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Many thanks to Joseph Voelkel (JV) and Christine
Anderson-Cook & Lu Lu (AL) for their valuable
discussions. In this rejoinder, we will respond to JV’s
and AL’s comments in the first two sections, respect-
ively. In the final section of this rejoinder, we present
some new thoughts motivated by their discussions.

Comments in response to Joseph Voelkel
(JV)’s discussion

JV shared that his work was motivated by some con-
versations with industrial statisticians (e.g., from
Kodak and Lipton). These are interesting stories,
which show that systematic order-of-addition (OofA)
designs are desirable in practice and that the existing
techniques were inadequate. We are pleased to see
that the design of OofA experiments have been receiv-
ing rapidly increasing attention from researchers.
Many important results have been obtained in the last
few years, since the pioneer work of Voelkel (2017).

As commented by JV, the optimality result of Peng,
Mukerjee, and Lin (2017) fills up the gap between the
availability of intuitively-favorable designs and theoret-
ical support to justify their optimality. We would like to
especially thank JV because our result was motivated by
JV’s exploration of pairwise-order (PWO) designs—
Voelkel (2017) first derived the moment matrix of the
full PWO design. In contrast to the moment matrices of
full designs in traditional design problems, the moment
matrix of the full PWO design is not compound sym-
metric. We were fascinated by the algebraic structure of
PWO designs. This has motivated us to establish the
first optimality result in the OofA literature.

We would emphasize that the knowledge of opti-
mal designs, as a benchmark for assessing any other
design, is useful in practice. For example, suppose one
has already obtained a design with jMj ¼ 0:56. If we
know theoretically that a D-optimal design has

jMj ¼ 0:6, then the obtained design is quite favorable.
If, on the other hand, a D-optimal design has
jMj ¼ 0:8, then there will be a need to improve the
obtained design. In addition, the theoretical condi-
tions of a design to be optimal provide guidance for
closed-form constructions of optimal designs.

JV pointed out that the minimal-point PWO
designs given in our article are not that efficient, com-
pared with the ones obtained by Fedorov’s exchange
algorithm. We fully agree that the construction of
such minimal-point designs needs further improve-
ment. This construction is a first attempt in finding
minimal-point PWO designs, and it, in particular, jus-
tifies the existence of nonsingular minimal-point
PWO designs for any m. The structure of H herein,
on the other hand, may form a basis of constructing
of more efficient minimal-point designs.

JV has tabulated the number of runs of the optimal
fractional PWO designs we presented in the paper. As he
commented, these designs are expensive even with mod-
erately large m (say, m¼ 8). Initial results have been
obtained to reduce the number of runs from these
designs, which works for small m. The idea is that the
optimal designs we constructed are naturally blocked,
with a blocking variable indicating the choice of the m=2
components in each subblock Bu (see Peng, Mukerjee,
and Lin (2017) for the definition of Bu). The optimal
designs we presented correspond to a complete block
design, in the sense that the blocking variable takes all its�

m
m=2

�
levels, that is, all the possible choices of the

m=2 components in Bu. Strategies from balanced incom-
plete block designs (BIBDs) are thus helpful in reducing
the number of runs. For example, when m¼ 8, an opti-
mal design with n being only 168 has been obtained. We
hope to report some systematic results in the near future.

JV mentioned an interesting result, proved by
Voelkel (2017), that an n-run PWO design is OofA-OA
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of strength 2 (3) only if n is divided by 12 (24). JV noted

that the run size n ¼ 2

�
m
2

�
that we choose in

Algorithmic construction of efficient PWO designs with
small number of runs section is not necessarily divisible
by 12. In view of this, we have listed below multiples of

12 that are between the minimal size and n ¼ 2

�
m
2

�
,

with m up to 10. Construction for designs of such sizes
should be worth particular attention.

