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ABSTRACT
Lead time plays an important role in many areas, including supply chain,
economics, and marketing. A conventional assumption in most stochastic
lead-time inventory models is that the lead times are independent and
identically distributed (i.i.d.). However, it can be shown that applying such
an assumption on practical lead time may not be valid in case of order
crossover. An order crossover occurs when a later order received earlier.
This becomes a common phenomenon in many business applications. Any
inventory policy based on identically distributed practical lead times needs
to be re-investigated. Although the crossover issue has been noticed in
the literature, the exact solution for lead-time distribution under crossover
remains primitive. Inventory model generally can be separated into two
classes, periodic and continuous review. Our paper focuses on continuous-
review models. When the lead-time sequence is stationary, some common
techniques might be useful to estimate the statistics of the distribution,
such as the autocorrelation function and partial autocorrelation function.
However, the practical lead time in case of order crossover is not stationary.
The proposed method reveals the joint distribution of the practical
lead time instead. Any statistics, such as mean and correlation, can be
estimated from the joint distribution directly. Subsequently, the optimal
inventory police can be obtained in case of order crossover. An exponential
distributed lead-time case study is used to demonstrate the use of the
proposed method and the risk of mis-use i.i.d. practical lead times. Other
phenomena can be studied by similar derivation.
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1. Introduction

A lead time is a time from the initiation to the completion of a process, such as shipping time and
manufacturing time. Lead time is concerned not only for customers but also for retailers in many
aspects. For example, when the shipping time from supplier to warehouse takes too long, a larger
warehouse is needed, thus increase in the storage cost.

Lead time and demand are two most important components in most supply chain systems. Lead
time can be basically classified into two types: (1) deterministic lead time means that lead time is
fixed, and (2) stochastic lead time means that lead time is a random variable. Similarly, demand can
be classified into deterministic and stochastic as well. Table 1 shows those four basic combinations.
The first type (Model 1) is with deterministic lead time and deterministic demand. The second type
(Model 2) is with deterministic lead time and stochastic demand. These two types of models have
deterministic lead times. These models are simpler than models with stochastic lead time. However,
any inventory model based on deterministic lead time may not be realistic. The third type (Model 3)
is with stochastic lead time and deterministic demand and the fourth one (Model 4) is with stochastic
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Figure 1. Time line diagram: illustration for order crossover.

Table 1. Classes of supply chain system.

Lead time Demand rate

Deterministic Stochastic

Deterministic Model 1 Model 2
Stochastic Model 3 Model 4

lead time and stochastic demand. The last two types of models focusing on the stochastic lead time
are widely used (See, for example, Nasri, Paknejad, & Affisco, 2008; Ryu & Lee, 2003).

Independent and identically distributed (i.i.d.) lead time is assumed in many studies. However,
such an i.i.d. assumption is invalid due to order crossover. The order crossover phenomenon is
introduced by Hadley and Whitin (1963). It indicates that orders are not received in the same
sequence in which they were placed. Take Figure 1 as an example. An order is placed at time t1 and
another order is placed at time t2 (with t1 < t2). Suppose order number 1 arrived at time w1 while
order number 2 arrived at time w2. If w2 is earlier than w1, this is called an order crossover. The
theoretical lead time of the first order (x1 = w1 − t1) is the time from the first order placed (t1) to
the first order delivered (w1); and the theoretical lead time of the second order (x2 = w2 − t2) is
the time from the second order placed (t2) to the second order delivered (w2). However, when there
is a crossover (w2 < w1), the practical lead time of the first order (z1 = w2 − t1) is the time from
the first order placed to the second order delivered; while the practical lead time of the second order
(z2 = w1− t2) is the time from the second order placed to the first order delivered. Thus, the practical
lead time of the first order is shorter than or equal to the theoretical lead time of the first order.
Riezebos (2006) distinguishes different types of order crossovers only based on the characteristics
of lead time and lead time fluctuations. The literature suggests that order crossovers should not be
ignored in modern supply chain management. However, no explicit form has been shown.

