The
simulation results show the adverse effects of autocorrelations on performances of Shewhart, EWMA, CUSUM
control charts for network density, and the residual control chart is suggested in the high autocorrelation sce-
narios. Following the guide, a residual control chart is applied to the analysis of the Enron email networks, and
anomalous events are effectively detected.

1. Introduction

Industry 3.5 is a hybrid strategy between existing Industry 3.0 and
to-be Industry 4.0 to facilitate the manufacturing upgrade of emerging
countries (Chien, Hong, & Guo, 2017; Chien, Lin, & Lin, 2020; Jamrus,
Wang, & Chien, 2020). Digital decision making based on the analysis of
information of the operational processes is a critical component of In-
dustry 3.5 as compared with decisions making based on domain
knowledge and experience in traditional Industry 3.0 (Chien et al.,
2017; Hsu, Chen, & Chien, 2020; Ku, Chien, & Ma, 2020). As one ap-
plication of big data analytics, statistical process monitoring (SPM)
plays a crucial role in promptly identifying change-points in time from
real-time data to achieve a fault-free and cost efficient running of the
process (He & Wang, 2017; Megahed & Jones-Farmer, 2015; Yin &

Kaynak, 2015). It serves as an efficient tool for supporting accurate and
timely decision-making in Industry 3.5, which can enhance intelligent
analysis capability of manufacturing industries in process control.

With the quick development of sensors and information technolo-
gies enabling Industry 3.5, large amount of complex data are generated
from the production processes in manufacturing and service industries.
Among these “big data”, network data, which represent the interactions
among related entities, play an important role. Networks are ubiquitous
such as sensors transmitting data, computers exchanging information,
and employees emailing on corporate operations. Machines in the fac-
tories are also connected as a network for information exchange and
collaboration (Chien et al., 2017). Networks are constantly undergoing
changes through time, and therefore are referred to as dynamic, or
time-varying networks (Yu, Woodall, & Tsui, 2018; Wilson, Stevens, &

https://doi.org/10.1016/j.cie.2020.106507
Received 31 July 2019; Received in revised form 21 April 2020; Accepted 23 April 2020

⁎ Corresponding author at: College of Management and Economics, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
E-mail address: zhhe@tju.edu.cn (Z. He).

Computers & Industrial Engineering 145 (2020) 106507

Available online 11 May 2020
0360-8352/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2020.106507
https://doi.org/10.1016/j.cie.2020.106507
mailto:zhhe@tju.edu.cn
https://doi.org/10.1016/j.cie.2020.106507
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2020.106507&domain=pdf


Woodall, 2019). Through network monitoring, anomalous changes in
dynamic networks are detected, which significantly facilitates the early
detection of potential failures in complex relational systems. Network
monitoring has wide applications in computer, biological and social
networks such as fraud detection, intrusion detection, pathological di-
agnosis and corporate surveillance. Applying SPM approaches for
monitoring dynamic networks has attracted rapidly growing research
interests in recent years.

SPM approaches are to construct control charts for statistics sum-
marizing the sample features. For network data, features can be char-
acterized by summary metrics or model parameters. For metric-based
SPM approaches, control charts are used to monitor network structural
metrics such as centrality, distance, and transitivity measures (e.g.
McCulloh & Carley, 2011; Park, Priebe, & Youssef, 2013; Priebe,
Conroy, Marchette, & Park, 2005; Perry, 2020; Wang, Tang, Park, &
Priebe, 2014). For model-based SPM approaches, the idea is similar to
profile monitoring (Maleki, Amiri, & Castagliola, 2018). First, statistical
models are built to explain the network data as realizations of random
networks dependent on certain covariates, and then the SPM methods
are employed to monitor model parameters (e.g. Dong, Chen, & Wang,
2020; Farahani & Kazemzadeh, 2019; Fotuhi, Amiri, & Maleki, 2018;
Wilson et al., 2019; Yu et al., 2018; Zou & Li, 2017).

Most of the previous methods for monitoring dynamic networks did
not consider the potential autocorrelations. The capability of frequently
collecting data by the modern measuring devices, however, tends to
induce autocorrelations among networks. In such a context, it is risky to
directly adopt those monitoring methods since their effectiveness is
unknown in the presence of autocorrelations. Simulation-based per-
formance evaluation among candidate methods can provide a guide for
selecting an effective SPM approach. Simulation is an efficient tool to
mimic the operational environment, which is practical for validating
the viability of operational strategies in Industry 3.5 (Chien, Chou, &
Yu, 2016). Through well-designed systematic simulations, different
anomalous scenarios can be mimicked, and the candidate monitoring
methods can be compared under various potentially risky scenarios
without requiring their real occurrences. Furthermore, when a new
method for monitoring autocorrelated networks is proposed, the de-
tection power can be well assessed through systematic performance
evaluation prior to its application to real data monitoring. In addition,
optimal control limits for detecting certain specific shifts may be ob-
tained based on evaluated performances by manipulating the simula-
tion scenarios. In summary, since the “true” network processes in
practice are very rarely known and usually very complex, it is highly
useful to validate the effectiveness of the monitoring methods under
predetermined “ideal” conditions through simulation studies in a con-
trollable manner (Sengupta & Woodall, 2018; Woodall, Zhao, Paynabar,
Sparks, & Wilson, 2017).

There have been several studies on simulation-based performance
evaluation methods, which are designed for different types of networks
that can be categorized from three aspects. By the time-dependency,
networks are classified into independent and autocorrelated networks.
By the edge directionality, networks are classified into undirected and
directed networks. Depending on whether the edge represents the in-
teraction existence or the interaction counts, networks are classified
into binary and weighted networks. Zhao et al. (2018) simulated in-
dependent undirected binary social networks with changes of interac-
tion probability among different proportions of nodes based on the
Erdös-Rénye model and evaluated the performance of the scan method
proposed by Priebe et al. (2005). Yu et al. (2018) and Wilson et al.
(2019) advocated the use of degree-corrected stochastic block models
to simulate individual, local and global changes of interaction pro-
pensities and the change of degree variability as well as community
structural changes for independent undirected weighted networks.
Hosseini and Noorossana (2018) compared the performances of EWMA
and CUSUM control charts for average degree and standard deviation of
degree measures in detecting outbreaks within independent undirected

weighted networks based on Poisson models. Komolafe, Quevedo,
Sengupta, and Woodall (2019) carried out statistical evaluation of a
suite of popular spectral anomaly detection methods through in-
dependent undirected binary networks simulated from the Erdös-Rénye
model, the recursive matrix model and the Chung Lu model. In the
above literature, researches have been conducted on performance
evaluation for monitoring independent undirected binary and weighted
networks. Evaluation methods for autocorrelated networks and directed
networks, however, have been very little studied. In this paper, we
provide a systematic framework to evaluate the performance of control
charts for autocorrelated undirected binary networks based on the se-
parable temporal exponential random graph model (STERGM) pro-
posed by Krivitsky and Handcock (2014).

