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ABSTRACT
The study of order-of-addition (OofA) experiments is prevalent in many scientific and indus-
trial areas. The statistical design of experiments (DOE) will considerably improve the effi-
ciency of OofA experiments. Designing and modeling the OofA experiments have
increasingly received a great deal of attention. In this article, we review the latest work on
the design and model of OofA experiments, and introduce some new thoughts. We believe
that this article will motivate fruitful applications in real OofA experiments as well as future
developments in the methodology.

KEYWORDS
constraints; design
construction; exchange
algorithm; higher-order;
optimal designs; pairwise-
order; symmetry

Introduction

In Fisher (1937), a lady was able to distinguish (by
tasting) whether the tea or the milk was first added to
the cup. This is perhaps the first order-of-addition
(OofA) experiment in the literature. Two orders,
“milk then tea” or “tea then milk,” yield different
responses (the taste). A general OofA experiment
involves m (� 2) components, and the m! different
orders of adding these components into the system
yield different responses. The OofA experiment is
prevalent in chemistry-related areas. In many chemical
experiments, a number of reactants are added into the
apparatus sequentially, rather than simultaneously.
The formation (the amount/size/purity, etc.) of the
reaction product depends on the sequence of adding
reactants. For example, Fuleki and Francis (1968)
studied an experiment for extracting anthocyanins
from cranberries. They found that “The order of add-
ition of the lead acetate (before or after the pH adjust-
ment) had a definite influence on the reaction. Higher
recoveries were obtained by adjusting the pH after
lead acetate addition.” During the past decades, the
OofA effect is frequently mentioned in the area of
bio-chemistry (Shinohara and Ogawa 1998), food sci-
ence (Jourdain et al. 2009), nutritional science (Karim,
McCormick, and Kappagoda 2000), and pharmaceut-
ical science (Rajaonarivony et al. 1993), just to name a
few. As another kind of application in genomics, in
the algorithmic construction of “maximum-likelihood

phylogenetic trees” from DNA sequences, the likeli-
hood of the fitted tree relies on the order of adding
different taxa into the computer program (Olsen et al.
1994; Stewart et al. 2001). There are typically more
than 10, or even hundreds of taxa involved.

Ultimately, an OofA experiment is to find the opti-
mal addition order. For this purpose, one needs to
compare a number of different orders to learn the
dependence of the response on the order. With m
components to add, an exhaustive search of all per-
mutations requires m! runs of experiments, which is
usually not affordable (e.g., for m¼ 10, there will be
m! ¼ 10!�3:6� 106 orders). Often in practice, a num-
ber of randomly selected orders are tested (see, e.g.,
Stewart et al. 2001). Of course, such a random design
is a convenient choice as it does not exploit any pat-
tern that the order-of-addition drives the variation of
responses. Systematic designs are desired to learn the
dependence of the response on the order-of-addition.

The statistical design of experiments (DOE) is a
powerful tool to collect informative data under the
control of experimental costs. A successful application
of DOE in the OofA experiments will help experi-
menters identify the important order effects and find
out the optimal addition order, with substantially
fewer experimental runs and higher reliability. Van
Nostrand (1995) proposed a model which assumes
that an order-of-addition affects the response via pair-
wise-order (PWO) effects. Voelkel (2017) studied the
orthogonality of designs and suggested a number of
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design criteria under Van Nostrand’s PWO model.
Via computer search, Voelkel (2017) found some
OofA designs which have the same correlation struc-
tures as the full OofA designs, for small number of
components (m). While the designs Voelkel found are
intuitively optimal under, say, the D-criterion, a theor-
etical support on their optimality remains absent.

While the OofA experiments are prevalent in prac-
tice, the statistical methods for its design and model
remain primitive. In this article, we introduce up-to-
date developments in the OofA problem. We review
the latest literature and propose some new thoughts.
Many of these results can be directly used in scientific
areas, such as chemistry and biology. We believe that
these results form a solid basis for the future work.
Moreover, the OofA problems provide a golden
opportunity for interdisciplinary studies. Some
research topics in group theories or combinatorics
may arise therein. A fruitful application of computer
science is also anticipated, because the computational
complexity for finding efficient OofA designs tremen-
dously increases as m becomes large.

The remainder of this article is organized as fol-
lows. The PWO model section introduces the PWO
model for OofA effects. Optimality theory of PWO
design section summarizes the theory of optimal
PWO designs. Systematic construction of favorable
PWO designs and Algorithmic construction of effi-
cient PWO designs with small number of runs sec-
tions are devoted to the design construction under the
PWO model. Systematic construction of favorable
PWO designs section is focused on the systematic
construction methods while Algorithmic construction
of efficient PWO designs with small number of runs
section proposes a new algorithmic construction
method. More order-of-addition models section dis-
cusses on a number of new models beyond the PWO
model. Concluding remarks are given in the
last section.