Literature analyzes lead time distribution under different review policy: periodic review and
continuous review. Under periodic review, Zalkind (1978) provides the distribution of the amount
of stock on order while both the demand distribution and the lead time distribution are discrete
and bounded. Robinson, Bradley, and Thomas (2001) uses the shortfall distribution to describe the
distribution of the practical lead times under order-up-to inventory policies; shows that the inventory
cost using the theoretical lead-time demand distribution leads to significantly higher inventory cost.
The indicators and methodologies for analyzing, optimizing, and managing the inventory systems
should be modified in case of order crossover (See, for example, Bischak, Robb, Silver, & Blackburn,
2013; Bradley & Robinson, 2005; Wensing & Kuhn, 2014).
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The continuous-review models are also affected in case of order crossover. Hayya, Bagchi, Kim,
and Sun (2008) generates a sequence of realizations of the theoretical lead time, calculate arrival time,
sort the arrival time, and then estimate the practical lead time. The mean and autocorrelation of the
large sequence are used to represent the overall lead time behavior. Hayya, Harrison, and Chatfield
(2009) provides a solution for the intractable inventory model when both demand and lead time
are stochastic. The impact of using a sequence of the practical lead time on inventory cost is further
studied in Hayya, Harrison, and He (2011). Those studies focus on the fact that the distribution of
practical lead time is different from the distribution of theoretical lead time. Estimations, such as
mean and variance, are based on 100,000 realizations of the sorted theoretical lead time. Disney,
Maltz, Wang, andWarburton (2016) present global logistics data and shows order-up-to policy may
not be the cost-optimal policy in global supply chains in case of order crossover. Nielsen, Banaszak,
Bocewicz, andMichna (2017) intend to study how often the order crossover occurs and the structure
of the practical lead time.

The statistics estimated from a sequence of realizations are used to study the practical lead time
structure. The autocorrelation function or partial autocorrelation function are commonly used to
present the dependency between two lead times with different lags. However, these estimations
from a sequence of realizations suffer from the fact that the practical lead times are not stationary.
Especially for earlier orders, mean and variance should be carefully studied since the distributions
are different. As can be seen in Figures 3 and 6 later on, the distribution of the first practical lead
time is very different from that of the 509th one. Instead of estimating statistics by one sequence, our
proposed algorithm estimates statistics for any order and the correlations between any two order’s
lead time directly. It can be shown that the correlation of any two order’s lead times may not be the
same even though the time lags of the orders are the same since the practical lead time sequence is a
non-stationary process.

The rest of the paper is organized as follows. Section 2 introduces the definitions and procedure
to transform the theoretical lead time into the practical lead time. The proposed method is used to
study the behavior of the practical lead time. Section 3 provides results under the commonly used
exponential distribution. Both theoretical and simulative results are presented. Section 4 illustrates the
importance of the practical lead time via a case study. Section 5 concludes advantages and limitations
of applying practical lead time in case of order crossover.

2. Problem formulation

Let ti be the time that the ith order is placed, i ∈ {1, 2, ..., n} and Xi be its corresponding theoretical
stochastic lead time (with its realization xi). Thus the received time is wi := ti + xi. When there is
no order crossover, we have w1 ≤ w2 ≤ ... ≤ wn. When there is order crossover, such an ordering
may not hold. We thus sort all wi’s such that w(1) ≤ w(2) ≤ ... ≤ w(n) where w(i) is the ith smallest
value among all wi’s. This is the practical received times. Consequently, the practical lead time is
zi := w(i) − ti. Note that, when there is no order crossover, zi is indeed xi for all i, but it is not true in
case of order crossover. As will be shown, using xi’s in case of order crossover (as in most literature)
can be misleading.

Proposedmethod

The following steps are proposed to study the behavior of the practical lead times,

Step 1. For each order time t, generate a realization xt from the theoretical lead time, Xt . In this step,
n numbers are generated, (x1, x2, ..., xn).

Step 2. Derive their corresponding practical lead times, zt ’s. They can be obtained as follow:
(a) Receiving time wt is t + xt .
(b) Put wt ’s in order: w(1) ≤ w(2) ≤ ... ≤ w(n).
(c) The realization of the practical lead time zt is then w(t) − t.
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Figure 2. A diagram of the proposed method.

Step 3. Repeat Steps 1 and 2 r times. For each fixed order time t, one empirical distribution based on r
realizations is formulated. Density estimation as well as some basic descriptive statistics, such
as mean and standard deviation, can be evaluated.