Discussions on the adverse effects of autocorrelations and improving
strategies have been studied for univariate, multivariate and profile
control charts (e.g. Alwan, 1992; Costa & Fichera, 2017; He, Wang,
Tsung, & Shang, 2016; Khedmati & Niaki, 2016; Maragah & Woodall,
1992; Noorossana & Vaghefi, 2006; Soleimani, Noorossana, & Amiri,
2009; Vanhatalo & Kulahci, 2015; Wang & Huang, 2017). It is rea-
sonable to conjecture that autocorrelations may have adverse effects on
network monitoring as well. However, few efforts were devoted to
studying such effects quantitatively. We apply the proposed perfor-
mance evaluation method to the exploration of the autocorrelation ef-
fects on network control charts. Guides are provided for choosing
proper control charts in the presence of autocorrelations.

The contributions of this paper are summarized as follows. First, we
provide a systematic framework for evaluating network control charts
based on the STERGMs with the flexibility of simulating both in-
dependent and autocorrelated networks. Second, we apply the pro-
posed method to studying the effects of neglecting autocorrelations on
the performances of some commonly-used network control charts. The
simulation experiments show that (1) autocorrelations have adverse
effects on performances of Shewhart, EWMA, and CUSUM control
charts for network density; (2) the CUSUM control chart performs
generally better in detecting the small and medium shifts in the low and
medium autocorrelation scenarios; (3) a smaller weighting parameter
for the EWMA chart contributes to a better performance when network
autocorrelation is not high and a larger value is preferred otherwise; (4)
the residual control chart is suggested in the presence of high auto-
correlations. Following the guide based on the study of autocorrelation
effects, we adopt a residual control chart for monitoring the Enron
email networks, in which a strong autocorrelation is found. The de-
tection of anomalous events validates the effectiveness of this study.

The remainder of this paper is organized as follows. Section 2 in-
troduces the separable temporal exponential random graph models.
Control charts used for the study of autocorrelation effects are briefly
described in Section 3. In Section 4, a STERGM-based simulation ap-
proach is proposed for evaluating performances of network control
charts. The design and analysis of numerical experiments are shown in
Section 5. The utility of the proposed method is validated through a real
example in Section 6. Section 7 is the conclusion and some topics for
future researches. For readers not familiar with network control charts,
some fundamentals are provided in Appendix A. Sample R codes for
obtaining control limits are provided in Appendix B.

2. Separable temporal exponential random graph models

In this section, we first introduce the exponential random graph
model (ERGM) for time-independent networks. Then we describe the
STERGM for autocorrelated networks, which is the basis of the pro-
posed performance evaluation method.

2.1. The exponential random graph model for time-independent networks

It is very natural to posit that networks are “built up” by its local
structures such as the edges, stars and triangles (Robins, Pattison,
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Kalish, & Lusher, 2007). The overall structure of a network is de-
termined by its dominant local structures and the dominating degrees of
different local structures. Two toy examples of networks with 9 nodes
are shown in Fig. 1. The left one is dominated by stars while the right
one is dominated by triangle structures.

The summary statistics of the local structures provide information
about global properties of networks. For instance, the number of edges
indicates the overall density of a network; the number of 2-stars
quantifies the degree variability (i.e. node heterogeneity); the number
of triangles characterizes the transitivity property (often interpreted as
“friends of my friends are my friends” in the social network analysis
area) (Frank & Strauss, 1986; Morris, Handcock, & Hunter, 2008;
Snijders, Pattison, Robins, & Handcock, 2006).

Denote a random network with n nodes by Y and its observation by
y. Write the edge variable between nodes i and j asYij ( …i j n, {1, 2, , }).
In the case of binary networks, =Y 1ij indicates there is an edge between
i and j and =Y 0ij represents an non-edge. Denote the numbers of edges,
2-stars and triangles in an undirected network Y by S Y S Y( ), ( )1 2 and
T Y( ). These count statistics are calculated as

=

=

=

<

+

< <

S Y Y

S Y Y

T Y Y Y Y

( ) number of edges,

( )
2

number of 2 stars,

( ) number of triangles,

i j n
ij

i n

i

i j h n
ij ih jh

1
1

2
1

1 (1)

where i j h n, , {1, 2, .. } are the indexes of nodes; the + sign denotes
summation over the index, and +Yi is the degree of node i (Frank &
Strauss, 1986).

Write the summary statistics of local structures in a network Y into a
vector as h Y( ). Assume Y dependent on h Y( ) follows a distribution of
the exponential family. Then the exponential random graph model for a
random network Y is

= =P Y y h y
k

( | ) exp( ( ))
( , )

,
(2)

where is the parameter vector corresponding to the statistic vector
h y( ); denotes the space containing all possible observations of the
random network Y; and =k h y( , ) exp( ( ))y is the normal-
izing constant (Hunter, 2007; Snijders et al., 2006).

By generating random observations from an ERGM by model (2), a
time-independent network sequence can be obtained. For two in-
dependent networks at successive time points, the probabilities of the
structural statistics are the same, and the locations of the local struc-
tures are completely random. The transition from Y t to +Y t 1 is through
formations and dissolutions of local structures. Examples of structural
transition include the formation and break of an edge, the formation of

+k( 1)-star from a k-star and the dissolution of k-star to a k( 1)-star,
and the formation and dissolution of a triangle from and to a 2-star.
Fig. 2 illustrates the formation of a triangle from a 2-star and the dis-
solution of a 4-star to a 3-star. Since networks are independent, the
structural transitions are random, and the probability of Y t is not
conditional on Yt−1.

2.2. The STERGM for autocorrelated networks

Denote a network time series by {Y Y,1 2, …, +Y Y,t t 1,…}. An auto-
correlated network process can be considered as the combination of two
intermediate processes, i.e. the formation and the dissolution of a
proportion of local structures with the rest part remaining the same
(Krivitsky & Goodreau, 2019).

An example of edge formation and dissolution processes in a net-
work is shown in Fig. 3. A friendship network is formed by Lisa, Mary,
Peter, John, and David. At time t, five edges of Y t correspond to the
connections between John and every other person plus the connection
between Peter and David. Over time, the connection pattern changes to

+Y t 1, which includes the connections between John and every other
person plus the connection between Peter and Lisa. Such an evolution
can be seen as the combination of two latent processes of formation and
dissolution. The formation process is to add the extra connection be-
tween Peter and Lisa based on Y t, forming an intermediate network +Y
with 6 edges; the dissolution process is to break the connection between
Peter and David from Y t, dissolving into an intermediate network Y
with 4 edges. In Fig. 3, the operator denotes combining networks Y
and Y as a new network Y Y in a way that all edges (i j, ) either in Y
or in Y are put into the network Y Y . The operator denotes sub-
setting edges (i j, ) in both Y and Y into the new network Y Y . The
tendency of an edge remaining undissolved reflects the autocorrelation
level. Consider the connection between Peter and Mary. If their con-
nection tend to stay unchanged for years, then their connection is
highly autocorrelated. Such persistence, or say the duration of such
connection, positively reflects the level of autocorrelation. Similarly,
the autocorrelation dependency of other network properties can be
characterized by the formation and dissolution of corresponding local
structures.