The PWO model

Following Van Nostrand (1995) and Voelkel (2017),
we first study the OofA designs under the pairwise-
order (PWO) model defined below. Suppose there are
m (� 2) components 1; 2; :::;m, there will be a total of
m! possible orders. An order is represented by a vec-
tor a ¼ ½a1; a2; :::; am�T , where a1; a2:::; am is a permu-
tation of 1; :::;m. Here, an order defines a treatment.
Denote the set of all the m! treatments by A. In a
PWO model, the features of an order are represented
by the precedence patterns between all the ðm

2
Þ pairs

of components. Explicitly, let S be set of all pairs
(j, k) for 1 � j<k � m, and for each jk 2 S, define the
PWO indicator between j and k as:

zjk að Þ ¼ 1 if j precedes k in a;
�1 if k precedes j in a:

�
[1]

As an illustration, for m¼ 4 and a ¼ 2143: we have
S ¼ f12; 13; 14; 23; 24; 34g, then z12ðaÞ ¼ �1; z13ðaÞ ¼
þ1, :::; and z34ðaÞ ¼ �1.

For a 2 A, write sðaÞ for the treatment mean of a,
that is, sðaÞ is the expectation of any observation arising
from treatment a. As usual, it is assumed that the obser-
vations have equal variance and are uncorrelated. The
PWO model assumes that the expected response is
determined by summing the effects of all zjk’s, namely:

s að Þ ¼ b0 þ
X
jk2S

zjk að Þbjk; [2]

where bjk’s and b0 are unknown parameters. Let
~b ¼ ðb12; b13; :::; bðm�1ÞmÞT , where T denotes the trans-

pose. Then b ¼ ðb0; ~bTÞT represents the parametric

vector of interest. Similarly, for any a 2 A, let zðaÞ ¼
ðz12ðaÞ; z13ðaÞ; :::; zðm�1ÞmðaÞÞT and xðaÞ ¼ ð1; zðaÞTÞT .
Then Eq. [2] can be expressed as

s að Þ ¼ b0 þ z að ÞT~b ¼ x að ÞTb: [3]

Throughout, write q ¼
�m
2

�
and p ¼ qþ 1. Then

~b and zðaÞ are q� 1 while b and xðaÞ are p� 1. The
PWO model is appealing since the PWO effects bjk’s
are often great interest in many experiments.
Practitioners often expect conclusions like “Adding A
before or after B has a significant influence on the
response” (see the aforementioned example in Fuleki
and Francis 1968).

The design of OofA experiments is to choose a col-
lection of orders, represented by an OofA design
matrix D ¼ ½aT1 ; aT2 ; :::; aTN �T , where ai 2 A for each i
and N indicates the number of runs. We represent
each D by a PWO design, defined as Z ¼
½zða1Þ; zða2Þ; :::; zðaNÞ�T : Then Z is the design matrix
in model [1]. Let Df be the full design which replicates
each treatment in A once, and Zf be the full PWO
design, that is, the PWO design of Df. For illustration,
Table 1 shows the matrices Df and Zf for m¼ 3.

Remark 1. Due to the transitive property of order,
the region of PWO design points does not include all
the level combinations. For example, when m¼ 3, the
points (–, þ, –) and (þ, –, þ) are not valid for a
PWO design. That is, if component 2 precedes com-
ponent 1 (z12 ¼ –) and component 1 precedes
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component 3 (z13 ¼ þ), then component 2 must pre-
cede component 3 (z23 must be þ, not �).

The PWO model is an economic model which

requires small number of runs (p ¼
�m
2

�
þ 1) com-

pared with the total number of candidate runs (m!). For
example, when m¼ 8, p=m!�0:0007. In addition, this
model is easy to interpret: the effect bjk indicates the dif-
ference between the average treatment mean of all the
possible orders in which j precedes k and the average
treatment mean of all the orders where k precedes j.
Furthermore, the analytical results of PWO model are
easy to utilize. Fitting this model identifies the sign and

significance of each pairwise-order effect b̂jk. One can

identify the significant effects via t-tests or variable selec-
tion, etc. Its analysis results can be represented in a

directed graph—a positively significant b̂jk suggests an

edge from j to k, a negatively significant bjk suggests an

edge from k to j, and a non-significant b̂ij suggests no

edge between j and k. A topological sorting on this
directed graph can give optimal order(s) that are consist-
ent with each inferred preference of pairwise precedence.
In summary, the PWO model serves as a convenient ini-
tial model for identifying the important components, and
is especially favorable when each run of OofA experiment
is expensive or when the number of components is large.

Remark 2. A topological sorting exists if and only if
the directed graph is acyclic. For example, j preceding k,
k preceding l, and l preceding j cannot be simultan-
eously identified as favorable. In the presence of cycles,
more advanced algorithms are needed to speculate the
optimal order(s). This will be investigated in the future.
A possible approach is to “break” the cycles using exist-
ing tools in computer science, such as Tarjan (1972)’s
strongly connected components algorithm.