Step 4. Repeat Steps 1 to 3 s times. For each fixed order time t, the end-product is s empirical
distributions. One could further study the change of the empirical distribution.

This algorithm first generates a sequence of the theoretical lead time at time t, t = 1, 2, ..., n. The
realizations of the practical lead time are further studied. Thus, by repeating Steps 1 to 2, we collect
r realizations of the practical lead time for each fixed time t. An empirical distribution is revealed.
It can be shown that practical lead times are neither identically distributed nor independent. For
Step 4, we repeat Steps 1 to 3 s times, that is, for each fixed time t, we have s empirical distributions.
Then the change of empirical distributions, of means, and of standard deviations can be studied. The
procedure can be displayed in Figure 2.

Given any theoretical lead time, the practical lead time can be revealed by the proposed method.
Whether there is any order crossover, the practical lead time is always valid. However, the theoretical
derivation for the practical lead time distribution is only possible for some specific case.

3. Exponentially distributed lead time

One of the popularly used distributions of theoretical lead times is the exponential distribution. This
section provides (theoretical as well as empirical) results of the practical lead time under exponentially
distributed theoretical lead time. Section 3.1 studies the first practical lead time (Z1) and finds that it
(Z1) is very different from the first theoretical lead time (X1). Section 3.2 provides applications of the
proposed method. In Section 3.3, statistics, such as mean, variance, and correlation, of the practical
lead time are summarized when the mean of the exponential distributed theoretical lead time is 10 (λ



QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT 5

= 1/10). These results show that (1) the practical lead time is different from the theoretical lead time,
and (2) the practical lead times are not identically distributed. In Section 3.4, it can be further shown
such a phenomenon is held when changing the value of parameter λ; that is, the practical lead time
is generally different from the theoretical lead time due to order crossover.

3.1. Theoretical properties of the first practical lead time (Z1)

Suppose X1 and X2 are independent continuous random variables. Let Z be min{X1,X2}. The
cumulative distribution function of random variable Z is,

FZ(z) = P(Z ≤ z) = P(min{X1,X2} ≤ z)
= P(X1 ≤ z) + P(X2 ≤ z) − P(X1 ≤ z, X2 ≤ z)
= P(X1 ≤ z) + P(X2 ≤ z) − P(X1 ≤ z)P(X2 ≤ z).

The probability density function of Z is thus,

fZ(z) = fX1(z) + fX2(z) − fX1(z)P(X2 ≤ z) − P(X1 ≤ z)fX2(z)
= fX1(z)[1 − P(X2 ≤ z)] + fX2(z)[1 − P(X1 ≤ z)]
= fX1(z)

∫ ∞

z
fX2(x)dx + fX2(z)

∫ ∞

z
fX1(x)dx.

Hence, we have Proposition 3.1 below.
Proposition 3.1: If X1 and X2 are independent continuous random variables and Z := min{X1,X2},
then

fZ(z) = fX1(z)
∫ ∞

z
fX2(x)dx + fX2(z)

∫ ∞

z
fX1(x)dx.

Using Proposition 3.1, the distribution of practical lead time Z1 can be generated when the
distribution of theoretical lead times are given. For instance, if the theoretical lead times are i.i.d.
exponentially distributed, the first practical lead time, Z1, can be shown in Theorem 3.1. The proof
of Theorem 3.1 is shown in Appendix 1.
Theorem 3.1: Let an order be placed at each time, 1, 2, ..., and n. If the theoretical lead times follow
an exponential distribution, f (t) = λ exp ( − λ t), then the distribution of the first practical lead time,
Z(n)
1 , is as follows,

fZ(n)
1

(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ exp ( − λ t), if 0 ≤ t ≤ 1;
2λ exp ( − λ(2t − 1)), if 1 ≤ t ≤ 2;
3λ exp ( − λ(3t − 3)), if 2 ≤ t ≤ 3;
...

(n − 1)λ exp
(

− λ

(
(n − 1)t − (n−2)(n−1)

2

))
, if n − 2 ≤ t ≤ n − 1;

nλ exp
(

− λ

(
nt − (n−1)n

2

))
, if n − 1 ≤ t.

