
Statistics and Probability Letters 146 (2019) 124–131

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Sliced Latin hypercube designs with both branching and
nested factors
Hao Chen a, Jinyu Yang b, Dennis K.J. Lin c, Min-Qian Liu b,∗

a School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China
b School of Statistics and Data Science & LPMC, Nankai University, Tianjin 300071, China
c Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA

a r t i c l e i n f o

Article history:
Received 15 January 2018
Received in revised form 22 October 2018
Accepted 3 November 2018
Available online 16 November 2018

Keywords:
Branching and nested factor
Computer experiment
Orthogonality
Uniformity

a b s t r a c t

One special kind of sliced Latin hypercube designs (SLHDs) for computer experiments
with branching and nested factors is proposed here, where not only the whole design is
an SLHD, but all its slices are also SLHDs. In addition, the SLHD in the first layer has a
flexible number of slices, and the slice numbers of the SLHDs in the second layer can be
flexible (either the same or different). The construction method is easy to implement, and
the resulting designs are orthogonal under some mild conditions. Based on the centered
L2-discrepancy, uniform SLHDs with branching and nested factors are further constructed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Latin hypercube designs (LHDs) proposed by McKay et al. (1979) have been widely used for computer experiments with
quantitative factors. An LHD with n runs is a design in which each factor includes n equally-spaced levels. Such designs
uniformly spread out design points in each dimension, which makes them suitable for the complex character of computer
experiments. The space-filling properties are desirable because the models for computer experiments can be highly non-
linear, and spreading all design points uniformly is likely the best option. Most times, only few important variables have
dominating effects (the so-called sparsity principle). Therefore, low-dimensional projection properties are important for
these designs. Besides quantitative factors, however, computer experiments can also involve qualitative factors; for example,
air diffuser unit location and hot air return vent location in a computational fluid-dynamics program for studying data center
thermal dynamics (Qian et al., 2008), and the force pattern in biomechanical engineering for investigating wearmechanisms
of total knee replacements (Han et al., 2009). As a variant of LHDs, sliced LHDs (SLHDs) were proposed by Qian (2012) to
accommodate computer experiments with both quantitative and qualitative factors. An SLHD is a special LHD that can be
divided into slices, each of which is a smaller LHD and corresponds to one level-combination of the qualitative factors. So
when an SLHD is collapsed onto the qualitative factors, it will obtain maximum stratification under each level-combination
of the qualitative factors.

Hung et al. (2009) studied computer experiments with both quantitative and qualitative factors (with branching and
nested factors), where the branching factors are qualitative, and the nested factors are quantitative. There, the factors that
only exist within certain level-combinations of some other factors are called nested factors. Accordingly, a factor within
which other factors are nested is called a branching factor. Take the printed circuit board manufacturing (Hung et al., 2009)
as an example. The surface preparation method (i.e. the branching factor) is a qualitative factor consisting of two levels:
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mechanical scrubbing and chemical treatment. Under each of the two levels, there exist different quantitative factors:
pressure and micro-etch rate, respectively. Thus the pressure and micro-etch rate are nested factors. To accommodate such
a situation, Hung et al. (2009) proposed branching LHDs (BLHDs), each of which includes three parts: (i) an orthogonal array
(OA) for the branching factors; (ii) several LHDs for the nested factors; and (iii) an LHD for the shared factors. The shared
factors are those that are common to both of the branching and nested factors.

Although the nested factors considered in Hung et al. (2009) are all quantitative, they can be qualitative as well. For
example, in the printed circuit board manufacturing, if the micro-etch rate for the chemical treatment is fixed, and one
wants to compare several kinds of micro-etchant, then the chemical treatment becomes a qualitative factor. In fact, such
situations where the branching factors and nested factors are both qualitative are rather common (but have not been
studied). In this paper, we propose two-layer SLHDs to suit such situations and provide a construction method for the
optimal designs. A two-layer SLHD is a special SLHD with two layers, where the whole SLHD is the first layer and its
slices (also SLHDs) are the second layer. The sliced structures in both layers are flexible and correspond to the branching
factors and the nested factors, respectively. It should be pointed out that the newly constructed designs can act as the third
part of BLHDs (for the shared factors). For the first two parts, we only need to find suitable OAs since the branching and
nested factors are both qualitative. Most existing OAs can be found from websites http://neilsloane.com/oadir/index.html
and http://support.sas.com/techsup/technote/ts723.html.