We evaluate the property of any n-run PWO
design Z via its moment matrix, defined as

M ¼ XTX=n, where X ¼ ½1;Z�. Note that under the
PWO model [3], the variance-covariance matrix of the
least squares estimator of b is proportional to M�1.
Thus it is desirable to maximize the matrix M under
some criteria. The popular criteria in the design field
include the D-criterion detðMÞ, the A-criterion
trðM�1Þ, the M.S.-criterion trðM2Þ, and the E-criterion
which is the minimum eigenvalue of M. We will dis-
cuss when the PWO design attains optimum under
these criteria in “Optimality theory of PWO design”
section and how to construct (nearly-)optimal PWO
designs in “Systematic construction of favorable PWO
designs” and “Algorithmic construction of efficient
PWO designs with small number of runs” sections.

Optimality theory of PWO design

Among all the possible choices of PWO designs with
certain number of runs, consider which one(s) attain
the optimum in terms of the aforementioned criteria.
Peng, Mukerjee, and Lin (2017) proved a non-trivial
result: the optimal correlation structure of PWO
design is the one given by the full PWO design.
Explicitly, let Mf be the moment matrix of the full
PWO design, Peng, Mukerjee, and Lin (2017) showed:

Theorem 1.
i. Any PWO design with a moment matrix of Mf is

/-optimal for every optimality criterion /(�) which
is concave and signed permutation invariant.

ii. For strictly concave and signed permutation invari-
ant criterion /(�), any PWO design is /-optimal if
and only if it attains a moment matrix of Mf.

In particular, the conventional D-, A-, E-, and
M.S.-criteria are all signed permutation invariant and
concave, and strictly concave except the E-criterion,
so Theorem 1 applies. In view of the equivalence the-
orem, the D-optimality of full design also implies its
G-optimality, that is,

maxa2A x að ÞTM�1x að Þ � p ¼ maxa2A x að ÞTM�1f x að Þ
[4]

for the moment matrix (M) of any PWO design; see,
for example, Silvey (2013), Chapter 3 for more details.
By Eq. [4], a moment matrix of Mf minimizes the
maximum variance of the estimated responses
at a 2 A.

In practice, the explicit optimal values of different cri-
teria are needed for the purpose of comparing different
designs. Peng, Mukerjee, and Lin (2017) studied the
properties of the full (thus optimal) PWO design by
identifying its eigenstructure. Their results are as below.

Table 1. The full OofA design and full PWO design with
three components.
(a) Full OofA design Df.

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
(b) Full PWO design Zf
z12 z13 z23
þ þ þ
þ þ –

– þ þ
– – þ

þ – –
– – –
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Theorem 2. Mf has eigenvalues 1, (mþ 1)/3 and 1/3,

with multiplicities 1, m – 1 and
�m�1

2

�
, respectively.

Then for the full (thus optimal) design:

D�criterion ¼ det Mfð Þ� �1=p ¼ mþ 1ð Þm�1
3q

� �1
p

;

A�criterion ¼ tr M�1f

� �
¼ 1þ 3m m�1ð Þ2

2 mþ 1ð Þ ;

E�criterion ¼ kmin Mfð Þ ¼ 1
3
; and

M:S:�criterion ¼ tr M2
f

� �
¼ 1þ m�1ð Þm 2mþ 5ð Þ

18
;

with q ¼
�m
2

�
and p ¼

�m
2

�
þ 1.

Remark 3. One of the most important features of the
order-of-addition problem is that the design points
under the PWO model, or in general any OofA
model, are subject to heavy constraints. The con-
straints, essentially imposed by the transitive property
of orders, result in inevitable correlations in any PWO
design. Note that even the optimal PWO design is not
orthogonal; from Theorem 2, as m approaches infin-
ity, the D-criterion of optimal design approaches 1/3.
These constraints further raise substantial algebraic
difficulties in proving the optimality theorems under
the PWO, or other OofA models.

Remark 4. Theorems 1 and 2 provide benchmarks for
evaluating all PWO designs, and enable us to define
the D-, A-, E-, and M.S.-efficiencies for the purpose of
searching efficient, fractional PWO designs. For
example, for any PWO design Z with moment matrix
M, its D-efficiency is

d Zð Þ ¼ det Mð Þ½ �1=p= mþ 1ð Þm�1
3q

� �1
p

:

Throughout this article, the D-efficiency is relative
to the optimal design (hence the full design). Likewise,
one can define the A-, E-, or M.S.-efficiency. For sim-
plicity, only the D-efficiency is considered in the
remainder of this article. The larger D-efficiency, the
better, and an optimal design has a D-efficiency of 1.

Systematic construction of favorable
PWO designs

In this section, we consider the construction of PWO
designs. The design construction problem is based
upon two objectives: (i) maximizing the design

efficiency and (ii) minimizing the experimental cost.
We first review the construction of optimal (but not
necessarily minimal-point) PWO designs, and then
review the construction of minimal-point (but not
necessarily optimal) PWO designs.

A class of optimal fractional PWO designs

Recall that a fractional PWO design is D-optimal if
and only if it has the same moment matrix as the full
design. However, such designs are very rare: for
m¼ 6, 7, 8, respectively, we randomly generated
100,000 half-fractional PWO designs (with m!=2
runs), and none of them attains optimum.