By virtue of +Y and Y , the formation and dissolution processes can
be directly modeled as two ERGMs

= = =

= = =

+ + +

+

+ + +
+ +P Y y Y y

P Y y Y y

( | ; ) ,

( | ; ) ,

t t h y
k y

t t h y
k y

exp( ( ))
( , ( ))

exp( ( ))
( , ( ))

t

t (3)

where =+ +Y Y Yt t 1 and = +Y Y Yt t 1 are the random intermediate
networks and +y and y are their realizations; + and are the for-
mation and the dissolution parameters respectively;

=+ y y y y( ) { : }t t denotes the space of all possible networks con-
taining yt as a subset, and =y y y y( ) { : }t t denotes the space of all
possible networks which are subsets of + +y k y; ( , ( ))t t and
k y( , ( ))t are the normalizing constants (Krivitsky & Handcock,
2014). Here, to simplify the notations, the time index t in the formation
and the dissolution networks +Y t, and Y t, is omitted.

The formation and the dissolution parameters indicate the

Fig. 1. Networks of 9 nodes with their overall structures dominated by stars
(left) and triangles (right).

Fig. 2. Formation of a triangle from a 2-star (upper) and dissolution of a 4-star
to a 3-star (lower) over time.
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tendencies of corresponding structures to newly form and dissolve over
time. Therefore, increasing the formation parameters with the dis-
solution parameters unchanged induces increased local structure
counts, and decreasing the formation parameters leads to reduced
counts. Through adjusting the parameter values, shifts are simulated
with respect to the levels of the density, reciprocity, degree variability
and transitivity properties of a network. For statistics describing various
structural characteristics, readers can refer to Snijders et al. (2006),
Hunter (2007), Robins et al. (2007), Morris et al. (2008).

2.3. Parameter estimation

Since the normalizing constants + +k y( , ( ))t and k y( , ( ))t are
hard to compute and not of our interest, parameters can be estimated by
reexpressing model (3) in a conditional logistic regression form with the
normalizing constant term cancelled from the models. Conditioning the
probability of +Yij on the rest of the network +Yij

c, model (3) is equivalent
to

= =

= =

+ + + + +logit Y y y

logit Y y y

( 1| , ) ( ),

( 1| , ) ( ),
ij ij

c
ij

ij ij
c

ij (4)

where logit represents the logit function defined as
= = =

=logit X log( 1) P X
P X

( 1)
( 0) , which calculates the log-odds of a binary

variable X taking the value 1; + and are the formation and the
dissolution parameters to be estimated; c is the complement operator
and +yij

c represents the remaining structure in +y with the edge status
between nodes i and j left out; y( )ij is called the change statistic for the
node pair i j( , ) corresponding to the change of statistics h y( ) caused by
the formation of an edge between nodes i and j given yij

c (Krivitsky &
Handcock, 2014). When the statistic h y( ) is the number of edges, the
change statistic is equal to 1, meaning the number of edges of the whole
network increases by 1 due to the existence of edge yij. When h y( ) is the
number of triangles, the value of y( )ij depends on the yij

c, and is equal to
the number of newly formed triangles with nodes i and j connecting
from non-edge status.

Parameters + and can be estimated by the maximum pseudoli-
kelihood method. The only difference in estimating + and is to use
samples +

= …y{ }t
t

,
1,2, or samples = …y{ }t

t
,

1,2, . Denote ( )ij as the condi-
tional probability of an edge between nodes i and j, i.e.

= = =
=

P Y Y logit Y( ) ( 1| , ) ( ( )),ij ij ij
c

r

R

r r ij
1

1 (5)

where r is the index corresponding to the structural statistics in the
vector h Y logit( ); 1 is the inverse logistic function such that

= +logit X X( ) 1/(1 exp( ))1 . We consider the first-order temporal
dependence for the network time series {Y Y,1 2, …, +Y T 1}. The pseudo
loglikelihood is

=
=

l ln( ) [( ( )) (1 ( )) ],
t

T

ij
ij
t Y

ij
t Y

1

1ij
t

ij
t

(6)

where the Y t is replaced by +yt, or yt, , and the maximum pseudo
likelihood estimates (MPLEs) of + and are obtained as

=+ +
+

largmax ( ) and = largmax ( ) (Leifeld, Cranmer, &

Desmarais, 2018). Formation and dissolution parameters + and can
be estimated based on given network samples. Also, network time series
can be generated from model (3) with preset + and . The network at
time +t 1 is obtained by combining the two intermediate networks as

= =+ + +y y y y y y y( ) ( )t t t1 .

3. Network control charts for comparison

An essential part of performance evaluation framework is to con-
struct control chart based on simulated data. In this section, we in-
troduce some commonly-used control charts to illustrate the methods of
obtaining control limits. Although many advanced methods have been
proposed for monitoring networks with more complex structures, we
focus on the control charts for the most basic network property, i.e. the
density. Through this study of the simple structure, the pattern of the
autocorrelation affecting the monitoring performances can be clearly
revealed. The Shewhart, EWMA, and CUSUM control charts are very
often adopted in previous studies on network monitoring. In this sec-
tion, we briefly describe these control charts for the edge count mea-
sure. A residual control chart is also suggested with the autocorrelation
information considered. Performances of these control charts will be
compared in Section 5.

3.1. Shewhart control charts for network density

The number of edges ht for network yt reflects the network density
property and is usually not very small in a network with frequent
communications. The edge count ht can be directly monitored through
the Shewhart control chart. Under the assumption that ht approximately
follows the normal distribution N µ( , )2 , the control limits for the edge
count ht are

Fig. 3. Illustration of the autocorrelated network process as a combination of edge formation and dissolution processes.
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= +
=

UCL µ L
LCL µ L

,
, (7)

where µ and are the estimates of mean µ and standard deviation L;
is the upper /2 quantile in a standard normal distribution given the
type I error (Montgomery, 2009). Usually the mean µ is estimated as
the mean of …h h h, , , T1 2 , i.e. = = =µ h h¯

T t
T t1

1 . Different estimation
methods can be applied to estimate . Here we use the most straight-
forward one, i.e. the sample standard deviation

= = h h( ¯)T t
T t1

1 1
2 .

3.2. EWMA control chart for network density

Compared with the Shewhart control chart, the EWMA control chart
is more advantageous in detecting small process shifts by incorporating
the information of previous data. The EWMA statistic zt at time t is
dependent on the current edge count ht and its previous value zt 1, i.e.

= +z h z(1 ) ,t
t

t 1

where <(0 1) is the weighting parameter and the starting value
of zt is usually chosen as =z µ0 (Roberts, 1959). Usually, the weighting
parameter is chosen to be one of several commonly used values, such
as 0.05, 0.1, and 0.2.