The remainder of this paper is organized as follows. Section 2 provides the construction method of the proposed designs
and discusses their orthogonality. Section 3 presents the optimization algorithm to obtain uniform SLHDs. Some concluding
remarks are given in Section 4. All the proofs are deferred to the Appendix.

2. Construction of SLHDs with branching and nested factors

Before presenting the constructionmethod, we first provide some relevant definitions and notation. For any real number
r , ⌈r⌉ denotes the smallest integer greater than or equal to r , and for a matrix M , ⌈M⌉ is similarly defined for its elements.
For two vectors u = (u1, . . . , un)′ and w = (w1, . . . , wm)′, define

u ⊕ w = (u1 + w1, . . . , u1 + wm, . . . , un + w1, . . . , un + wm)′.

And the correlation coefficient between u and w is defined as

corr(u, w) =

∑n
i=1(ui − ū)(wi − w̄)√∑n

i=1(ui − ū)2
∑n

i=1(wi − w̄)2
,

where ū =
∑n

i=1 ui/n and w̄ =
∑n

i=1 wi/n. An LHD is said to be an orthogonal LHD (OLHD), if the correlation coefficients
between any two columns are zero; while an SLHD is called a sliced OLHD (SOLHD) if the design itself and also its slices
are OLHDs. For a design D, let D(i, :), D(:, j) and D(i, j) be its ith row, jth column and the element at ith row and jth column,
respectively. Denote an LHDwith n runs and q factors by L(n, q), and an SLHDwith n runs, q factors and s slices by SL(n, q, s),
where the n levels of each factor are 1, 2, . . . , n.

Without loss of generality, consider only one branching factor z with s levels, and under each level k of z, there are mk
nested factors v1, . . . , vmk which are supposed to have tk level-combinations, k = 1, . . . , s. In addition, q shared factors are
involved. Then a two-layer SLHD with an SL(N, q, s) in the first layer and s SLHDs, SL(n, q, t1), . . . , SL(n, q, ts), in the second
layer, denoted by SL((N, n); q; t1, . . . , ts), can be constructed by Algorithm 1, where n = N/s, and tk | n for k = 1, . . . , s.

Algorithm 1.
Step 1. Construct an L(s, q), denoted by E, by taking q random permutations on {1, . . . , s} independently column by column.
Step 2. Construct s SLHDs SL(n, q, t1), . . . , SL(n, q, ts) using the method in Qian (2012), denoted by F1, . . . , Fs, respectively.
Step 3. Obtain the ith slice in the first layer of the SLHD, denoted by Si, by

E(i, j) ⊕ (s ∗ Fi(:, j)) − s ∗ 1,

for i = 1, . . . , s, j = 1, . . . , q, where 1 is an n × 1 vector with all elements unity, and for an integer s and a vector
f = (f1, . . . , fn)′, s ∗ f = (sf1, . . . , sfn)′.

Step 4. Stack the s slices obtained in Step 3 row by row, and obtain D = (S ′

1, . . . , S
′
s)

′.

Theorem 1. For the design D constructed by Algorithm 1, we have
(i) the ith slice Si is an SL(n, q, ti) after the levels are collapsed according to ⌈j/s⌉ for level j, where i = 1, . . . , s; and
(ii) D is an SL(N, q, s).

Theorem 1 indicates that the whole design D and its slices are all SLHDs. In addition, the SLHDs in the second layer can
have different numbers of slices due to the differences of the nested factors. Note that if there are b (b > 1) branching factors
z1, . . . , zb each having s1, . . . , sb levels respectively, we only need to regard them as one branching factor with s =

∏b
i=1 si

levels. An illustrative example is given as follows.
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Fig. 1. Scatter plot of design points of D in Example 1.

Example 1. Consider one branching factor z with two levels (α and β), and for simplicity, further assume that there is
only one nested factor v with two levels (α1 and α2) under level α of z, and three levels (β1, β2 and β3) under level β

of z. In addition, assume that two shared factors x1 and x2 are involved, and 12 runs are available. So in Algorithm 1,
N = 12, q = 2, s = 2, n = 6, t1 = 2, t2 = 3. The LHD E in Step 1 is supposed to be

E =

(
1 2
2 1

)
,

and two SLHDs F1 and F2 in Step 2 are supposed to be

F1 =

(
5 1 3 6 2 4
6 4 2 1 5 3

)′

, and F2 =

(
3 4 1 5 2 6
4 1 2 6 5 3

)′

.

