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Abstract

Space-filling and projective properties are probably the two most important
features in computer experiment. The existing research works have tried to
develop different kinds of sequential Latin hypercube design (LHD) to meet
these two properties. However, most if not all of them cannot simultaneously
ensure these two properties in their versions of sequential LHD. In this paper, we
propose a novel sequential LHD that can simultaneously meet the space-filling
and the projective properties at each stage. A search algorithm is employed to
find how many design points should be added in each stage to ensure the pro-
jective property; and the “Maximin" criterion is used to meet the space-filling
property. Two kinds of examples for low dimension and higher dimension are
presented to illustrate how these sequential sampling processes are realized. The
proposed method can be applied to the areas where computationally expensive
simulations are involved.

KEYWORDS

computer experiment, Latin hypercube design, metamodel, sequential sampling

1 INTRODUCTION

Design and analysis of computer experiment (DACE) is widely utilized in expensive computer simulations. In order to
deal with the computational burden, the surrogate model (or metamodel) is used to replace the computationally expen-
sive simulations. Whether we can obtain a reliable metamodel strongly depends on what design points we have used to
construct it. It is widely believed that a design of computer experiment should possess good space-filling and projective
properties, which can be traced in the work of Johnson et al, Jin et al, Yang et al, Chen et al, Wang et al, Steinberg and
Lin, Yin et al,1-7 and Yang et al.8 Space-filling means the design points should fill up the design space as much as pos-
sible. Projective property requires that the projections of design points onto each dimension should be evenly located.
That is, there are no replication and point clustering in each interval of every design dimension. To guarantee these two
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properties, Maximin Latin hypercube design (LHD) was proposed in Johnson et al.1 After that, a great deal of literature
proposed different kinds of LHDs with good space-filling and projective properties. However, they are computationally
inefficient and time consuming in high-dimension problems. For instance, Kenny et al9 used the columnwise-pairwise
(CP) algorithm10 for constructing optimal symmetrical LHDs.9 reported that generating an optimal 25 × 4 LHDs using
CP could take several hours on a Sun SPARC 20 workstation. For a design as large as 100 × 10, the computational cost
could be formidable; thus, search processes often stopped before finding a good design. In addition, all these methods
construct the design points at once, meaning they are all one-stage sampling approaches.

To reduce the computational cost, sequential LHD was proposed to gradually increase the design points. The benefit
of sequential LHD is that one can sequentially generate design points until certain accuracy criterion is satisfied. On the
basis of the integrated mean squared error (IMSE) criterion, Sacks et al11 proposed a sequential sampling algorithm to
update the kriging metamodel. Jin et al12 used cross-validation (CV) error to sequentially generate new design points.
Kim et al13 developed a maximum modified CV error criterion to generate new-added design points. Alternatively, other
kinds of sequential strategy mainly focus on the space-filling or/and projective properties of LHD. Considering the effects
of the existing points, an inheriting (ie, historical design experiments can be inherited in later iterations) LHD approach
was presented by Wang14 to construct new LHD points in reduced design spaces and obtain the properties of LHD in
a subspace. Using a genetic algorithm optimization process, a Quasi-LHD method was developed by Xiong et al15 to
achieve space-filling and approximate projective properties. Employing a Monte Carlo approach, Crombecq et al16 pro-
posed a mc-intersite-proj-th (where, mc: Monte Carlo; proj: projected; th: threshold) approach to generate design points
sequentially. Combining Monte Carlo method and space-reduction strategy (MCSR), Liu et al17 proposed a Maximin
LHD approach to improve space-filling property. Taking the advantage of a kind of successive local enumeration (SLE)
approach, Zhu et al and Long et al18,19 used a sequential-successive local enumeration (S-SLE) method to develop a
sequential Maximin LHD method.