Peng, Mukerjee, and Lin (2017) obtained a class of
optimal fractional designs with closed-form construc-
tion. Their construction is based on a new blocking
scheme and a rowwise-reverse technique. Table 2
shows their design with m¼ 4. This design can be
divided (by the horizontal lines in Table 2) into three
blocks, with different blocks sharing a common struc-

ture. Each block has a form of
hA B
~B A

i
: in Table 2,

A ¼
h 1 2
2 1

i
;B ¼

h 3 4
4 3

i
, and ~B ¼

h 4 3
3 4

i
. One

block can be obtained from any other block by relabel-
ing the components. For instance, if we replace each
“2” by “3” and replace each “3” by “2” in the first
block, then we obtain the second block. All these fea-
tures guarantee that the design is symmetric about dif-
ferent components and is thus optimal. Detailed
mathematical descriptions and proofs are given in
Peng, Mukerjee, and Lin (2017). These obtained
designs are 1=r! fractions of the full design, where r
equals m/2 for even m, and (m – 1)/2 for odd m. Such
designs are useful for small m, but may not be afford-
able for larger m (see Table 3). For example when
m¼ 6, their design is a (1/6)-fractional design which
has 120 runs; while when m¼ 10, their design requires
30,240 runs, which is often not affordable. Despite that
their results may not be practically useful for large m,

Table 2. Optimal fractional PWO design given by Peng,
Mukerjee, and Lin (2017) with m¼ 4.
1 2 3 4

2 1 4 3
4 3 1 2
3 4 2 1
1 3 2 4
3 1 4 2
4 2 1 3
2 4 3 1
1 4 2 3
4 1 3 2
3 2 1 4
2 3 4 1

52 D. K. J. LIN AND J. PENG



they proved a theoretically important fact that the
optimal fractional PWO design does exist (for m � 4).

A class of minimal-point PWO designs

In some OofA experiments, each run of experiment is
rather expensive or time-consuming. It is then desir-
able to minimize the number of runs in a PWO
design. The PWO model has p ¼ ðm

2
Þ þ 1 parameters

to be estimated and therefore a minimal-point PWO
design shall have p runs.

Zhao, Lin, and Liu (2017) studied the construction
of minimal-point PWO designs (Table 4). They first
found that if we randomly generate a PWO design
with p runs, the obtained design is mostly singular
and often has a very low D-efficiency. Zhao, Lin, and
Liu (2017) then systematically constructed a class of
minimal-point designs (for any m) which are reason-
ably-efficient. Basically, given an efficient design with
small m, they developed a method to augment this
small design so that a minimal-point PWO design
with larger m is obtained. This can serve as a “lower-
bound design” (as compared to the full m!-run design
as a “upper-bound design”).

Explicitly, let Q be an efficient minimal-point
design with m¼ 5. (Such a Q is found by exhausted
computer search.) Then for any larger m, let H1 ¼
½Q; 1� with 1 being a vector of 1’s. Let H2 be an 11�
ðq�11Þ matrix of 1’s (recall that q ¼ ðm

2
Þ), H2 be a

ðq�10Þ � 11 matrix of 1’s, and H4 ¼ ðhijÞ be a
ðq�10Þ � ðq�11Þ matrix with

hij ¼ 1 when i � j
�1 otherwise:

�

Zhao, Lin, and Liu (2017) showed the follow-
ing result.

Theorem 3. H ¼
hH1 H2

H3 H4

i
is a minimal-point PWO

design with m components, with a D-criterion of

det Mð Þ½ �1=p ¼ 1
p

4q�10jHT
1H1j

	 
1=p
;

M being the information matrix of H.

Note that the quantity jHT
1H1j is determined by the

D-efficiency of Q. Using Theorem 3, Zhao, Lin, and
Liu (2017) constructed a series of minimal-point
PWO designs. The size and efficiency of their
obtained designs are tabulated as follows. These
designs are highly economic and are relatively efficient
among the minimal-point designs. Yet for large m,
the D-efficiency of their design is far below 1. A
tradeoff between the D-efficiency and the design eco-
nomicity is necessary, and this will be studied in the
next section.

Algorithmic construction of efficient PWO
designs with small number of runs

Systematic construction of favorable PWO designs
section gives a series of PWO designs either with the
highest efficiency or with the minimal number of
runs. In this section, we consider the tradeoff between
these two objectives. Consider, for practical needs,
how to construct designs with (i) a D-efficiency close
to 1 (e.g., greater than 0.9) and (ii) a relatively small
number of runs (e.g., n<2p). For this purpose, we
propose a new algorithm called the “Bubblesort-
exchange” algorithm.

Note that the problem of finding optimal order
appears similar to the traditional “sorting” problem:
given an array of m numbers, how to arrange it in an
ascending order? As a simple sorting algorithm,
“bubblesort” compares a pair of adjacent items at each
step and swaps them if they are in the wrong order.
The comparison of adjacent items starts from the bot-
tom of list, so that the largest item will move up to
the top of array, like a bubble rising to the surface.
After the comparison of adjacent items reaches the
top of array, the largest element in this array is then
determined. We next restart the comparison of adja-
cent items from the beginning, and the next bubble
which rises up to the top is the second largest elem-
ent, and so on; finally, the correct order is obtained.