Figure 3 shows the pdf of the theoretical and the practical lead time (taking λ = 0.1 as an
example). These two distributions are clearly different. For example, around 90% probability that the
practical lead time occurs within a certain period, say [0, 7), but only around 50% probability that the
theoretical lead does. Precisely, the probability of the practical lead time less than 7 is 0.9392; and the
theoretical lead time is less than 7 is 0.5034. More general results will be shown in Section 3.4.



6 C.-C. YANG AND D. K. J. LIN

Figure 3. Probability density functions, fZ1 (t) and fX1 (t), given λ = 0.1.

3.2. Distribution of the practical lead time in general

The practical lead time for other time period, in general, is rather complicated. Based on the proposed
method in Section 2, realizations of the practical lead times are constructed. Thus, the empirical
distribution of the practical lead times and the correlations among the practical lead times can be
obtained.

Assume the theoretical lead times, X1, X2, ..., and Xn, are i.i.d. exponential distributed, that is,
fXi (x) = λ exp ( − λ x). Suppose an order is placed at each time t (t = 1, 2, ..., 1000). The proposed
method generates the realizations of the theoretical lead times, xt ’s, and then reveals the realization
of the practical lead times. By repeating Steps 1 and 2 of the proposed method 500 times, we can
estimate the density by the empirical distribution of practical lead time of the order at any fixed time
t. Its statistics, such as mean and standard deviation, can also be calculated. Repeating the procedure
of gathering the empirical distribution at any fixed time t 100 times, we can study the change of
empirical distribution and the changes of mean, standard deviation, and correlation through the
time t.

3.3. Scenario: λ = 0.1, r = 500, s = 100, and n = 1000

As an example, this Section studies the behavior of all practical lead times (Z1, Z2, ..., and Zn) when
λ = 0.1. The number r = 500 controls the number of realizations of the practical lead time for each
time t; while the number s = 100 controls the number of empirical distributions for each fixed time
t. Also set n = 1000.

Figure 4 shows themean practical lead times for the first 20 orders. The x-axis in Figure 4 indicates
the time that order is placed. The mean lead time for the first order is 3.48 which is consistent with
Theorem 3.1 (Section 3.1). The mean lead time for each order increases as the time increases until
the mean lead time approach to 10. This fact indicates that the practical lead times are not identically
distributed.

However, for the practical lead time of orders placed at time t where t is large, the marginal
distributions are similar. Figure 5 shows the box plot of the mean of each 500 realizations when the
time order placed at 100, 200, ..., and 900. Take the time order placed at time 900 as an example,
under the scenario λ = 0.1, the probability that the theoretical lead time (X900) is greater than 100
is less than 0.001, i.e. P(X900 > 100) < 0.001. In other words, the orders which are placed after the
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Figure 4.Mean practical lead time.

time 1000 (= 900 + 100) will seldom affect the practical lead time of the order placed at time 900.
The impact of the orders placed after time 1000 can be ignored when we are only interested in the
practical lead time of orders placed before time 900. Thus, the estimations in Figure 5 reflect the true
estimations of the practical lead times. The long-termmean practical lead time is around 10 (between
9.35 and 10.35). The standard error of means for each ordering time is within 0.091 and 0.103. The
long-term mean practical lead times, therefore, may be treated as a constant, 10. If the long-term
mean practical lead time is used to replace all mean practical lead times (the fact that practical lead
times are not identically distributed is ignored), the mean practical lead time will be treated as the
same as the mean theoretical lead time. Subsequently, the estimations of any inventory model which
is involved with mean lead time, such as inventory cost, will be the same. However, the practical
lead times are not identically distributed. The mean practical lead times are not the same. Any model
involved with mean lead time should be re-investigated in the case of order crossover.