After carrying out Step 3, we get S1 and S2 as follows

Si = (E(i, 1) ⊕ (2 ∗ Fi(:, 1)) − 2 ∗ 1, E(i, 2) ⊕ (2 ∗ Fi(:, 2)) − 2 ∗ 1) , i.e.,

S1 =

(
9 1 5 11 3 7

12 8 4 2 10 6

)′

, and S2 =

(
6 8 2 10 4 12
7 1 3 11 9 5

)′

.

Finally, we get an SL((12, 6); 2; 2, 3) by letting

D = (S ′

1, S
′

2)
′
=

(
9 1 5 11 3 7 6 8 2 10 4 12

12 8 4 2 10 6 7 1 3 11 9 5

)′

.

It can be easily verified that when D is collapsed onto the branching factor (i.e., under the operation ⌈D/s⌉), each of the
two slices is an LHD, so D gets the maximum stratification in each dimensional projection. Furthermore, when S1 and S2 are
collapsed onto the nested factor (i.e., under the operation ⌈Si/(sti)⌉ for i = 1, 2), they also achieve the maximum projective
stratification in each dimension. Such two-layer sliced structures can also be seen intuitively by Fig. 1, in which the solid and
hollow symbols represent the first and second slices in the first layer of D, respectively. From Fig. 1, it can be seen that there
is only one point from each slice falling into one interval of [0, 1/6), [1/6, 2/6), [2/6, 3/6), [3/6, 4/6), [4/6, 5/6), [5/6, 1)
in each dimension. For the first slice S1, it can be divided into two slices, which are represented by ‘■’ and ‘♦’ in Fig. 1, and
each slice gets maximum stratification in any 3 × 1 or 1 × 3 grid. Similarly, the second slice S2 has three slices which are
represented by ‘△’, ‘♢’ and ‘◦’, and each slice gets maximum stratification in any 2 × 1 or 1 × 2 grid.

Remark 1. The SL((12, 6); 2; 2, 3) in Example 1 is for the shared factors, and by combining this design with the two columns
z and v in Table 1, which are for the branching and nested factors respectively, we get the design with four columns z, v, x1
and x2 in Table 1. This design can be used for a computer experiment with one qualitative branching, one qualitative nested
factor, and two quantitative shared factors.
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Table 1
The design in Remark 1.
Run z v x1 x2
1 α α1 9 12
2 α α1 1 8
3 α α1 5 4
4 α α2 11 2
5 α α2 3 10
6 α α2 7 6

7 β β1 6 7
8 β β1 8 1
9 β β2 2 3

10 β β2 10 11
11 β β3 4 9
12 β β3 12 5

Orthogonality is a desirable property for SLHDs, since such a property guarantees that the estimates of all linear effects
are uncorrelated with each other. Recently, Yang et al. (2013), Huang et al. (2014), Cao and Liu (2015), Yang et al. (2016),
and Wang et al. (2017) proposed methods to construct sliced LHDs with orthogonality or near orthogonality. Due to
the construction method of SLHDs in Algorithm 1, the obtained design inherits the orthogonality of E and Fi’s, that is
to say, if E and Fi’s are orthogonal designs, then the final two-layer SLHD is also orthogonal. Here, a two-layer SLHD
is called orthogonal if not only the whole design but also its slices are all SOLHDs. Such a good property is stated in
Theorem 2. For convenience, denote orthogonal L(N, q), SL(N, q, s) and SL((N, n); q; t1, . . . , ts) by OL(N, q), SOL(N, q, s) and
SOL((N, n); q; t1, . . . , ts), respectively.

Theorem 2. In Algorithm 1, if E is an OL(s, q), each Fi is an SOL(n, q, ti) for i = 1, . . . , s, and N = ns, then the obtained two-layer
SLHD D is an SOL((N, n); q; t1, . . . , ts).

Theorem 2 indicates that we can obtain orthogonal SLHDs by choosing E and Fi’s in Algorithm 1 to be orthogonal. The
orthogonality brings uncorrelated estimates for the effects of the shared factors, which is desired especially when they are
used to fit a polynomial model. Moreover, the proposed designs make sure that the shared factors and the branching-by-
nested interaction are orthogonal, under any level of the branching factor.