The idea of bubblesort is applicable to the construc-
tion of OofA designs. As a toy example, suppose m¼ 3
and the first run of an OofA design, D, is ½a1; a2; a3�.

Table 4. The D-efficiency and the number of runs (p) of the
minimal-point designs obtained in Zhao, Lin, and Liu (2017).

m m!
p ¼

�m
2

�
þ 1

D-efficiency

3 6 4 0.810
4 24 7 0.897
5 120 11 0.837
6 720 16 0.532
7 5,040 22 0.375

Table 3. The number of runs (m!=r!) for the obtained optimal
fractional PWO design versus the number of runs (m!) for the
full PWO design.
m m! m!=r!

4 24 12
5 120 60
6 720 120
7 5,040 840
8 40,320 1,680
9 3:6� 105 15,120
10 3:6� 106 30,240
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Write D as
h a1; a2; a3

D1

i
. Via the following steps, the

updated ða1; a2; a3Þ tends to be (although is not 100%)

the best run given the rest of design, D1. if
h a2; a1; a3

D1

i

has a higher efficiency than
h a1; a2; a3

D1

i
then

ða1; a2Þ  ða2; a1Þ;
end
if

h a1; a3; a2
D1

i
has a higher efficiency thanh a1; a2; a3

D1

i
then

ða2; a3Þ  ða3; a2Þ;endif
h a2; a1; a3

D1

i
has a higher

efficiency than
h a1; a2; a3

D1

i
thenða1; a2Þ  ða2; a1Þ;end

Given any initial OofA design D, the proposed
Bubblesort-exchange algorithm updates the first run via
the above approach, and then updates the second run,
… , until the last run. The procedure is conducted for
several iterations. At each step, bubble-sort swaps only
an adjacent pair of components, and thereby the PWO
design is updated by only one element—thus the coord-
inate-exchange algorithm (Meyer and Nachtsheim 1995)
can be applied to accelerate our algorithm.

Of course, as a local-greedy-search method, the
bubblesort-exchange algorithm cannot guarantee
achieving the global optimum. Roughly speaking, the
proposed algorithm identifies the local optimum with
high chance in computationally efficient manner. As
such, it is able to find a variety of new, efficient PWO
designs, with m being large (up to 30). In addition,
the proposed algorithm is flexible in the run size: n
can be any number between p and m!. When n ¼ 2q,
the obtained design efficiencies are displayed in Table
5. With m � 10, our obtained designs have D-efficien-
cies greater than 95%. With m � 25, the obtained
designs have D-efficiencies greater than 90%.

Voelkel (2017) searched for small-run efficient
PWO design using the Fedorov (1972) exchange algo-
rithm. The Fedorov exchange algorithm obtains
slightly better results than our Bubblesort-exchange
algorithm for small m, say, m¼ 5, 6, 7. But for larger
m, say, m> 10, Fedorov exchange is computationally
infeasible due to both time and space complexity. The
Fedorov exchange algorithm requires to store the full
PWO design, which will be a matrix with 4� 107

runs and 55 columns when m¼ 11. We were unable
to store such a large matrix in the memory (under an
environment of Intel i7-6700, 3.40GHz, RAM
16.0GB, Matlab 2014a). On the contrary, the pro-
posed bubblesort-exchange algorithm is able to handle
large m (up to at least m¼ 30).

More order-of-addition models

The PWO model is a parsimonious OofA model.
Recall that a minimal-point PWO design requires p ¼
ðm
2
Þ þ 1 runs. If one can afford considerably more

than p experimental runs, a more complicated OofA
model would be desired.

An important direction of OofA modeling is to
extend the PWO model to general “s-way” models.
The PWO design is capable of describing the effect of
the precedence pattern between any pair of compo-
nents. In some cases it is desirable to capture the effect
of the precedence pattern among triplets, quadruplets,
or in general, s-way tuplets of components
(2 � s � m). The PWO model is merely the simplest
two-way model. The m-way, that is, the “full” OofA
model, is naturally defined. The m-way model assumes
that each of the m! orders has a treatment mean and
the m! treatment means are not necessarily related in
any sense. Between the two-way (PWO) and the m-
way models, the definition of any s-way model is not
that straightforward. Mee (2017) is the first to discuss
the modeling of s-way effects. This section reviews the
contribution of Mee (2017) and proposes modifica-
tions as well as new frameworks for the s-way model.

In The interaction model section we review a sim-
ple interaction model, which describes the three-way
effects. The symmetric interaction model section pro-
poses a “symmetric interaction model” which is theor-
etically more favorable than the simple interaction
model. The s-way Oofa model under the constrained
linear regression framework section proposes a new
series of s-way models under the framework of con-
strained linear regression. These models deserve fur-
ther study.