Take t = 509 as a typical example. The realizations of the practical lead time can be used to indicate
that the practical lead time is no longer exponential distributed. Figure 6 shows a histogram of the
realizations of the practical lead time at t = 509, the probability density function of an exponential
distribution with parameter λ = 0.1 (the curve in Figure 6(a)), and the probability density function
of a gamma distribution with parameter α = 20 and β = 2 (the curve in Figure 6(b)). The histogram
of Z509 in Figure 6(a) shows clearly that its realizations do not follow an exponential distribution.
The vertical line of Figure 6(a) is the 99% quantile of 500 realizations of the practical lead time. The
probability of the theoretical exponential lead time less than the vertical line is less than 80% (shaded
area in Figure 6(a)). In other words, with probability 20% or more, the model using the theoretical
lead time is improper. The sample standard deviation of the practical lead time can be estimated
as well. The sample standard deviation is around 2.23 (≈ √

1/(2λ) = 2.236) while the population
standard deviation of the theoretical lead time is 10. In general, the distribution of all practical lead
times do not follow the distribution of the theoretical lead time.
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Figure 5. Box plot of means of practical lead times.

Figure 6. Histogram of a set of realizations for t = 509.

In fact, Figure 6(b) shows that the practical lead time at t = 509 behaves like a gamma distribution
fZ(t) = βα

�(α)
tα−1e−βt , (α = 20 and β = 2) with mean 10 and standard deviation

√
5. On the other

hand, Theorem 3.1 provides the mean and standard deviation of the first practical lead time, 3.48
and 2.06, respectively. Regardless, the dependence of the lead times, the practical lead times are not
identically distributed and different from the theoretical lead times.

If not independent, the dependence of the practical lead times cannot be ignored. Correlation
is a basic estimation of referring to any departure of the practical lead times from independence.
The correlations among the theoretical lead times will be a baseline for highlighting the relatively
high correlation among the practical lead times. Figure 7 shows the correlations among the first
50 practical lead times (Figure 7(a)) and the correlations among the first 50 theoretical lead times
(Figure 7(b)). Each graph contains 50 × 50 cells. The scale of the cell for the cth column and the rth
row represents the level of correlation between the cth lead time and the rth lead time. A light scale
indicates that two lead times are less correlated. Since the theoretical lead times are generated from
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Figure 7. Correlations among the first 50 lead times.

i.i.d. exponential distribution, the correlations among the theoretical lead times are low, as can be
seen in Figure 7(a). However, the correlations among the practical lead times are relatively high as
shown in Figure 7(b). Specifically, the maximum of the correlations from the first 50 theoretical lead
time is 0.15; while 35% of the correlations from the first 50 practical lead time is greater than 0.15.
Thus, the independence assumption cannot be applied on the practical lead time in case of order
crossover. Moreover, the correlations are not the same even though the lags of two orders are the
same. Let’s use the correlations between lead times at the 1st order and the 5th order and at the 21st
order and the 25th order as an example. The correlation between lead times at the 1st order and the
5th order is around 0.27 while the one at the 21st order and the 25th order is around 0.66. Using one
number for the lead times with the same lag, therefore, might not be appropriate.

3.4. General λ values

In general, if the theoretical lead times follow an exponential distribution with parameter λ, the
long-term mean practical lead time is close to the expectation of the theoretical lead time, 1/λ. The
standard deviation of the practical lead time and that of the theoretical lead time behavior differently.
Table 2 shows the standard deviation (SD) of the practical lead time, the value

√
1/(2λ), and the

standard deviation of the corresponding exponential distribution when λ = 2, 1, 1/5, 1/10, 1/20,
and 1/50. It indicates the standard deviation of the practical lead time is close to

√
1/(2λ) instead of

the standard deviation of the theoretical lead time, 1/λ, when λ is small.
The fact that the standard deviation of the practical lead time differs from that, 1/λ, of the

exponential distribution can basically show that the practical lead times do not follow the exponential
distribution. Note that, a gamma distribution with α = 2

λ
and β = 2 will have mean 1/λ and

standard deviation
√
1/(2λ). It can be used to estimate the empirical distribution of the practical

lead time. Thus, in case of order crossover, the standard deviation of practical lead time is less than
min{1/λ,√1/(2λ)}. It is also shown that different frequency of order crossover leads to different
behavior of the practical lead times even though the theoretical lead times follows the exponential
distributions.

4. Case study

The Economic-Order-Quantity model (EOQ) is a result of classical optimization of inventory related
costs. Nasri, Paknejad, and Affisco (2012) analyze the flexibility and quality improvement in a
quality-adjusted EOQ model with finite-range stochastic lead-time. The flexibility improvement
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Table 2. Simulations by different lambda.