Example 2. Suppose

E =

(
1 2 3 4
2 4 1 3

)′

,

which is an OL(4, 2). Without loss of generality, for i = 1, 2, 3, 4, suppose Fi is an SOL(16, 2, 2), which can be obtained by
randomly choosing two columns from the SOL(16, 4, 2) in Example 1 of Yang et al. (2016), i.e.,

F1 =

(
9 11 13 15 8 6 4 2 10 12 14 16 7 5 3 1

11 8 15 4 6 9 2 13 12 7 16 3 5 10 1 14

)′

,

F2 =

(
9 11 13 15 8 6 4 2 10 12 14 16 7 5 3 1
2 4 11 9 15 13 6 8 1 3 12 10 16 14 5 7

)′

,

F3 =

(
11 8 15 4 6 9 2 13 12 7 16 3 5 10 1 14
2 4 11 9 15 13 6 8 1 3 12 10 16 14 5 7

)′

, and

F4 =

(
11 8 15 4 6 9 2 13 12 7 16 3 5 10 1 14
13 2 8 11 4 15 9 6 14 1 7 12 3 16 10 5

)′

,

where the level p here is corresponding to level (2p − 17) in Example 1 of Yang et al. (2016). Then by Algorithm 1, an
SOL((64, 16); 2; 2, 2, 2, 2) can be obtained which is listed in Table 2.

3. Uniform SLHDs with branching and nested factors

Another popular design property is the uniformity. As a matter of fact, the uniformity of the new design in Fig. 1 may not
be ideal. In the worst case, if all Fi’s for i = 1, . . . , s in Algorithm 1 are the same, then the points from each slice of the first
layer in the obtained design will stack together. Such a clustered structure should be avoided. Therefore, we need to find
the proposed designs with better uniformity. There are several uniformity criteria, such as, the maximin distance (Johnson
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Table 2
The obtained design in Example 2.
Run z v x1 x2 Run z v x1 x2
1 α α1 33 42 33 γ γ1 43 5
2 α α1 41 30 34 γ γ1 31 13
3 α α1 49 58 35 γ γ1 59 41
4 α α1 57 14 36 γ γ1 15 33
5 α α1 29 22 37 γ γ1 23 57
6 α α1 21 34 38 γ γ1 35 49
7 α α1 13 6 39 γ γ1 7 21
8 α α1 5 50 40 γ γ1 51 29
9 α α2 37 46 41 γ γ2 47 1

10 α α2 45 26 42 γ γ2 27 9
11 α α2 53 62 43 γ γ2 63 45
12 α α2 61 10 44 γ γ2 11 37
13 α α2 25 18 45 γ γ2 19 61
14 α α2 17 38 46 γ γ2 39 53
15 α α2 9 2 47 γ γ2 3 17
16 α α2 1 54 48 γ γ2 55 25

17 β β1 34 8 49 δ δ1 44 51
18 β β1 42 16 50 δ δ1 32 7
19 β β1 50 44 51 δ δ1 60 31
20 β β1 58 36 52 δ δ1 16 43
21 β β1 30 60 53 δ δ1 24 15
22 β β1 22 52 54 δ δ1 36 59
23 β β1 14 24 55 δ δ1 8 35
24 β β1 6 32 56 δ δ1 52 23
25 β β2 38 4 57 δ δ2 48 55
26 β β2 46 12 58 δ δ2 28 3
27 β β2 54 48 59 δ δ2 64 27
28 β β2 62 40 60 δ δ2 12 47
29 β β2 26 64 61 δ δ2 20 11
30 β β2 18 56 62 δ δ2 40 63
31 β β2 10 20 63 δ δ2 4 39
32 β β2 2 28 64 δ δ2 56 19

et al., 1990) and centered L2-discrepancy (CD2, Hickernell, 1998). Here, the CD2 is used as the optimization criterion, as
recommended by Fang et al. (2006, 2018). Other criteria, if desired, can be used as well. The CD2 value of a design D = (dij)
with N runs, q factors and levels in [0, 1], denoted by CD2(D), can be calculated by

CD2(D) =

[(
13
12

)q

−
2
N

N∑
k=1

q∏
l=1

(
1 +

1
2

⏐⏐dkl − 0.5
⏐⏐ −

1
2

⏐⏐dkl − 0.5
⏐⏐2)

+
1
N2

N∑
k=1

N∑
j=1

q∏
i=1

(
1 +

1
2

⏐⏐dki − 0.5
⏐⏐ +

1
2

⏐⏐dji − 0.5
⏐⏐ −

1
2

⏐⏐dki − dji
⏐⏐)⎤⎦ 1

2

. (1)

Note that for a design D = (dij) with N runs, q factors and levels 1, . . . ,N , before calculating the CD2 value, its levels must
be mapped into [0, 1] through (dij − 0.5)/N → dij for i = 1, . . . ,N and j = 1, . . . , q. Let D be the set containing all the
SL((N, n); q; t1, . . . , ts)’s, then the objective is to find a two-layer SLHD D∗ ∈ D such that

CD2(D∗) = min
D∈D

CD2(D),

here D∗ is called a uniform two-layer SLHD. The optimization steps are stated in the following Algorithm 2, which is based
on the threshold accepting (TA) algorithm (Dueck and Scheuer, 1990).