There are two points on sequential sampling strategy needed to emphasize:

1. Should we sequentially extract design points according to the “accuracy” of metamodel? In the whole process of
sequential sampling, design points are often extracted in the areas where the accuracy of a metamodel is enhanced
just with respect to certain criterion.11-13 used IMSE or CV to generate new design points to update the metamodel.
However, using CV error (or IMSE) criterion to choose metamodel is not reliable (see, for example, Zhou et al, Zhou
and Jiang, and Ouyang et al20-23). A metamodel with a small CV/IMSE error does not imply that it has a good predic-
tion capacity. Therefore, the CV/IMSE error may not be appropriate to determine the design points in the sequential
sampling process. For instance, a metamodel (such as Kriging, support vector machine [SVR],24-26 radial basis func-
tion [RBF]) has a small CV/IMSE value for a specific set of samples, but it maybe has an unsatisfactory prediction
result in the whole design space. To overcome this drawback, we choose to directly guarantee the space-filling and
projective properties in the whole sequential sampling process (or at least in the first several stages of the whole
sequential process). So a new kind of sequential LHD method is proposed in this paper to guarantee these two prop-
erties simultaneously in the whole sequential sampling process. More importantly, the proposed method does not
depend on the accuracy of a specified metamodel, so it is metamodel independent. Note that (a) in the first several
stages, only a certain percent (less than 100%) of the previous samples are needed in the current stage to ensure the
projective properties. For example, if there are six samples in the previous stage, then perhaps, only two samples are
needed to add to guarantee the whole set of these eight (6 + 2) samples is an LHD. (b) In the latter stages, when the
number of samples grows up, maybe 100% of the previous samples are needed. For example, if there are 30 samples
in the previous stage, then perhaps, another 30 samples are needed to add to guarantee the whole set of these 60
(30 + 30) samples is an LHD. Double number of samples of the previous stage can definitely guarantee the whole
set of the samples in the current stage to be a LHD. In other words, if the number of samples in the previous stage is
N, then add another N samples in the current stage can always ensure the whole set of these 2N samples is an LHD.
We explain it furthermore: if we split every dimension of the design space into 2N parts and project the original N
samples into these dimensions, then there are definitely N vacant intervals (vacant interval means there is no pro-
jection within it) on each dimension. Therefore, another N samples can be added to the original N samples, such
that every vacant interval has only one projection. Therefore, the set of the total 2N samples will always be an LHD.

2. Although some existing sequential sampling strategies also try to improve the space-filling and projective properties
of LHD in the sequential sampling process, none of them can ensure the projective property at each stage. They can
only obtain an “approximate” projective property (see, Xiong et al, Liu et al, and Long et al15-17,19). Some of them is
only able to have local properties of LHD rather than those of global LHD; that is, it is an LHD in a local subspace
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but not in the entire design space (see, Wang14). There, they can only guarantee the set of added if samples alone is
an LHD in subspaces, but the whole set of samples (including the original samples and the new-added samples) is
no longer an LHD in the whole space. Nevertheless, the proposed method in this paper can simultaneously ensure
both the space-filling and the projective properties in the whole space at each stage of the whole sequential sampling
process.

In a whole, the existing sequential LHD methods cannot ensure the projective property for the whole sequential process.
For example, in the work of Xiong et al,15 the authors use an optimization formulation to get the sequential samples, but
it cannot ensure accurate projective property in each stage (please see the fourth figure in their article). Another example
(please see the work of Wang14), where it is an LHD in a subspace, but it is no longer an LHD in the whole space, please
see the sixth figure in their work.

In this paper, a search algorithm is used to determine how many design points should be taken to guarantee the
projective property at each stage. The Maximin criterion is employed to ensure the space-filling property.

This paper is organized as follows. Section 2 details the proposed sequential LHD with an algorithm. Section 3 and
section 4 present some examples about how to sequentially generate design points to meet these two basic properties of
LHD. In section 5, a conclusion is given.

2 PROPOSED SEQUENTIAL LHD

In order to guarantee the space-filling and projective properties at each stage of sequential LHD, we design the following
algorithm. This algorithm is realized based on the version R2014a of MATLAB.

Algorithm 1 solves the following problems: (a) it determines how many design points should be employed in the
next stage so that the whole set of the design points (including the original design points in the previous stage and
the new-added design points in the current stage) possesses the projective property; (b) it finds the candidate loca-
tions (in one-dimensional design space, it refers to an interval; in two-dimensional design space, it refers to a plane; in
three-dimensional design space, it refers to a cubical subspace; in higher dimensional design space, it refers to a hyper sub-
space), where the design points can be generated so that the projective property can be met; and (c) it generates the design
points in the candidate locations according to Maximin criterion so that the space-filling property can be guaranteed.