λ

2 1 1/5 1/10 1/20 1/50

SD 0.42 0.65 1.56 2.22 3.14 4.98√
1/(2λ) 0.50 0.71 1.58 2.24 3.16 5.00

1/λ 0.50 1.00 5.00 10.00 20.00 50.00

model reduces almost 10% of the optimal average cost per unit time in the quality-adjusted EOQ
model. However, the variability of lead time could be an issue in the case of order crossover (as shown
in Section 3).

One of the main focuses of EOQ models is to predict the expected average cost (EAC) per unit
time. When the predicted cost is greater than the real cost, a company’s budget is overestimated. On
the other hand, if the predicted cost is less than the real cost, the shortage will cause seriously short
of liquidity. The optimal average cost in the EOQ model is thus important to avoid these shortages.
The accurate estimation of the optimal average cost is desirable.

The basic EOQmodel developed by Sphicas and Nasri (1984) is a stochastic lead time model with
meanμ, varianceV and support in (α,β). The optimal expected average cost per unit time, EACbasic,
can be obtained as

EACbasic =
√

[2DK + VD2(h + p)]/
(
1
h

+ 1
p

)
,

where, D = demand per unit time (in units),
K = setup cost per setup,
h = holding cost per (non-defective) unit per unit time,
p = backorder cost per (non-defective) unit cost per unit time, and
V = variance of the lead time.

A similar model involved with defective units is proposed Paknejad, Nasri, and Affisco (2005). The
optimal expected average cost per unit time of the model, EACadj, is obtained as h

2
ρ

1+ρ
+ ηEACbasic

where η =
[
1 + 2h′ρ

(
1
h + 1

p

)]1/2
, ρ is the ratio of the probability of a defective unit to of a

nondefective unit, and h′ is defective holding cost per unit per unit time. The same restriction is
applied to both models. The restriction is used to guarantee that orders do not cross, see Appendix
2 for details. The restriction results in a small range of the stochastic lead time. However, orders do
cross over and the small range of the stochastic lead time is unrealistic.

To study the impact of the EAC using the practical lead time and the theoretical lead time, a
thorough simulation is conducted. SetD = 520, K = 50, h = 10, p = 20, ρ = 0.25, and λ = 1. Since
the variance of the lead time affects the optimal expected average cost, the proposed algorithm is used
to estimate the variance of the practical lead time using λ = 1. The variances of the practical lead
times are from 0.38 to 0.42. Note that a smaller variance leads to a smaller value of the EOQ model.
The largest variance of the practical lead time is used as the baseline. Table 3 shows the optimal
expected average cost calculated by applying the theoretical and the practical lead time for both EOQ
and adjusted EOQmodel. Under basic EOQmodel, the difference between the EAC formula with the
theoretical lead time and with the practical lead time is 2591.22 (7377.44–4786.22). This difference is
35% of the EAC under the theoretical lead time. It is a great proportion of the EAC of the EOQmodel
with the theoretical lead time. Similarly, under adjusted EOQmodel, the difference between the EAC
of adjusted EOQ model with the theoretical lead time and with the practical lead time is 3038.48
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Table 3. Predictions based on the theoretical and practical lead times.

Theoretical LT Practical LT

EAC 7377.44 4786.22
EACadj 8650.82 5612.34

(8650.82–5612.34), a 35% of the EAC with the theoretical lead time. It is a great proportion of the
EACof the adjusted EOQmodewith the theoretical lead time as well. The outcomes are different. The
estimation from the practical lead time reflects the reality; the estimation from the theoretical lead
time is larger than the real cost. As the previous discussion, the company’s budget is overestimated if
the theoretical lead time is used.

5. Conclusion

Lead time plays an important role in many areas, such as supply chain, economics, and marketing.
For stochastic lead times, the distribution of lead time, which describes the uncertainty of lead time,
is thus critical. The conventional assumption is that the lead times are independent and identically
distributed (i.i.d.). However, such an assumptionmay not be valid due to order crossover - a crossover
is a case when orders are not received in the same sequence inwhich theywere placed. Although order
crossover phenomenon has been noticed by Hadley and Whitin (1963), their theoretical/practical
properties remain primitive. Recently, order crossover has received more attention as it has become
a common phenomenon in this e-business era.