The combined design of both process and OofA vari-
ables, as first suggested by JV, is indeed important in
practice. Here is a comment regarding the optimal
design under a model where the mean response is addi-
tive of the process factors as well as the PWO factors.
We note that the full design will be optimal under this
model, following the proof of the optimality result in
Peng, Mukerjee, and Lin (2017). Explicitly, the full
design here is the Kronecker product of a full factorial
design and a full OofA design. In principle, exchange
algorithms, such as Federov exchange or a modification
of the proposed bubblesort exchange algorithm, can be
exploited to find an efficient combined design of pro-
cess and OofA variables, with a small number of runs.
The closed-form construction of such designs seems
infeasible, however.

Last but not least, JV emphasized the importance
of studying the design robustness to multiple models.
Voelkel (2017) made a first attempt along this line: in
his search of optimal PWO designs, he considered a
number of secondary criteria regarding the strength-3
orthogonality. In fact, AL’s discussion on our article
made emphasis on the design robustness as well, as
will be discussed below.

Comments in response to Anderson-Cook and
Lu (AL)’s discussion

We fully agree with AL’s statement that “in the absence
of a generally interpretable model that connects to the
underlying mechanism driving the relationship between
ingredient order and response, it seems prudent to
explore alternative models.” In fact, the mechanisms

behind some OofA experiments are so obscure that it is
impossible to determine a “most appropriate” model
beforehand; for instance, in the experiment to find opti-
mal taxa order in a phylogenetic tree. Thus at the stage
of planning the experiment, a design robust to multiple
models would be desirable. For the design construction,
one approach adopted by Voelkel (2017) and Yang,
Sun, and Xu (2017) is to first obtain a number of
(nearly-)optimal designs under a main single criterion,
and then select from the obtained designs via a second-
ary criterion. There are other design strategies via a
multi-objective optimization. Among them, the Pareto
front methodology developed by AL and their collabo-
rators is a powerful tool when faced with a tradeoff
between different objective functions.

AL has brought up an important practical concern
on whether finding an optimal order via an OofA
experiments is likely to yield sufficient rewards. Before
any attempt to determine an optimal order, an eco-
nomic pilot design is desirable for quantifying the
impact of orders on the responses.

AL recommended a Graeco-Latin square as a pilot
design. We would like to comment that the idea of
constructing Latin-squares with nearly-balanced PWO
factors has been introduced in Voelkel (2017) as well,
in his review of Williams (1949)’s design. AL further
recommended to randomly permuting the rows or
columns of Latin square to improve the balancedness
of PWO factors. Such a row/column permutation is
indeed an effective strategy for improving the model
robustness. Using a similar strategy, Yang, Sun, and
Xu (2017) has obtained a number of designs that are
optimal under their component-position model and
meanwhile highly efficient under the PWO model.

In a pilot study, the exploratory data analysis is quite
important. AL has developed two types of graphs for
this purpose, as shown respectively in their Figures 1(b)
and 2. Overall, Figure 2 exhibits the contrasts in a PWO
model, while Figure 1(b) corresponds to Yang, Sun, and
Xu (2017)’s component-position model. It is noted that
if we re-scale the circles in either Figure 1(b) or Figure
2, the plot can convey quite different messages and
sometimes be misleading. It is important to standardize
the radius of each circle in a consistent manner.

AL proposed alternative models for a pilot study.
For any order a ¼ a1a2:::am, a first-order model based
on “simple orders” treats each aj (1 � j � m) as a pre-
dictor. AL suggested to fit m univariate linear regres-
sion models, with the predictor being a1; :::; am,
respectively. They also suggested to centralize the pre-
dictors by replacing aj with lj ¼ aj�ðmþ 1Þ=2, so that
the jth of the m regression models reads as

m
p ¼

�
m
2

�
þ 1 2

�
m
2

�
In-between size(s)
divisible by 12

4 7 12 12
5 11 20 12
6 16 30 24
7 22 42 24, 36
8 29 56 36, 48
9 37 72 48, 60, 72
10 46 90 48, 60, 72, 84
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s að Þ ¼ b0 þ b1lj; [1]

with sðaÞ being the mean response arising from a.
The fitted b̂1’s for these m simple linear regressions
can be visualized by the plots in AL’s Figure 3.
Likewise, for 1 � j � m, the jth second-order model
based on simple orders can be formulated as

s að Þ ¼ b0 þ b1lj þ b2qj: [2]