Algorithm 1 (Sequential LHD):

Step 1: use the standard function lhsdesign in MATLAB to generate the initial design points with the number being
Ninitial.

Step 2: based upon the existing design points (denoted by Sexist with the number being Nexist), do the following steps.
(Note: *find Nadd using steps from 3 to 6)

Step 3: let k = 1.
Step 4: separate every dimension of the design space into Nexist + k intervals.
Step 5: judge whether each of those (Nexist + k) intervals on every dimensions of the design space has no more than one

projection point coming from the design points. If all of these intervals meet the above-mentioned requirement
of having no more than one projection point, go to step 6; otherwise, let k = k + 1 and return to step 4. (In this
step, the requirement is “having no more than one projection point" in each interval, ie, either “there is only one
projection point ‘or’ there is no projection point” in each interval. When every dimension simultaneously meets
this requirement implies that every dimension has k vacant interval[s]. This also implies we need to generate k
sample[s] to meet the projective property.)

Step 6: let Nadd = k and the total set of samples with the number being Ntotal = Nexist + Nadd guarantees to form an
LHD. (Note: *find the vacant intervals for each dimension using steps 7 and 8) (In the above-mentioned steps,
we just find out how many vacant intervals lie on every dimension, but we still have not marked them; in the
following two steps, we will do that work.)

Step 7: For i = 1 ∶ d (d is the number of the dimensions in the design space), do the followings: For the ith dimension,
separate this dimension evenly into Ntotal intervals, and for each interval, judge whether one projection of these
Nexist samples Sj = [xj1 … xji … xjd] (j = 1, … ,Nexist) is located in this interval; in other words, judge which
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intervals have projections. The Nexist samples can be expressed as follows:[ x11
⋮

xNexist1

…
⋱
…

x1i
⋮

xNexist i

…
⋱
…

x1d
⋮

xNexistd

]
,

and the projection into the ith dimension of these Nexist samples is[ x1i
⋮

xNexist i

]
The purpose of this step is to find out the vacant intervals for the ith dimension according to the ith projection[

x1i … xNexist i
]T . Here, a subloop is needed to do such judgement (which means for each of the intervals in all

of the dimensions, to judge whether it is vacant), in other words, for each of these intervals, all of the members
of the ith projection

[
x1i … xNexist i

]T are used to judge whether one of them locates in this interval, if not, mark
it as vacant interval.
(Note: *generate the best samples conforming the Maximin criterion by using steps from 8 to 12]

Step 8: based upon the vacant intervals on every dimension found in the step 8, Nadd design points can be randomly
generated (denoted by Sbest). This randomly generating process is done as follows.
Randomly generate Nadd numbers (x1i, … , xNaddi) (where xki ∈ [0, 1](k = 1, … ,Nadd)) in the Nadd vacant
intervals for ith dimension and do so for every dimension of the design space (d dimensions), then the Nadd
samples can be expressed as [ x11 … x1d

⋮ ⋱ ⋮
xNadd1 … xNaddd

]
.

Next, run a random permutation for the Nadd numbers in each dimension, then the final randomly generated
samples can be obtained. When these design points are projected into each dimension, there is only one point
within each interval. The existing design points (denoted by Sexist) and the new-added design points (Sbest) are
put together (let Stotal = Sexist ∪ Sbest ); and the minimum distance in Stotal is calculated to be Dbest.

Step 9: generate a new set of design points (denoted by Snew) in above-mentioned vacant subspaces (if in
one-dimensional design space, they are intervals), calculate the minimum distance in Sexist ∪ Snew, and denote
this minimum distance by Dnew. If Dnew > Dbest, let Sbest = Snew.

Step 10: judge whether the number of the iterations meets the preset upper limit (denoted by Maxiter). If so, go to step
11; otherwise, return to step 9.

Step 11: get the best set of design points Sbest, which has the maximum value among all these minimum distances.
Step 12: judge whether this sequential sampling process should be continued; if so, return to step 2; otherwise, end this

sequential sampling process and obtain the final design points.