The control limits for zt are

= +

=

UCL µ L

LCL µ L

[1 (1 ) ] ,

[1 (1 ) ] ,

ewma
t

ewma
t

2
2

2
2

(8)

where L is a constant resulting in a pre-specified in-control average run
length (ARL0) for the control chart; µ and are estimated as the sample
mean and sample standard deviation of ht ( = …t T1, 2, , ).

3.3. CUSUM control chart for network density

Similar to the EWMA control chart, the CUSUM control chart makes
use of historical data and is usually superior in detecting small shifts as
well. Denote the CUSUM statistics for detecting positive and negative
shifts at time t by +Ct and Ct respectively. The CUSUM statistics +Ct and
Ct are

= + +
= + +

+ +C max h µ K C
C max µ K h C

[0, ( ) ],
[0, ( ) ],

t
t

t

t
t

t

1

1 (9)

where the reference value K is a half of the target shifts to be detected; µ
is usually estimated as the mean value of ht ( = …t T1, 2, , ) (Page,
1954). The control limits for +Ct and Ct are a constant d, which can be
calculated based on simulations to achieve a pre-specified ARL0.

3.4. Residual control chart with autocorrelation considered

An underlying assumption for the above three control charts is that
samples are independent over time. To account for the autocorrelation
between successive samples, we suggest the strategy of modeling the
autocorrelation by a time series model and monitoring the residuals by
the Shewhart control charts, which is originally proposed by Alwan and
Roberts (1988). Considering the case that the number of edges for the
network samples approximately follows an AR (1) model, the edge
count at time t is dependent on the edge count at time t 1, i.e.

= +h µ h µ( ) ,t t
t

1

where is the autocorrelation coefficient, and N~ (0, )t e
2 . The para-

meter estimate can be obtained through the least squares method or
the maximum likelihood methods. We monitor the residuals at time t

=e h µ h µ( ).t
t t 1

The control limits for the residuals are

=
=

UCL L
LCL L

,
,

resid e e

resid e e (10)

where e is estimated as the standard deviation of the = …e t T( 1, 2, , )t
from the Phase I samples; Le can be obtained through simulations to
achieve a pre-specified ARL0.

4. STERGM-based simulation approach for performance
evaluation

Network control charts are designed to timely detect network
anomalies. To evaluate the performance of a network control chart,
network time series with anomalies at certain time points can be si-
mulated to check the ability of the control chart to signal such
anomalies. In this section, we first explain the ways of controlling au-
tocorrelation and shift levels of networks. Then, we provide a STERGM-
based framework for evaluating the performance of network control
charts.

4.1. Manipulating autocorrelation levels and shifts

Generating networks from a STERGM is determined by three parts:
the formation and dissolution parameters + and as well as the
network yt based on which +yt 1 is generated. To simulate temporal
networks for performance evaluation, we discuss the connections be-
tween STERGM parameters and process autocorrelation along with the
anomalous types.

Network structures evolve over time based on the combined pro-
cesses of formation and dissolution. The formation parameter + cor-
responds to the tendency of dominant local structures to form in the
latent network +Y . Based on model (4), a positive + indicates a larger
probability of forming a network structure from the status of non-ex-
istence than staying unchanged. The larger the + is, the more probably
the structure forms. Similarly, the dissolution parameter explains the
probability of persistence of an existing structure than dissolution. A
smaller indicates higher probability of dissolution and lower ten-
dency of persistence. Positive autoregression can be characterized by
the persistence of network structures (Leifeld et al., 2018). The more
durable a structure is, the more autocorrelated the network is. As
mentioned in Section 2, formation and dissolution parameters also af-
fect the level of the summary statistics for chracterizing network
properties. Thus, the autocorrelation level of network time series and
the shift level of network properties should be well controlled by ad-
justing the formation and the dissolution parameters.

When intermediate networks for the formation and the dissolution
processes are from the same distribution (i.e. = = =+ +Y Y Y Yt t 1),
such a dynamic process is in fact an independent process. The para-
meters have the relationship = =+ , where is the parameter of
the ERGM for network Y t ( = …t T1, 2, , ). Through increasing the dis-
solution parameter from , we set the autocorrelation of network
processes to different levels.

Basically, the simulation of network time series for performance
evaluation involves the setting of autocorrelation levels and shift levels
of local structure counts. Since adjusting the autocorrelation level
through the dissolution parameter also changes the number of featured
local structures, we need to set + accordingly in the formation process
to remedy the changes of structure counts in the dissolution process. To
hold the number of local structures at a certain level, we can set the
formation parameter + such that the change statistics =+y y( ) ( )ij ij ,
meaning the increased number of local structures due to formation is
equal to the decreased number due to dissolution.

4.2. Performance evaluation framework based on STERGM

In statistical process monitoring, a well-performed control chart is
expected to (1) falsely alarm at a very small probability in an in-control

P. Zhou, et al. Computers & Industrial Engineering 145 (2020) 106507

5



status, and (2) detect process shifts in a timely manner. A commonly-
used criterion for evaluating the performance is the average run length
(ARL) for a control chart to signal an outlier. The ARLs of a control
chart in in-control and out-of-control statuses are usually denoted by
ARL0 and ARL1. The ARL0 of a control chart is expected to be large
while the ARL1 value is expected to be small. To evaluate and compare
performances of control charts, control limits for different control
charts are set to achieve the same ARL0 for an in-control process so that
their performances are compared through the ARL1 values for out-of-
control processes.

For simplicity of illustration, we focus on the change of network
density in an undirected network and simulate networks with shifts of
the edge count. The autocorrelation level is adjusted through the dis-
solution parameter and the edge count is held at a target level
through the formation parameter +. Write the total number of node
pairs as =C n n( 1)/2n

2 . The edge formation parameter is set as

= ++ log
m C m

( 1 exp( )
/( )

1)
n
2 (11)

to achieve an expected edge count of m (Krivitsky & Handcock, 2018).
Denote the edge count of network sample yt by ht and the charting
statistic for monitoring yt by zt . The framework of performance eva-
luation for network control charts is as follows.

Phase I settings (at time … T1, 2, 3, , )
(a) Initial setup:
Set the number of nodes n and the expected edge count m.

Randomly generate an initial network y1 with n nodes and m edges. Fit
model (2) to y1 and estimate the parameter . Set the dissolution
parameter =0 for the independent process or >0 for a posi-
tively autocorrelated process. According to Eq. (11), set the formation
parameter =+ +log ( 1)exp

m C m0
1 ( )

/ ( )n
0

2 for in-control networks.
(b)Network generation:
Draw two random intermediate networks +y1, and y1, from the

probability distributions = =+ + +P Y y Y y( | ; )1, 1, 1 1
0 and

= =P Y y Y y( | ; )1, 1, 1 1
0 based on model (3). Obtain a network sample

y2 at time =t 2 as = +y y y y( )2 1, 1 1, .
Repeat drawing intermediate networks and generating network

samples +yt 1 based on sample yt for = …t T2, 3, , .
(c) Estimation of control limits:
Calculate the numbers of edges for each network sample and obtain

the sequence of edge counts …h h h, , , T1 2 . Estimate the control limits
UCL and LCL for the charting statistic zt .