Table 5. Some D-efficiencies obtained by the Bubblesort-
exchange algorithm (with n ¼ 2q).
m p ¼ qþ 1 n ¼ 2q D-efficiency

4 7 12 1
5 11 20 0.971
6 16 30 0.970
7 22 42 0.970
8 29 56 0.962
9 37 72 0.958
10 46 90 0.953
11 56 110 0.947
12 67 132 0.943
13 79 156 0.940
14 92 182 0.934
15 106 210 0.932
16 121 240 0.929
17 137 272 0.927
18 154 306 0.921
19 172 342 0.918
20 191 380 0.917
25 301 600 0.903
30 485 870 0.891
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The interaction model

The conventional wisdom of constructing a higher-order
model from a lower-order model is to add interactions.
Intuitively, the three-way pattern, that is, the precedence
pattern among any triplet of components, can be repre-
sented by the interactions of PWO factors. Recall that
zjk is the PWO indicator between j and k. For any triplet
(j, k, l), the relevant PWO interactions include
zjk � zjl; zjk � zkl, and zjl � zkl. A non-trivial concern is:
which of the three interactions shall we add into the
three-way model? Mee (2017) noticed that the three
interactions cannot be added simultaneously. He showed
the equation zjk � zjl�zjk � zkl þ zjl � zkl ¼ 1; and therefore
a model is not estimable, if it incorporates all the three
interactions (as well as the intercept). Mee (2017)
defined an estimable three-way model by flexibly adding
“any full-rank set of df3j2 ¼ mðm�1Þðm�2Þ=3 two-fac-
tor [PWO] interactions that share a common factor”
into the PWO model. For instance, one can incorporate
the first two interactions of each triplet, thus the model

s að Þ ¼ b0 þ
X

1�j<k�m
bjkzjk að Þ

þ
X

1�j<k<l�m
b 1ð Þ
jkl zjk að Þzjl að Þ þ b 2ð Þ

jkl zjk að Þzkl að Þ
h i

:
[5]

Again, sðaÞ denotes the expected response from
order a. The unknown parameters include b0, bjk’s for

any 1 � j<k � m, as well as bð1Þjkl ’s and bð2Þjkl ’s for any

1 � j<k<l � m, thus 1þ
�m
2

�
þ 2

�m
3

�
parameters

in total.
As a well-defined three-way model, model [5] solves

the issue of estimability by incorporating two out of the
three interactions for each triplet. However, the choice of
only the first two interactions causes some “asymmetry”
on different components. Namely, why do we keep z12z13
and z12z23, while dropping z13z23? What if we incorporate
another two interactions? The asymmetry of model [5]
results in some potential concerns. For one thing, any
interaction term, say, z12z13, is unbalanced even in the
full design. See Table 6: when m¼ 3, z12z13 is at the “þ”
level for four runs while at the “–” level for two runs.
This imposes some intrinsic deficiency in estimating the

interaction effects. The asymmetry of model [5] raises
another potential issue regarding the labeling of different
components. The m different components, for example,
reagents in chemical experiments, are not naturally
ordinal. Ideally, the way of labeling components should
not be mattered. However, relabeling the components
will alter the design efficiency. As an illustrative example,
consider an OofA design D with m¼ 4 obtained by
excluding the 3rd, 9th, 15th, and 21st runs, namely,
1,324, 2,314, 3,214, and 4,213 from the full OofA design.
Under model [5], D has a A-criterion of 39.9. Now con-
sider relabeling the components via 4,132, that is, compo-
nents 1, 2, 3, 4 are now called components 4, 1, 3, 2,
respectively. The relabeled design has a different A-criter-
ion that equals 46.3. Consequently, practitioners have to
be cautious about the labeling when using a design under
model [5]. Such inconvenience of labeling is even more
serious when fitting a reduced model (after screening out
the unimportant components).

Remark 5. The A-, E-, and M.S.-criteria are typically
altered after relabeling. Interestingly, the D-criterion is
invariant under relabeling in all the examples we
have studied.

Last but not least, as can be expected, the asym-
metry causes some mathematical difficulty in estab-
lishing the conditions as well as properties of optimal
designs under this model. The knowledge of optimal
designs is important because it provides benchmarks
for evaluating any design. The symmetric model pro-
posed below, as a reparametrization of model [5], will
facilitate the theory of optimal designs.