The theoretical basis on determining the number Nadd in the proposed algorithm is given in Theorem 1 below.

Theorem 1. Given design points (xij)n× d (normalized into the hyperspace [0, 1]d) of the previous stage, if any two ele-
ments in the set

{⌊
(n + k)xi𝑗

⌋
, i = 1, … ,n

}
are not equal for any dimension j (j = 1, … , d), then k (k ⩽ n) additional

design points can be added at the current stage so that the design points (xij)(n + k)× d are an LHD.

The proof of Theorem 1 is presented in the APPENDIX.

Remark 1. Theorem 1 shows that one can find a proper number k to guarantee the projective property at each stage
of the sequential sampling process. After finding the number k, the steps from 9 to 12 in Algorithm 1 can be used to
guarantee the space-filling property. Therefore, the proposed method in this article can guarantee the space-filling as
well as the projective properties.

3 EXAMPLES IN LOW DIMENSION

In this section, two examples are given to illustrate how to sequentially generate design points at each stage, letting the
whole set of design points at each stage meets the space-filling and projective properties. In order to clearly show the
distribution of the new-added design points at each stage, we give a one-dimensional and a two-dimensional examples
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FIGURE 1 The distribution of the design points at each stage of the sequential process (1D) [Colour figure can be viewed at
wileyonlinelibrary.com]

to illustrate the effectiveness of our method. Certainly, the proposed strategy also can be used to any higher dimensional
problems, which will be illustrated in the next section.

3.1 A one-dimensional example
A one-dimensional example is illustrated. The whole framework is presented in Algorithm 1. The number of the initial
design points is set to be 4, and the numbers that should be added at each stage are determined by the steps from 3 to 6 in
Algorithm 1. In order to guarantee the space-filling property, the steps from 8 to 11 in Algorithm 1 are utilized to generate
the new-added design points in the vacant intervals at each stage. Figure 1 shows how the design points distribute at each
stage of the sequential process. To distinguish the design points in different stages, we use dots with different kinds of
shape to denote them. In the whole sequential process, the new-added design points are determined by the design points
in the previous stage.

The detailed steps at each stage are presented as follows:

a. At the first stage, an initial LHD, including four samples (Ninitial = 4), is generated, with the shape “⋆" representing
them.

http://wileyonlinelibrary.com
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b. At the second stage, the steps from 3 to 6 in Algorithm 1 are employed to find out how many vacant intervals exist
on the design space (one dimension in this example) and get Nadd = 1. Then the whole one-dimensional space can
be separated into Ninitial + Nadd = 4 + 1 = 5 intervals, and we can easily observe from the second subfigure of
Figure 1 that the third interval is vacant, and each of the remaining intervals has and only has one sample. Of course,
this job to judge whether there is a design point in an interval is done by the step 7 in Algorithm 1 implemented by
computer. Then, a sample can be randomly generated in this vacant interval. In order to get the space-filling property,
we randomly generate a sample in the third vacant interval and repeat this process for Maxiter (Maxiter= 20 in this
paper) times and finally get the best one conforming the Maximin criterion as what we want in this stage, using the
shape “∗" representing it.

c. At the third stage, also use the steps from 3 to 6 in Algorithm 1 to find out how many vacant intervals exist in the
design space and get Nadd = 2. Then the whole one-dimensional space can be separated into Nexist + Nadd = 5 + 2 =
7 intervals, with two intervals (the second and sixth ones) are vacant, and each of the remaining intervals has one
sample respectively. Then, two samples can be randomly generated into these two vacant intervals. Similar to the
previous stage, we repeat this process for Maxiter times and get the best two samples as the final samples, with the
shape “×” representing them.

d. At the fourth stage, Nadd = 1. The whole space can be separated into Nexist + Nadd = 7 + 1 = 8 intervals; and
we find that the 6th interval is vacant. So the sample can be randomly generated in this interval for Maxiter times
and choose the best one meet the space-filling requirement as the final sample on this stage, with the shape “□”
representing it.

e. At the fifth stage, Nadd = 1. The whole space can be separated into Nexist + Nadd = 8 + 1 = 9 intervals; and vacant
interval is the third one. A sample meeting the space-filling requirement is chosen and represented with the shape
“⋄.”

f. At the sixth stage, Nadd = 3. The whole one-dimensional space can be separated into Nexist + Nadd = 9 + 3 = 12
intervals, with three intervals (the second, seventh, and 11th ones) are vacant, and each of the remaining intervals has
one sample respectively. Then, three samples are randomly generated into these vacant intervals; and the Maximin
criterion is employed to get the best samples, with the shape “△" representing them. If the engineers want to do
more stages, they can carry it out in a similar way.