In the case of order crossover, the distribution of the practical and theoretical lead timemay be very
different. The joint distribution of the practical lead times can be revealed by the proposed method.
The marginal distribution of the practical lead times are shown to be non-stationary (clearly not
i.i.d.). The descriptive statistics of any practical lead time at different order time should be estimated
separately. Consequently, any inventory policy based on stationary lead times may need to be re-
investigated due to order crossover. Take the EOQ model as an example, the distribution of the
practical lead time can be obtained via the proposed method. The expected average cost based on the
practical lead time is more reliable than that based on the theoretical lead time, leading to a different
inventory policy.

Different frequency of the order crossovers leads to different behavior of the practical lead times
as well. The four-step proposed method provides a solution to describe the joint distribution of the
practical lead time for any stochastic lead-time model due to order crossover. Although the method
requires numerical simulation to yield an empirical joint distribution of the practical lead times, the
consistency of the joint distributions can be evaluated (Step 4). In fact, the proposed method can be
applied to any distribution for theoretical lead time.
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Appendix 1. Proof of theorem 3.1
Mathematical induction is used to prove the proposed function holds for any n. The first step shows that the function
holds when n = 1. The second step shows, if the function holds when n = k, the function holds when n = k + 1. By
induction, the function is true for any n. The steps shows as follows,

1◦: For n = 1, fZ(1)
1

(t) = fX1 (t) = λ exp ( − λ t), where 0 ≤ t. The function holds.
2◦: if n = k is true, that is,

fZ(k)
1

(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ exp ( − λ t), if 0 ≤ t ≤ 1;
2λ exp ( − λ(2t − 1)), if 1 ≤ t ≤ 2;
3λ exp ( − λ(3t − 3)), if 2 ≤ t ≤ 3;
...

(k − 1)λ exp
(

− λ

(
(k − 1)t − (k−2)(k−1)

2

))
, if k − 2 ≤ t ≤ k − 1;

kλ exp
(

− λ

(
kt − (k−1)k

2

))
, if k − 1 ≤ t;

For n = k + 1, Z(k+1)
1 = min{Z(k)

1 + 1,Xk+1 + (k + 1)} − 1 = min{Z(k)
1 ,Xk+1 + k}. By Proposition 1, when t ≥ k,

fZ(k+1)
1

(t) = kλ exp
(

− λ

(
kt − (k − 1)k

2

)) ∫ ∞

t−k
λ exp ( − λ s)ds

+ λ exp ( − λ (t − k))
∫ ∞

t
kλ exp

(
− λ

(
ks − (k − 1)k

2

))
ds

= kλ exp
(

− λ

(
kt − (k − 1)k

2

))
exp ( − λ (t − k))

+ λ exp ( − λ (t − k)) exp
(

− λ

(
kt − (k − 1)k

2

))
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= kλ exp
(

− λ(k + 1)t − k
(
k − 1
2

+ 1
))

+ λ exp
(

− λ(k + 1)t − k
(
k − 1
2

+ 1
))

= (k + 1)λ exp
(

− λ(k + 1)t −
(
k(k + 1)

2

))

Thus,

fZ(k+1)
1

(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ exp ( − λ t), if 0 ≤ t ≤ 1;
2λ exp ( − λ(2t − 1)), if 1 ≤ t ≤ 2;
3λ exp ( − λ(3t − 3)), if 2 ≤ t ≤ 3;
...

kλ exp
(

− λ

(
kt − (k−1)k

2

))
, if k − 1 ≤ t ≤ k;

(k + 1)λ exp
(

− λ

(
(k + 1)t − k(k+1)

2

))
, if k ≤ t;

Then n = k + 1 is also true.

Appendix 2. Restriction of the EOQmodels
The basic model Sphicas and Nasri (1984) and the model involving defective units Paknejad et al. (2005) have the same
restriction in order to have no crossover. Notice that these two models did not require independency of lead times and
assume the lead times is uniform distributed, denoted by U(α,β). The restriction is k ≥ k2 where

k = 2K
(h + p)D

,

k2 = (μ − α)2

�
− V , if � ≤ μ − α

β − μ

k2 = �(μ − β)2 − V , if � ≥ μ − α

β − μ

� = h/p.
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