The symmetric interaction model

To transform the two interactions in model [5], so
that the transformed interaction terms are symmetric
about different components, a proposed model is as
follows.

s að Þ ¼ b0 þ
X

1�j<k�m
bjkzjk að Þ

þ
X

1�j<k<l�m
b 1ð Þ
jkl T

1ð Þ
jkl að Þ þ b 2ð Þ

jkl T
2ð Þ
jkl að Þ

h i
;

[6]

where

T 1ð Þ
jkl að Þ;T 2ð Þ

jkl að Þ
h i

¼
1; 0ð Þ if jkl or lkj in a;

�1=2; ffiffiffi
3
p

=2
	 


if jlk or klj in a;

�1=2;� ffiffiffi
3
p

=2
	 


if kjl or ljk in a:

8><
>:

Here “jkl in a” means “j precedes k and k precedes l
in a”. It is easy to show that Tð1Þjkl ¼ 1=4þ 3=4zjkzkl

Table 6. Interaction terms of the simple interaction model (5)
under the full design (m¼ 3).
Order a z12ðaÞz13ðaÞ z12ðaÞz23ðaÞ
123 þ þ
132 þ –
213 – –
231 þ –
312 – –
321 þ þ
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and that Tð2Þjkl ¼ �
ffiffiffi
3
p

=4þ ffiffiffi
3
p

=2zjkzjl�
ffiffiffi
3
p

=4zjkzkl.
Hence model [6] is a linear coding of model [5]. The
modified model is symmetric in many senses. First, it
is relabeling-invariant. For any design under model
[6], its moment matrix changes by only a orthogonal
transformation after any relabeling. Thus, conven-
tional design criteria such as the D-, A-, E, M.S.-crite-
ria are invariant under any relabeling. A detailed
proof is not given here—the main idea follows the
proof of Lemma A1 in Peng, Mukerjee, and
Lin (2017).

Compared with model [5], model [6] also improves
the overall estimation/prediction accuracy in some
sense. For one thing, the “symmetric interaction”
terms Tð1Þjkl and Tð2Þjkl are now balanced under the full
design (cf. the unbalancedness of interactions in Table
6). Here a factor is called balanced if the inner prod-
uct equals 0 between the column of this factor and
the intercept column in the design. See Table 7 for
illustration. Such a balancedness is favorable for the
statistical inference. More properties of model [6] in
the estimation/prediction efficiency shall be explored
in the near future.

The symmetry of model [6] also facilitates the theory
of optimal design. Under this model, we have obtained
the same optimality result as Theorem 1. Explicitly, the
full OofA design attains the D-, A-, E, and M.S.-opti-
mum under model [6]. Meanwhile, a fractional design is
D-, A-, E, and M.S.-optimal under model [6] only if it
attains the same moment matrix as the full design.
These can be verified using the method of proving
Theorem 1 in Peng, Mukerjee, and Lin (2017) together
with the relabeling-invariance property of this model as
mentioned above. Note that the D-optimality is invari-
ant under coding schemes (i.e., linear transformations of
variables). Thus our result in turn proves that the full
design is D-optimal under model [5].

Model [5] allows straightforward interpretations on
the coefficients; see the example in Section 2.4 of Mee
(2017).[AQ4] On the contrary, model [6] appears not
easy to interpret, since the variables Tð1Þjkl and Tð2Þjkl are
artificially defined. Nevertheless, this is not a critical
concern in practice, as explained below. A major pur-
pose of using the three-way model is to detect “which

triplets indicate useful interaction terms”. When ana-
lyzing model [5], we shall first detect overall signifi-
cance of ½bð1Þjkl ; bð2Þjkl � for each triplet jkl. There is no
need to interpret the single coefficient bð1Þjkl or bð2Þjkl
itself. Of course, after identifying any significant trip-
let, say jkl, one can conduct a post-hoc analysis to
evaluate the linear contrasts regarding difference pre-
cedence patterns among the triplet jkl. These contrasts
should be estimated via a linear combination of bð1Þjkl
and bð2Þjkl .

As a summary, a symmetric interaction model [6]
is proposed as a modification of the simple three-way
model [5]. Compared to model [5], model [6] has sev-
eral advantages as it (i) possesses the relabeling-invari-
ance, (ii) improves the estimation/prediction efficiency
in some aspects, and (iii) facilitates the design theory.

The s-way OofA model under the constrained
linear regression framework

Consider the definition of s-way models with s � 4. Mee
(2017) proposed a general framework which defines an s-
way model by adding dfsjs�1 terms into the (s – 1)-way
model, where dfsjs�1 is from Rencontres series (Riordan
2012). The added terms are chosen from all the products
of PWO indicators that involve s components in total. This
framework is quite appealing as it decomposes m! into the
degrees of freedoms for the two-way (i.e., pairwise), three-
way, up to the m-way effects, respectively. However, Mee’s
definition of the s-way model is not fully justified before
the explicit choices of the dfsjs�1 add terms are given and
the resulting model is proved to be estimable. The justifica-
tion of this model is rather difficult, in view of the compli-
cated confoundedness among the products of the PWO
indicators. For example, the confoundedness relative to the
four-way model includes z12z13z14�z12z23z24 þ z13z23z34�
z14z24z34 ¼ 0 and z12z13z14�z12z13z24 þ z13z14z24�
z13z23z24 þ z13z23z34�z13z24z34 ¼ 0. So far, we have not
seen any explicit four-way or higher-way model in
the literature.