Phase II settings (at time + + + …T T T1, 2, 3, )
(a) Initial setup:
Set the expected edge counts as m . Generate network yT with n

nodes and m edges. Set the edge dissolution parameter = 0 and
calculate the edge formation parameter as =+ +log ( 1)exp

m C m
1 ( )

/ ( )n2
.

(b) Network generation:
Draw two random intermediate networks +yT , and yT , from the

probability distributions = =+ + +P Y y Y y( | ; )T T T T, , and

= =P Y y Y y( | ; )T T T T, , . Obtain a network sample +yT 1 as
=+ +y y y y( )T T T T1 , , .

Compute the charting statistic +zT 1. Record the run length as =RL 1
if >+z UCLT 1 or <+z LCLT 1 . Otherwise, draw intermediate networks

+ +yT 1, and +yT 1, based on model (3) with parameters +, and sample
+yT 1.
Repeat drawing new networks yt and calculating zt for

= + + …t T T2, 3, until >z UCLt or <z LCLt and a =RL t T is re-
corded.

(c) Evaluation of run lengths:
Repeat the network generation step for N times and obtain N run

lengths. Calculate ARL as = =ARL RLN i
N

i
1

1 to evaluate the perfor-
mance of the network control chart.

This STERGM-based performance evaluation framework can be used
to simulate process shifts and the changes of autocorrelation. A process
shift of edge counts is introduced by setting m m. When 0 ,
it indicates the autocorrelation of edge counts changes. In the following
study on evaluating effects of neglecting autocorrelation to network
monitoring performance, we set = 0 , assuming the autocorrelation
of network structures does not change.

5. Simulation experiments

To explore the effects of autocorrelations on network control charts,
we employ the STERGM-based simulation framework to evaluate per-
formances of the Shewhart, EWMA, and CUSUM control charts for edge
counts under scenarios of low, medium and high levels of auto-
correlation as well as the independent scenario. For the EWMA control
charts, the commonly-used constants 0.05, 0.10 and 0.20 for are used
for investigation. For the CUSUM control charts, we use +Ct and Ct
statistics to monitor the positive and negative shifts respectively. Under
the independent scenario, the residual control chart is equivalent to the
Shewhart control chart, and therefore is not investigated.

5.1. Experimental settings

We set the number of nodes as =n 50 and expected edge counts as
=m 50. In the Phase I analysis, we randomly generate an undirected

network of 50 nodes and 50 edges as the initial network y1 as shown in
Fig. 4(a). We fit model (2) to y1 by specifying the network statistic as
the number of edges, i.e. =h 501 . The model parameter is estimated to
be −3.16 by the maximum likelihood estimation method through the R
package “ergm” (Handcock et al., 2018; Hunter, Handcock, Butts,
Goodreau, & Morris, 2008).

By setting = = =+ 3.160 0 , we obtain an independent network
sequence. For autocorrelated scenarios, we set = 10 , 0, log(30),
corresponding to low, medium and high duration of an edge. The for-
mation parameters are calculated to be =+ 3.44, 3.83, 6.950 based
on Eq. (11) to assure the expected edge count equal to m. Next, we
generate networks for Phase I analysis based on model (3) and estimate

Fig. 4. Plots of the initial network y1 and the 1000th network in Phase I under the independent scenario.
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the mean and variance of the edge number in scenarios of different
autocorrelation levels. To reduce the effect of variation due to para-
meter estimation to the performances, the sample size in Phase I is set
as 1000. Network time series for four autocorrelation levels are simu-
lated through the R package “tergm” (Krivitsky & Handcock, 2018).
Fig. 4(b) shows the simulated 1000th network in the independent case.

Independence of the edge counts for network time series with dis-
solution parameter −3.16 is validated by the Ljung-Box test. The first-
order partial autocorrelation coefficients of edge counts for the four
levels of network autocorrelation are 0, 0.22, 0.47, 0.97 as listed in
Table 1. To guarantee the comparability of these control charts, we
obtain the control limits through simulating in-control networks to
achieve =ARL 2000 . The exact ARL0 values for these control charts can
be found in Table 3. Table 2 lists the charting parameter estimates
obatined for the four types of control charts in scenarios with no, low,
medium, and high autocorrelations. To illustrate the method of ob-
taining the charting parameters, we present the sample R codes in
Appendix B. This sample shows the algorithm of calculating L for the
Shewhart control chart under the medium correlation scenario. With
this example as a reference, charting parameters for other control charts
can be obtained in a similar manner.

Next step is to evaluate the performances of the four control charts
in Phase II monitoring. ARLs for different process shifts are calculated.
We set the shifts of edge count levels as = ± ± ±m m m10% , 25% , 40% .
Considering both positive and negative shifts, we randomly generate
networks with expected edge counts of 55, 62, 70, 45, 38, 30 as the
initial networks for Phase II monitoring. The edge formation parameters
are calculated based on the shifted expected edge counts with the dis-
solution parameters remaining the same as in Phase I. For each com-
bination of the autocorrelation levels and the edge count levels, we
simulate network time series based on model (3) and record the RLs. We
run the simulations for 1000 times and obtain ARL1 values in each out-
of-control scenario.

To illustrate how the control charts detect the shifts, we simulate
four sets of data corresponding to the four autocorrelation scenarios
based on the STERGMs. In each scenario, we randomly simulate 30
networks with no shifts for an illustration of the in-control status. Then
we simulate 30 networks with the largest positive shift as set in the
Phase II monitoring experiments. Charting parameters are from Table 2.
Figs. 5–8 are the Shewhart, EWMA ( =0.05), CUSUM, and residual

control charts for the edge count in different autocorrelation scenarios.
In the Shewhart control charts, a jump can be seen after the 30th net-
work in the four plots, especially in the high-autocorrelation scenario.
The anomalous shifts are almost immediately detected in all scenarios
since the shifts are very large. In the EWMA and CUSUM control charts,
we observe a gradual delay in shift detection with the autocorrelation
increasing. In the residual control charts, we can see that the detection
of shifts are more timely with the autocorrelation increasing.

5.2. Analysis of experimental results

The ARLs of the Shewhart, EWMA, CUSUM, and residual control
charts are listed in Table 3 under each combination of process shifts and
autocorrelation levels. Comparing ARL1 values by autocorrelation le-
vels in Table 3, we can see there is an overall trend that the ARL1 in-
creases with the autocorrelation for the three types of control charts,
which do not consider the autocorrelation information. This indicates
their detection power decreases with autocorrelation increasing. Espe-
cially, the ARL1 values of the Shewhart and EWMA control charts for
detecting small and medium shifts (i.e. =m 55, 62, 45, 38) increase
dramatically when the autocorrelation level grows from medium to
high. In general, the CUSUM control charts perform the best in de-
tecting the small and medium shifts in the low and medium auto-
correlation scenarios. Compared with the Shewhart and EWMA control
charts, adverse effects of the high autocorrelation on the CUSUM con-
trol charts performance are smaller. When the shift is large (i.e.