3.2 A two-dimensional example
Next, a two-dimensional example is employed. Similar to the one-dimensional example, four initial design points are gen-
erated using the standard function lhsdesign in MATLAB 2014a. The steps from 3 to 6 in Algorithm 1 are used to determine
how many design points should be added in the next stage; and the steps from 8 to 11 in Algorithm 1 are employed to guar-
antee the space-filling property. The main framework is illustrated by Algorithm 1. The sequential samples-generating
process is presented in Figure 2.

Similar to the stages in the one-dimensional example, we give the detailed description about how to add additional
samples at each stage to form a LHD as follows:

a. At the first stage, four samples (Ninitial = 4) are randomly generated to form a LHD, with the shape “+" representing
them.

b. At the second stage, the steps from 3 to 6 in Algorithm 1 are employed to find out how many vacant intervals exist
on every dimension and get Nadd = 1. The horizontal axis thereby can be separated into Ninitial + Nadd = 4 + 1 = 5
intervals, with the fifth interval is vacant; and the vertical axis also can be separated into Ninitial + Nadd = 4 + 1 = 5
intervals, with the third interval (count it from the bottom of the design space) is vacant; then, only one subspace
(two intervals can constitute one subspace in a two-dimensional design space) can be chosen to randomly generate
a sample. Similar to that in the one-dimensional example, this randomly-generating process can be repeated for
Maxiter times, and finally, the best one conforming the Maximin criterion is chosen as what we want in this stage
to form an LHD. The final sample randomly generated in the vacant subspace is represented with the shape “⋆.”

c. At the third stage, Nadd = 1. The horizontal axis can be separated into Nexist + Nadd = 5 + 1 = 6 intervals, with the
second interval is vacant; and the vertical axis also can be separated into Nexist + Nadd = 5 + 1 = 6 intervals, with
the third interval is vacant; then, the subspace (2,3) (the coordinate of this subspace) can be chosen to randomly
generate a sample with the best Maximin, and the final sample is represented with the shape “∗”.
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FIGURE 2 The distribution of the design points at each stage of the sequential process (2D) [Colour figure can be viewed at
wileyonlinelibrary.com]

d. At the fourth stage, Nadd = 2. The horizontal axis can be separated into Nexist + Nadd = 6 + 2 = 8 intervals, with
two intervals (the fourth and sixth ones) are vacant, and the vertical axis also can be separated into Nexist + Nadd =
6 + 2 = 8 intervals, with two intervals (the first and seventh ones) are vacant. Then, there are four subspaces
(4,1), (4,7), (6,1), (6,7) can be used to generate samples, but they have to meet the projection requirement of LHD,
that is, there is only one projection point in one interval. Therefore, in order to generate two samples, there are two
alternatives: one is the combination of subspace(4,1) and subspace (6,7), that means generating these two samples
into these two subspaces; and the other is the combination of subspace (4,7) and subspace (6,1). In order to get the
random samples, two random processes are used: the first random process is randomly choosing of one combination;
and the second random process is randomly generating of two samples into the combination described above. These
two random processes can be carried out simultaneously; and then, two samples are obtained. In order to get the
space-filling property, the sample-generating process (including these two random processes mentioned above) can
be repeated for Maxiter times, and the one with the best Maximin can be chosen as the final samples in this stage.
The result is presented in the fourth subfigure of Figure 2, with the shape “×” representing them.