The fitted b̂1’s for these m regressions can be summarized
in one plot, like Figure 3(a), while the fitted b̂2’s for these
m regressions shall be summarized in another plot. Here
qj is defined as 2; 1; 0;�1;�2;�2;�1; 0; 1; 2 for
aj ¼ 1; :::; 10, respectively, when m¼ 10. It is not clear to
us what is the general formula used by AL to produce
such qj. We believe that qj’s can, instead, be simply chosen
as the centered values of a2j ; j ¼ 1; :::; 10, or expli-
citly, qj ¼ a2j�ð1=mÞPm

j¼1 j
2 ¼ a2j�ðmþ 1Þð2mþ 1Þ=6.

AL suggested to fit m separated regressions rather
than a single regression model with all or multiple lj’s
included (consider the first order model for simpli-
city). This is perhaps because the model including
multiple lj’s is not estimable or yields high standard
errors, under a pilot design with a very limited num-
ber of runs. However, when the number of runs is
not that small, say, n>2m, a single regression model
on multiple lj’s is more natural for both design and
analysis. Details will be given in the next section.

Some new thoughts

Following the discussion in the last section, we consider
the definition of a model including all the simple orders
aj’s as predictors. For simplicity, the centralized contrasts
lj’s and qj’s are no longer considered in this section.

The naïve model is sðaÞ ¼ b0 þ
Pm

j¼1 bjaj. However,
this model is not estimable due to the constraint

Xm
j¼1

aj ¼
Xm
j¼1

j ¼ m mþ 1ð Þ=2:

An estimable model can be defined by removing
a1, that is,

s að Þ ¼ b0 þ
Xm
j¼2

bjaj: [3]

Likewise, a model including all linear and quadratic
terms on simple orders can be defined as

s að Þ ¼ b0 þ
Xm
j¼2

bjaj þ
Xm
j¼2

bjja
2
j : [4]

By modifying the proof of Theorem 1 in Peng,
Mukerjee, and Lin (2017), it can be shown that the full
OofA design is D-optimal under either model [3] or [4]

above. Efficient designs can be constructed under both
models (by the exchange algorithm, for example). Note
that model [3] requires a minimum ofm runs while model
[4] requires a minimum of 2m�1 runs. As long as more
than 2m runs are affordable for a pilot study, we think that
it is more appropriate to conduct design and analysis under
models [3] and [4], instead of AL’s models [1] and [2].

A conventional second order model includes all the
interaction terms as well. In view of [3] and [4], a
second order model including two-way interactions
can be defined as

s að Þ ¼ b0 þ
Xm
j¼2

bjaj þ
Xm
j¼2

bjja
2
j þ

X
2�j<k�m

bjkajak:

However, the above equation turns out be an
unidentifiable model. It actually contains 1 extra
degree of freedom. Thus, by removing the last inter-
action, the resulting model

s að Þ ¼ b0 þ
Xm
j¼2

bjaj þ
Xm
j¼2

bjja
2
j þ

X
2�j<k�m;j 6¼m�1

bjkajak:

[5]

becomes estimable (the proof is skipped here). In fact,
modeling of OofA experiments along this line is
worth further investigation, and we hope to report
some systematic conclusions in the near future.

We close this section by noting that the aj’s in models
[3], [4] or [5] can be replaced by rj’s, where rj indicates the
rank of the jth component. A model based on rj’s may be
more favorable for the interpretation purpose. As a simple
example, in a first-order model, a positively-significant
coefficient of rj indicates that we would place the jth com-
ponent at the end, instead of the beginning of the addition
sequence, if the purpose is to increase the response.

Finally, we would like to thank Joe, Christine, and
Lu for their discussions which have substantially
enhanced the value of our article. We would like to
thank Joe again for bringing our attention into the
broad field of order-of-addition problems.
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