=m 70, 30), the effect of autocorrelation is not so strong since the
shifts are large enough and all the control charts can detect large shifts
of network density quite well. The performances of the residual control
charts are not favorable in detecting the small and medium shifts in the
low and medium autocorrelation scenarios. With the autocorrelation
increasing to a higher level, the residual control chart performs ex-
ceptionally well in detecting both medium and large shifts.

In addition, it is found that there is an interaction effect between
autocorrelation level and the weighting parameter on the performances
of EWMA control charts. As can be seen in Table 3, in scenarios of no,
low and medium autocorrelation levels, the ARL1 values increase with
the weighting parameter increasing from 0.05, 0.1 to 0.2. It implies
that choosing a smaller leads to a better performance. In contrast, in
the scenario of high autocorrelation, the ARL1 values decrease with
going up. In this case, a larger weighting parameter is preferred for
process monitoring.

In summary, autocorrelation has adverse effects on performances of
Shewhart, EWMA, and CUSUM control charts since they usually assume
independence between samples over time. The EWMA control charts
are most sensitive to the increase of autocorrelation in detecting process
shifts. A smaller weighting parameter contributes to a better perfor-
mance when the autocorrelation is not high and a larger value is pre-
ferred otherwise. The CUSUM control charts perform generally better in
detecting the small and medium shifts in the low and medium auto-
correlation scenarios. In the presence of relatively high autocorrela-
tions, we suggest the adoption of the residual control charts since it
performs the best in detecting medium and large shifts compared to
other control charts.

6. Application to the Enron email networks

In this section, we analyze the Enron email communication net-
works as an example. The version of data is from Priebe et al. (2005).
This dataset contains the email records of 184 unique email addresses
from 150 users. An edge exists if there is at less one email between two
addresses in a week. In the year 2001, crucial events happened to the
Enron company including the revelation of its financial scandals as well
as its bankruptcy. A total of 53 networks in 2001 are obtained for
analysis.

We take the first 20 networks as the Phase I data to estimate the

Table 1
Settings of edge formation and dissolution parameters for different auto-
correlation levels as well as the first-order partial autocorrelation coefficient of
edge counts.

Scenario Formation Dissolution PACF coef

None −3.16 −3.16 0
Low −3.44 −1 0.22
Medium −3.83 0 0.47
High −6.59 3.4 0.97

Table 2
Estimates of charting parameters for different control charts under scenarios
with no, low, medium and high autocorrelations.

None Low Medium High

Shewhart UCL 69.00 69.00 69.00 64.00
LCL 31.00 31.00 31.00 35.99

EWMA-L = 0.05 15.83 19.08 23.94 47.76
= 0.10 17.10 20.60 25.30 42.14
= 0.20 18.24 21.57 25.74 34.00

CUSUM-h Positive shifts 4.57 4.48 8.50 15.80
negative shifts 4.36 4.26 8.02 16.80

Residual UCL – 18.99 17.12 5.20
LCL – −18.99 −17.12 −5.20
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charting parameters. Firstly, we test whether there is autocorrelation
among the edge counts of the 20 networks. Fig. 9 is the autocorrelation
and partial autocorrelation plots, in which a strong autocorrelation can
be observed. The partial autocorrelations of both the lag 1 and lag 2 are
shown to be significant from the pacf plot in Fig. 9. The value of the lag-
1 partial autocorrelation is above 0.6, which is relatively high. There-
fore, we consider the use of the residual control chart for monitoring
the Enron networks. By the AIC criterion, the first order autoregressive
model is preferred. The parameter of the AR(1) model are estimated
as 0.62, which is significant with a p-value smaller than 0.01. The
standard deviation of the residuals is estimated as 23.05. Diagnostic
plots for the AR(1) model are shown in Fig. 10. No special patterns are
observed in the plot of the standardized residuals. No autocorrelations
are significant based on the acf plot for the residuals. Further, the re-
siduals are independent since the p-values for the Ljung-Box statistic are
over 0.05 for up to 10 lags as shown in the bottom plot. Therefore, the
AR(1) model fits the data well.

To calculate the control limits for the residuals, we can simulate the
network time series by the STERGM to achieve an ARL0 of around 500
for a small false alarm probability. We fit the STERGM to the sample
networks from the first 20 weeks as the in-control model. The formation

and dissolution parameters are estimated to be −5.84 and −0.29 re-
spectively. We simulate 1000 network time series of size 20 based on
the fitted model and calculate the lag-1 partial autocorrelations. The
histogram for the lag-1 partial autocorrelation coefficients from the
simulated network time series are presented in Fig. 11. The red vertical
line is the reference line for the partial autocorrelation coefficient es-
timated from the Enron network observations for the first 20 weeks. It
can be seen that most of the pacf values from the simulated samples are
around the reference value obtained from the real observations,
showing that the fit of the STERGM to the Enron data is satisfactory.

We use the STERGM as the network generator and obtain the con-
trol limit for the residual control chart with ARL0 of approximately 500
by following the performance evaluation framework provided in
Section 4. The control limit is calculated to be 48.41 and −48.41.
Fig. 12 shows the residual control charts. Dates for the outliers are the
weeks around 5/21, 5/28, 6/04, 06/11, 07/23, 09/10, 09/17, 09/24,
10/08, 10/22, 11/05, 11/12, 11/19, 12/03, and 12/17. These outliers
are around May to June, September to November, corresponding to the
“Secret” meeting among Schwarzenegger, Lay, and Milken in LA on
May 17, the fierce arguments in dealing with the California energy
crisis in June, the meeting of Skilling with analysts and investors on

Fig. 5. Shewhart control chart for detecting a positive shift in different autocorrelation scenarios.

Fig. 6. EWMA control chart for detecting a positive shift in different autocorrelation scenarios.
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July 24–25, the employ meeting with deceptive financial announce-
ment by Lay on Sep. 26, the report of a $618 million third-quarter loss
of Enron on Oct. 16, the informal probe by SEC on Oct. 17, the rival
Dynegy agreeing to buy Enron for about $9 billion in stock and cash on
Nov. 9, and Enron filing for bankruptcy protection on Dec. 2. The
crucial events are correctively detected through the residual control
chart with the limits obtained based on the STERGM-based perfor-
mance evaluation approach.

7. Conclusions and future researches

As an important category of “big data”, networks are ubiquitous in
manufacturing and service industries. Modern measuring devices en-
able collecting data at a high frequency and inevitably induce auto-
correlations in dynamic networks. Performance evaluation of control
charts contributes to assessing and selecting an effective monitoring
method for autocorrelated networks, which thereby facilitates the early
detection of potential failures favorable to the engineering management
in the era of Industry 3.5. This paper proposed a performance evalua-
tion approach for network control charts based on the separable tem-
poral random graph models. Interpreting network autocorrelation as
the persistence of local structures, we provided the method of con-
trolling the autocorrelation level by adjusting the dissolution

parameter. Through adjusting the formation parameter, we showed the
way of holding the number of local structure at a constant level.