Algorithm 2.
Step 1. Generate an SL((N, n); q; t1, . . . , ts) by Algorithm 1 as the initial design, denoted by D0, and calculate CD2(D0). Set a

sequence of threshold parameter T = (T1, . . . , TL), where T1 > · · · > TL = 0. Denote the maximum iteration number
by I under each Tl for l = 1, . . . , L. Set two indexes l = 1 and i = 1.

Step 2. Choose a neighbor of D0, denoted as Dc , by the following three steps.

(a) Randomly choose one column of D0 and two slices in the first layer, exchange some two elements that are equal
after level-collapsing ⌈·/s⌉;

(b) Within each Si for i = 1, . . . , s, in the second layer of the selected column in (a), exchange some two elements
that are equal after level-collapsing ⌈·/(sti)⌉;
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Fig. 2. Scatter plot of the obtained uniform SLHD.

(c) Exchange any two elements in one common slice of Si in the selected column in (a) for i = 1, . . . , s.

Step 3. Calculate CD2(Dc). If CD2(Dc) − CD2(D0) ≤ Tl, replace D0 by Dc ; else leave D0 unchanged.
Step 4. Update i = i + 1, if i ≤ I , go to Step 2.
Step 5. Update l = l + 1, if l ≤ L, reset i = 1 and go to Step 2; else set Dbest = D0.

Due to the limitation of the TA algorithm itself, we recommend that several initial designs D0 should be tried in
Algorithm 2 in order to achieve a global optimal design. The three steps in Step 2 focus on different exchanges in different
parts of the design: Step (a)makes exchanges in the first layer, Step (b) in the second layer and Step (c) in the smallest slice of
the design. Therefore, a better neighbor can be obtained by carrying out all three steps, but cannot by any single step alone.
An illustrative example is given as follows.

Example 3 (Example 1 Continued). In this example, we optimize the two-layer SLHD D in Example 1 by Algorithm 2, where
the parameters are set to be T = (0.0001, 0.00009, . . . , 0) and I = 10000. The CD2 value of the initial D0 = D is 0.0540, and
all its neighbors can be obtained as follows: for example, suppose the first column of D0 is selected, then we can exchange
elements 9 and 10 by Step (a) since ⌈9/2⌉ = ⌈10/2⌉, exchange elements 5 and 7 by Step (b) since ⌈5/(2×2)⌉ = ⌈7/(2×2)⌉,
and exchange elements 11 and 3 by Step (c) since they belong to the same slice of S1 in the second layer.

D0 =

(
S1
S2

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 12
1 8
5 4

11 2
3 10
7 6
6 7
8 1
2 3

10 11
4 9

12 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→ Dc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10 12
1 8
7 4
3 2

11 10
5 6
6 7
8 1
2 3
9 11
4 9

12 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
After carrying out Algorithm 2, the CD2 value of the final design is reduced to 0.0470. The uniform two-layer SLHD is given
in Table 3, and its scatter plot is presented in Fig. 2. Obviously, the design points in Fig. 2 spread much more evenly than
those in Fig. 1.

4. Concluding remarks

In this paper, we propose a method for constructing SLHDs with both branching and nested factors, which are a special
class of SLHDs with two-layer sliced structures, and the method can be easily extended to construct SLHDs with more
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Table 3
Uniform SLHD in Example 3.
Run B N x1 x2
1 α α1 2 3
2 α α1 7 12
3 α α1 9 7
4 α α2 6 9
5 α α2 4 6
6 α α2 11 2

7 β β1 12 10
8 β β1 5 1
9 β β2 1 8

10 β β2 8 4
11 β β3 3 11
12 β β3 10 5

layers. Orthogonality of the proposed SLHDs is considered. As in Theorem 2, we use OLHDs and SOLHDs to obtain two-layer
orthogonal SLHDs. Fortunately, there aremany literatures on OLHDs, such as Steinberg and Lin (2006), Lin et al. (2009, 2010),
Pang et al. (2009), Sun et al. (2009, 2010), Ai et al. (2012), Yang and Liu (2012), Wang et al. (2018), among others; and on
SOLHDs, including Yang et al. (2013), Huang et al. (2014), Cao and Liu (2015), Yang et al. (2016), and Wang et al. (2017). So
the achievement of orthogonality of the proposed designs is rather straightforward. Moreover, based on the CD2, uniform
two-layer SLHDs can be obtained by Algorithm 2.