e. At the fifth stage, Nadd = 4. The horizontal axis can be separated into Nexist + Nadd = 8 + 4 = 12 intervals, with
four intervals (the first, fourth, eighth, and 11th ones) are vacant, and the vertical axis also can be separated into

http://wileyonlinelibrary.com
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Nexist + Nadd = 8 + 4 = 12 intervals, with four intervals (the third, fifth, eighth, and 11th ones) are vacant. Then
there are 4! = 24 combinations to get the subspaces that can be used to generate samples. One combination means a
set of subspaces. For instance, (1,3), (4,5), (8,8), (11,11) is a combination where four samples can be randomly gener-
ated, and the projective property is met. Similar to the previous stage, we randomly get a combination and randomly
generate samples in that combination. This process (including randomly getting a combination and randomly gen-
erating samples in the chosen combination) is repeated for Maxiter times and get the best samples that meet the
space-filling property. The result is presented in the fifth subfigure of Figure 2 with the shape “□" representing them.

f. At the sixth stage, Nadd = 4. Similar to stage 5, we also can find four “best” samples, letting them meet the projective
and space-filling properties of LHD. The result is presented in the sixth subfigure of Figure 2, with the added samples
described using the shape “⋄.” If the engineers are pleased to do more stages, they can do it as above.

4 EXAMPLE IN HIGHER DIMENSION

In this section, one five-dimensional example is presented to illustrate the effectiveness of the proposed method. Because
the dimension of this example is larger than two, it is difficult to show intuitively as in low-dimensional examples. There-
fore, we simply present data to describe the sequential process. In this part, four stages of the sequential process are
described for this example. In this five-dimensional example, the generated data in each stage are shown to describe the
sequential process.

a. At the first stage, four samples are randomly generated using the standard MATLAB function lhsdesign. The
corresponding data, 4 × 5 LHD (four samples, five dimensions) are as follows:⎡⎢⎢⎢⎣

0.4482 0.3107 0.0979 0.3187 0.0277
0.2082 0.6744 0.5410 0.9456 0.5343
0.7267 0.9846 0.9063 0.0850 0.2718
0.8399 0.0571 0.2664 0.7276 0.9187

⎤⎥⎥⎥⎦ .
b. At the second stage, the steps from 3 to 6 in Algorithm 1 are employed to find out how many vacant intervals exist

on every dimension and get Nadd = 1. For each vacant interval of each dimension, a real number can be generated
within that interval. For instance, xi1 is randomly generated within the vacant interval of the first dimension; sim-
ilarly, xi2, xi3, xi4, and xi5 are randomly generated for the second, third, fourth, and fifth dimensions, respectively;
combine them together, then the additional sample [xi1 xi2 xi3 xi4 xi5] is generated. This sample meets the projection
requirement of LHD. If we want to get a space-filling LHD, we can repeat the above process for Maxiter times and
get the best one conforming the Maximin criterion. In our case, the following samples are obtained:[

0.0372 0.5325 0.7230 0.4059 0.7774
]
,

so that the following total set of samples remains a LHD with projective and space-filling properties⎡⎢⎢⎢⎢⎣
0.4482 0.3107 0.0979 0.3187 0.0277
0.2082 0.6744 0.5410 0.9456 0.5343
0.7267 0.9846 0.9063 0.0850 0.2718
0.8399 0.0571 0.2664 0.7276 0.9187
0.0372 0.5325 0.7230 0.4059 0.7774

⎤⎥⎥⎥⎥⎦
.

c. At the third stage, Nadd = 1, and we can get another sample[
0.6167 0.4780 0.4875 0.5089 0.4051

]
.

Similarly, combined with the existing samples, the following total set of samples still meets the requirements of LHD:⎡⎢⎢⎢⎢⎢⎣

0.4482 0.3107 0.0979 0.3187 0.0277
0.2082 0.6744 0.5410 0.9456 0.5343
0.7267 0.9846 0.9063 0.0850 0.2718
0.8399 0.0571 0.2664 0.7276 0.9187
0.0372 0.5325 0.7230 0.4059 0.7774
0.6167 0.4780 0.4875 0.5089 0.4051

⎤⎥⎥⎥⎥⎥⎦
.

d. At the fourth stage, the steps from 3 to 6 in Algorithm 1 are used to find the vacant intervals for all of these dimen-
sions, and Nadd = 2, that is, two vacant intervals are found for every dimension. Similar to the previous stage, two
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design points can be randomly generated within those two vacant intervals. For instance, xi1 and xi + 1,1 are randomly
generated within the vacant intervals of the first dimension; xi2 and xi + 1,2 are randomly generated for the second
dimension; xi3 and xi + 1,3 are randomly generated for the third dimension; xi4 and xi + 1,4 are randomly generated for
the fourth dimension; xi5 and xi + 1,5 are randomly generated for the fifth dimension; then, these two samples can be
generated as follows: [

xi1
xi+1,1

xi2
xi+1,2

xi3
xi+1,3

xi4
xi+1,4

xi5
xi+1,5

]
.