The proposed STERGM-based simulation framework were applied to
the study of the autocorrelation effects on performances of the
Shewhart, EWMA, CUSUM, and residual control charts for the edge
count. Results of the numerical experiments have shown that auto-
correlations have adverse effects on performances of the Shewhart,
EWMA, and CUSUM control charts. For EWMA control charts, a smaller
value should be chosen in the presence of low and medium auto-
correlations while a larger value is preferred otherwise. Generally, the
CUSUM control charts perform better in detecting small and medium
shifts in the low and medium autocorrelation scenarios. In the presence
of relatively high autocorrelations, we suggest the adoption of the re-
sidual control charts since it performs the best in detecting medium and
large shifts.

The utility of the proposed STERGM-based framework and the ef-
fectiveness of the guide obtained from the autocorrelation effect study
were illustrated through the Enron email communication network data.
In this real case, the autocorrelation of the edge count statistic was
shown to be at a medium-to-high level. Therefore, a residual control
chart was adopted. Control limits were obtained through the proposed
STERGM-based framework to achieve a pre-specified ARL0 value. The
fact that crucial events are correctively detected shows the

Fig. 7. CUSUM control chart for detecting a positive shift in different autocorrelation scenarios.

Fig. 8. Residual control chart for detecting a positive shift in different autocorrelation scenarios.
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practicability of our method.
There are also some limitations of this paper. First, the focus of

current study is mainly on the performance evaluation of network
control charts in detecting anomalous changes of network density. In
practice, however, network formation is usually dependent on multiple
dominant local structures such as the stars and triangles as mentioned

Table 3
ARLs of various control charts for detecting shifts of network density under scenarios with no, low, medium and high autocorrelations.

chart level m = 50 m = 55 m = 62 m = 70 m = 45 m = 38 m = 30

Shewhart None 200.60 38.19 6.10 1.84 97.30 9.31 1.72
Low 200.38 40.94 6.97 2.04 94.81 10.89 2.06
Medium 200.45 47.01 8.23 2.36 105.94 13.19 2.24
High 200.59 116.39 21.66 1.01 144.87 27.90 1.00

EWMA = 0.05 None 199.99 10.70 3.56 2.30 10.43 3.40 2.20
Low 200.09 15.54 4.49 2.65 15.48 4.48 2.53
Medium 200.10 22.89 6.27 3.26 23.20 6.15 3.02
high 199.95 113.70 30.26 8.62 116.20 27.67 7.73

EWMA = 0.1 none 199.96 11.89 3.88 2.41 11.86 3.71 2.32
Low 200.19 17.37 4.83 2.78 17.96 4.86 2.65
Medium 200.01 25.22 6.78 3.46 27.45 6.70 3.28
High 200.12 114.12 29.29 7.18 120.60 27.40 6.45

EWMA = 0.2 None 200.17 14.12 4.10 2.49 14.45 3.94 2.39
Low 200.20 20.48 5.19 2.90 22.25 5.22 2.76
Medium 200.28 28.71 7.22 3.52 34.80 7.31 3.35
High 199.76 111.70 26.59 5.31 125.83 25.96 4.74

CUSUM None 203.48 12.14 4.05 2.33 4.69 2.68 1.96
Low 202.98 12.50 4.16 2.44 11.77 3.94 2.28
Medium 199.76 22.77 7.42 4.17 21.95 6.97 3.76
High 199.48 65.81 16.97 7.21 69.68 16.15 7.32

Residual None – – – – – – –
Low 202.38 54.66 10.33 2.55 142.68 20.75 2.74
Medium 200.76 72.83 14.21 3.15 189.73 51.81 4.82
High 203.97 85.71 1.00 1.00 162.09 1.00 1.00

Fig. 9. The ACF and PACF plots for the density of Enron data from the first 20 weeks in the year 2001.

Fig. 10. Diagnostic plots of the AR(1) model.

Fig. 11. The histogram of the lag-1 autocorrelation values from the simulated
samples.
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in Section 2.1. Therefore, the joint influence of autocorrelations of
multiple network properties is worth further studying. Second, we only
discussed the first-order autocorrelation of network structures. Net-
works with higher order autocorrelations can be investigated as a future
research direction. Third, though the residual control chart is suggested

for high autocorrelation scenarios to reduce adverse effects of ne-
glecting autocorrelation, its performance is not so well as other
methods in the low and medium autocorrelation scenarios. More stu-
dies should be conducted on methods for monitoring networks with low
and medium autocorrelations.

Fig. 12. The residual control chart for the Enron email networks.

Fig. 13. Examples of a directed computer network and an undirected friendship network.

Fig. 14. An illustrative example of using control chart for monitoring the changes of a friendship network.
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Appendix A. Fundamentals of network control charts

Networks are usually used to describe the relationships between the different entities in complex systems. A network consists of a set of nodes and
the edges connecting node pairs. For example, in a local computer network, each computer is a node and different computers form edges if they
transmit data from one to another; in a social network, each person is a node and those who communicate with each other form edges; in a
manufacturing network, the production equipments are nodes and two equipments form a directed edge if one sends parts to the other. Fig. 13 shows
an example of a directed computer network and an undirected friendship network. In the computer network, five computers indexed from A to E are
the nodes. Data are sent from A to D, A to B, E to D, A to C, C to A, A to E, and E to A. Therefore, in this network, there are 7 directed edges. In the
friendship network, Lisa, Mary, David, and Peter are friends of John; David and Peter are also friends. Here the friendship are always mutual with no
direction. The five people are the nodes and they form an undirected network with 5 edges.

Control charts are commonly-used to monitor whether a process with random noises stays statistically in-control over time. Charting statistics
such as the sample mean, the EWMA, and CUSUM statistics are constructed. Control limits are obtained based on the distribution of the charting
statistics for anomaly detection. Points going beyond the limits are identified as outliers, indicating potential assignable causes for process changes. A
network control chart is the application of control charting methods to network data, aiming to detect anomalous changes of networks. For example,
Fig. 14(a) illustrates the evolution of a friendship network formed by Lisa, Mary, Peter, John, and David. From times =t 1 to 2, the network stays
unchanged. At time =t 3, connection between David and Peter breaks. At time =t 4, the connection between Lisa and Peter is newly formed. If we
concern about the overall connectivity in the network, a possible means is to directly monitor the total number of edges, which is shown in
Fig. 14(b). Consider the extreme case that only 5 is acceptable and the control limits are set as 4.5 and 5.5. Then the networks at times 3 and 4 are
outliers since they have 4 and 6 edges, respectively. Plot the edge count over time, and we identify the network at times 3 and 4 as outliers.