Under re-parameter, the proposed designs may have the same structures with the designs in Guo et al. (2017) and Chen
and Liu (2015). However, the construction methods and resulting designs are different (e.g., the number of the slices in the
second layer are not flexible as in Chen and Liu 2015). Furthermore, Guo et al. (2017) only considered the orthogonality
property, but here we consider both orthogonality and uniformity.
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Appendix

Proof of Theorem 1.
To prove part (i), we only need to show that Si is an LHD, because it is obvious that the sliced structure of Si follows the

sliced structure of Fi for i = 1, . . . , s. Without loss of generality, we only consider one column of Si, say the jth column Si(:, j)
for any j = 1, . . . , q. Since E(i, j) is any one element from {1, . . . , s}, say e, and Fi(:, j) for any i = 1, . . . , s is a permutation on
{1, . . . , n}, it can be easily verified that Si(:, j) is a permutation on {e, e + s, . . . , e + (n − 1)s}. This proves that Si is an LHD,
and more explicitly, an L(n, q), thus Si is an SL(n, q, ti).

To prove part (ii), we only need to prove that D is an LHD, since Si for i = 1, . . . , s are already LHDs. Similarly, we only
consider the jth column D(:, j) for any j = 1, . . . , q. It is obvious that D(:, j) is a permutation on {S1(:, j), . . . , Ss(:, j)} =

{1, 1 + s, . . . , 1 + (n − 1)s, . . . , s, s + s, . . . , s + (n − 1)s} = {1, . . . ,N}, where N = ns. This shows that D is an LHD, thus an
SLHD, and more explicitly, an SL(N, q, s). □

Proof of Theorem 2. To prove that D is an orthogonal SLHD with two layers, we need to show that not only D but also its
slices Si’s for i = 1, . . . , s are all orthogonal. First, we prove that D is an SOLHD. It is obvious that we only need to consider
the orthogonality of any two columns of D, without loss of generality, say the first two columns, denoted by d1 and d2. The
objective is to show corr(d1, d2) = 0. Assume that they are generated by the first two columns e1 and e2 from E and the first
two columns f1 and f2 from F , respectively, where ei = (e1i, . . . , esi)′, and fi = (f1i, . . . , fni)′ for i = 1, 2. Then

d1 = (e11 + sf11 − s, . . . , e11 + sfn1 − s, . . . , es1 + sf11 − s, . . . , es1 + sfn1 − s)′,
d2 = (e12 + sf12 − s, . . . , e12 + sfn2 − s, . . . , es2 + sf12 − s, . . . , es2 + sfn2 − s)′.

Since corr(e1, e2) = 0 and corr(f1, f2) = 0, i.e.,
s∑

i=1

(e1i − ē1)(e2i − ē2) = 0,
n∑

j=1

(f1j − f̄1)(f2j − f̄2) = 0,
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where ē1 =
1
s

∑s
i=1 e1i, and ē2, f̄1, f̄2 are similarly defined, then the numerator of corr(d1, d2) equals

s∑
i=1

n∑
j=1

((e1i + sf1j − s) − (ē1 + sf̄1 − s))((e2i + sf2j − s) − (ē2 + sf̄2 − s))

=

s∑
i=1

n∑
j=1

((e1i − ē1) + s(f1j − f̄1))((e2i − ē2) + s(f2j − f̄2))

=

s∑
i=1

n∑
j=1

(e1i − ē1)(e2i − ē2) + s
s∑

i=1

n∑
j=1

(e1i − ē1)(f2j − f̄2)

+ s
s∑

i=1

n∑
j=1

(f1j − f̄1)(e2i − ē2) + s2
s∑

i=1

n∑
j=1

(f1j − f̄1)(f2j − f̄2)

= 0,

thus corr(d1, d2) = 0, which means that D is an SOLHD. Similarly, we can prove that each slice of D is an SOLHD. This
completes the proof of Theorem 2.
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