Furthermore, the positions of these two real numbers within each dimension also can be randomly permutated, for
example: [

xi1
xi+1,1

xi+1,2
xi2

xi3
xi+1,3

xi+1,4
xi4

xi5
xi+1,5

]
.

Therefore, there are (Nadd!)(d− 1) combinations. In this stage, there are (2!)(5− 1) = 16 combinations. Note that there
are two kinds of random process involved: the first kind is that the numbers are randomly generated; and the second
one is that the positions of these real numbers within each dimension are randomly permutated. Therefore, to meet
the space-filling property, we can simultaneously do these two kinds of random treatment for Maxiter times and get
the best two samples conforming the Maximin criterion as the final samples[

0.9741 0.8067 0.7940 0.8658 0.1833
0.2525 0.1708 0.1659 0.1377 0.7149

]
.

The total set of samples, which meets the projective and space-filling properties of LHD is then obtained as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.4482 0.3107 0.0979 0.3187 0.0277
0.2082 0.6744 0.5410 0.9456 0.5343
0.7267 0.9846 0.9063 0.0850 0.2718
0.8399 0.0571 0.2664 0.7276 0.9187
0.0372 0.5325 0.7230 0.4059 0.7774
0.6167 0.4780 0.4875 0.5089 0.4051
0.9741 0.8067 0.7940 0.8658 0.1833
0.2525 0.1708 0.1659 0.1377 0.7149

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

5 CONCLUSIONS

In this paper, a sequential method is proposed for the construction of LHD. The proposed method has the following
advantages:

1. Unlike the existing sequential strategies that determine the sampling areas according to a specified metamodel, the
proposed method does not depend on any specified metamodel. The proposed method is metamodel independent.

2. The existing sequential sampling strategies only guarantee the projective property locally. They are LHDs in a sub-
space but not LHDs in the entire design space. The proposed method can guarantee the projective property in the
entire design space by utilizing a search algorithm.

3. The existing sequential LHD techniques are time inefficient. As dimensionality grows, the local enumeration pro-
cess in the S-SLE method19 becomes more and more computationally expensive, which significantly decreases the
sampling efficiency of the S-SLE method for high-dimensional applications. The Quasi-LHD method in Xiong et al15

also requires a time-consuming global optimization process. Different from the existing methods, the search pro-
cess in this paper is time efficient. It is very easy to obtain the number of design points that we want to add to the
previous stage.

4. To guarantee the space-filling property, Algorithm 1 in this paper is designed by utilizing the Maximin criterion. In
this algorithm, the sampling process is repeated for many times at each stage and then one set, which has a maximum
value in all of these minimum distances between design points is chosen. Therefore, the proposed method not only
can ensure the projective property but also can guarantee the space-filling property in the entire design space.

Two low-dimensional examples and one higher-dimensional example are employed to illustrate the sample-generating
process. It is shown that the proposed method has good projective and space-filling properties, which are widely required
in industrial design areas involving computationally expensive simulations.
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APPENDIX : PROOF OF THEOREM 1

Proof. The proof is direct. When we use the steps from 3 to 6 in Algorithm 1 to find the number Nadd, the number Nadd
is what we want to find for k. Since when k = n, the set of design points (xij)(n + k)× d is definitely an LHD, the number
that we find for k is definitely no larger than n (ie, k ⩽ n). According to the steps from 3 to 6 in Algorithm 1, we know
that there is no more than one projection point in each of the n + k intervals for any dimension j (j = 1, … , d); that
is, any two elements in the set

{⌊
(n + k)xi𝑗

⌋
, i = 1, … ,n

}
are not equal for any dimension j (j = 1, … , d). Therefore,

such set of design points (xij)(n + k)× d is an LHD.
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