A good control chart is expected to detect the process changes quickly in the out-of-control case while not much falsely alarming when the
process is in-control. These two goals, however, cannot be achieved simultaneously. In other words, increasing the in-control performance will lead
to a decrease of the out-of-control performance. A typical way for method comparison is to set the in-control performances equal, and compare the
out-of-control performances in detecting shifts of different scales. The performance of a control chart is usually evaluated based on the run length
(RL) distribution, which may be obtained through analytical derivation and/or through simulation studies. For networks with complex data
structures, the derivation of a theoretical form of the RL distribution is usually very difficult. Therefore, a simulation based performance evaluation
approach is essential to obtain its empirical distribution of RLs, based on which metrics such as the average run lengths (ARLs) and the standard
deviation of RLs are calculated.

Appendix B. Sample R codes for obtaining control limits

library(tergm)
library(statnet)
library(network)

#Initial Network: size of 50 & edge count of 50
n<-50 # network size
target.stats<-edges<-50 # edge count
g0<-network.initialize(n,dir = FALSE)
g1<-san(g0 edges,target.stats = target.stats,verbose = TRUE) # a random initial network

# Calculate the density
dyads<-network.dyadcount(g1)
edges<-network.edgecount(g1)
D0<-edges/dyads

# Estimate ergm coefficient
ergm.fit<-ergm(g1 edges)
theta0<-ergm.fit$coef #-3.157

# Settings of independent case, small/medium/large autocorrelation
#[0] independent case
coef.diss.0 <-coef.form.0<-theta0 # −3.157 in my case
#[1] small autocorrelation
coef.diss.1<–1 # increase to coef.diss.1, leading to a partial autocorrelation coefficient of 0.22
#[2] medium autocorrelation
coef.diss.2<-log(1) # increase to coef.diss.2, leading to a partial autocorrelation coefficient of 0.47
#[3] large autocorrelation
coef.diss.3<-log(30) # increase to coef.diss.3, leading to a partial autocorrelation coefficient of 0.97

# make a list of coef.diss
coef.diss.list<-lapply(0:3,function(i) get(paste0(”coef.diss.”,i)))
names(coef.diss.list)<-paste0(”coef.diss.”,0:3)

coef.form.f<-function(coef.diss,density) -log(((1 + exp(coef.diss))/(density/(1-density)))-1) # the function for calculating formation coefficient given the dissolution parameter
coef.form.ls<-lapply(coef.diss.list,function(x) coef.form.f(x,density = D0))

# define the stergm simulation function
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stergm.sim.fun<-function(coef.diss = NULL, coef.form = NULL, density = NULL, start.net,timeslice = 1000, seed = NULL, nsim = 1, output = c(“networkDynamic”),
return.type = c(“stat”)){

if(is.null(coef.diss)&is.null(coef.form)){return(warning(“Please at least provide one of the coef.form and coef.diss parameters.”))}
if(is.null(coef.diss)&{!is.null(coef.form)}){coef.diss<-coef.diss.f(coef.form,density)}
if(is.null(coef.form)&{!is.null(coef.diss)}){coef.form<-coef.form.f(coef.diss,density)}
net.sim<-simulate(start.net,
formation = edges,
dissolution = edges,
monitor = ”all”,
coef.form = coef.form,
coef.diss = coef.diss,
time.slices = timeslice,
nsim = nsim,
seed = seed,
output = output

)
stat.sim<-as.vector(attributes(net.sim)$stats[,”edges”])
if(return.type==”stat”){return(stat = stat.sim)}
if(return.type==”net”){return(net = net.sim)}
if(return.type==”both”){return(list(net = net.sim,stat = stat.sim))}

}

# define the function for calculating the ARL for the Shewhart control chart
shew.cc.rl.fun<-function(mu, sig, L, coef.diss = NULL, coef.form = NULL, density = NULL, start.net, timeslice = 1000, seed = NULL, nsim = 1, output = c(”networkDynamic”),

return.type = c(”stat”)){
stat<-mu
ucl<-mu + L∗sig
lcl<- mu-L∗sig
j<-0
stat<-stergm.sim.fun(coef.diss = coef.diss, coef.form = coef.form, density = density, start.net = start.net, timeslice = timeslice, seed = seed, nsim = nsim, output

= c(”networkDynamic”), return.type = c(”stat”)) # simulate networks through stergm.sim.fun()
rl<-which(stat>ucl | stat<lcl)[1];

rl< -ifelse(!is.na(rl),rl,timeslice)
return(rl)

}
shew.cc.arl.fun<-function(n.rl = 1000,mu, sig, L, coef.diss = NULL, coef.form = NULL, density = NULL, start.net, timeslice = 1000, seed = NULL, nsim = 1, output

= c(”networkDynamic”), return.type = c(”stat”)){
rl.vec<-unlist(lapply(1:n.rl,function(i) shew.cc.rl.fun(mu = mu, sig = sig, L = L, coef.diss = coef.diss, coef.form = coef.form, density = density, start.net = start.net,
timeslice = timeslice, seed = seed, nsim = nsim, output = c(”networkDynamic”), return.type = c(”stat”))))

arl<-mean(rl.vec)
return(c(arl = arl))

}

# Take the medium correlation scenario as an example
# simulate the Phase I samples to estimate the standard deviation
stat.ic<-stergm.sim.fun(coef.diss = coef.diss.2, coef.form = NULL, density = D0, start.net = g1, timeslice = 1000, seed = NULL, nsim = 1)
sig<-sd(stat.ic)
# calculate L for a pre-specified value for ARL0
# take the low autocorrelation scenario as an example
arl.set<-200 # target ARL0 value
precision<-5
arl<-0 # initial value
mu<-edges

# Initial setting of a large and small trial values for L
L.large<-3.2
arl.large<-shew.cc.arl.fun(n.rl = 1000,mu = mu, sig = sig, L = L.large, coef.diss = coef.diss.2, coef.form = NULL, density = D0, start.net = g1, timeslice = 1000, seed = NULL,

nsim = 1)
L.small<-2.6
arl.small<-shew.cc.arl.fun(n.rl = 1000,mu = mu, sig = sig, L = L.small, coef.diss = coef.diss.2, coef.form = NULL, density = D0, start.net = g1, timeslice = 1000, seed = NULL,

nsim = 1)

# Obtain L at a desired level of precision
while(abs(arl-arl.set)>precision){
L<-L.small+(arl.set-arl.small)/(arl.large-arl.small)∗(L.large-L.small) # use a linear interpolation for a faster computation
ucl.next<-mu + L∗sig
lcl.next<-mu-L∗sig
arl<-shew.cc.arl.fun(n.rl = 1000, mu=mu, sig = sig, L = L, coef.diss = coef.diss.2, coef.form= NULL, density = D0, start.net = g1, timeslice = 1000, seed = NULL, nsim= 1)
if(arl>arl.set){L.large <- L;arl.large < -arl;}else{ L.small<-L; arl.small<-arl;}

}
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