While Mee’s framework for the s-way model is def-
initely worth investigating, here we propose a different
framework, which models the s-way effects in a con-
strained linear regression. We first introduce some
concepts. For any 2 � s � m and any
1 � j1; j2; :::; js � m, define the s-way groups

Aj1j2:::js ¼ fa 2 A : jt precedes jtþ1 in a for any 1

� t � s�1g:
[7]

Such groups are partitioned by the precedence pat-
terns of a subset of s components. Define the s-way

Table 7. Interaction terms of the symmetric interaction model
(6) under the full design (m¼ 3).
Order a Tð1Þjkl ðaÞ Tð2Þjkl ðaÞ
123 1 0
132 �1=2 ffiffiffi

3
p

=2
213 �1=2 � ffiffiffi

3
p

=2
231 �1=2 ffiffiffi

3
p

=2
312 �1=2 � ffiffiffi

3
p

=2
321 1 0
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group means

l Aj1j2:::js

	 
 ¼ X
a2Aj1 j2 :::js

s að Þ=jAj1j2:::js j ¼
X

a2Aj1 j2 :::js

s að Þ= m!=s!ð Þ:

[8]

The proposed s-way order-of-addition model can
be written as

s að Þ ¼ l Að Þ þ
X

1�j1;j2;:::;js�m
I a 2 Aj1j2:::js

	 
 � l Aj1j2:::js

	 
�l Að Þh i
;

[9]

The parameters in [9] include lðAj1j2:::jsÞ’s for any
mutually different j1; j2; :::; js, as well as lðAÞ–thus
Pm
s þ 1 parameters in total. These parameters are sub-

ject to some natural constraints, as described below.
The constraints on the parameters are from the

partitioning structure of the s-way groups defined in
[7]. For any 2 � r<m, we have:

Akj1:::jr [ Aj1kj2:::jr [ ::: [ Aj1:::jr�1kjr [ Aj1:::jrk ¼ Aj1:::jr ;

[10]

for any mutually different j1; :::; jr and k. This results
in the following constraints on the group means:

l Akj1:::jr

	 
þ l Aj1kj2:::jr

	 
þ :::þ l Aj1:::jr�1kjr
	 


þ l Aj1:::jrk
	 
 ¼ r þ 1ð Þl Aj1:::jr

	 

:

[11]

We call Eq. [11] as the rth hierarchy of constraints.
For 1 � j � m, we define Aj ¼ A for convenience (so
that the 1st hierarchy of constraints is well-defined).
Since Eq. [11] holds for any mutually different
j1; :::; jr; k, there are Pm

rþ1 constraints in the
rth hierarchy.

As an illustration, the first hierarchy of constraints
says

l Ajk
	 
þ l Akj

	 
 ¼ 2l Að Þ; [12]

and the second hierarchy says

l Aljk
	 
þ l Ajlk

	 
þ l Ajkl
	 
 ¼ 3l Ajk

	 

: [13]

and

l Alkj
	 
þ l Aklj

	 
þ l Akjl
	 
 ¼ 3l Akj

	 

: [14]

Note that by inserting Eqs. [13] and [14] into [12],
any two-way group means will be eliminated. In other
words, combining the first and second hierarchies
yields a linear system that includes only the three-way
group means lðAj1j2j3Þ’s and the grand mean lðAÞ
as variables. In general, combining the first up to
(s – 1)th hierarchies of constraints yields a linear sys-
tem involving only the s-way group means and the
grand mean—we define this as the s-way cumulative-
constraints linear system.

In summary, the s-way order-of-addition model is
a constrained linear regression defined by Eq. [9] and
the s-way cumulative-constraints linear system. We
have clearly identified all these constraints, so that the
models can be fitted using the constrained least
squares method. The proposed framework is interpret-
able as it incorporates the Pm

s group means and the
grand mean as parameters to estimate. Of course, this
model needs to be improved for practical use. For one
thing, this model may be less useful for large m as the
number of variables increases quickly as m increases.
The main purpose of this subsection is to provide
some insights into future theories. A potential merit
of the proposed s-way models is that they are sym-
metric (i.e., relabeling-invariant) to different compo-
nents. This may facilitate the theory as well as the
construction of optimal designs. We believe, in add-
ition, that the constraints described above reveal some
essential features of the order-of-addition problem.

Concluding remarks

Order-of-addition (OofA) experiments have been
widely used in many scientific and industrial studies.
A successful OofA experiment can help experimenters
find out an optimal order. Such experiments also help
in identifying the significant order effects which reveal
some underlying scientific mechanisms. Design of
OofA experiments is needed to select representative
orders, testing which yields efficient estimates of order
effects under the control of experimental costs. This
article introduces many latest results as well as some
new thoughts, regarding the design and model of the
OofA experiment. Specifically, we have reviewed the
pairwise-order (PWO) model and its relevant optimal-
ity theorems. The construction methods of PWO
designs have been thoroughly reviewed, including the
construction of optimal PWO designs, minimal-point
PWO designs, and nearly-optimal PWO designs with
small number of runs. We have further introduced
several extensions of the PWO model, including two
forms of the three-way model and the general s-way
model. Their pros and cons have been discussed. The
current results/thoughts under each model have been
summarized. We believe that this review can help
practitioners understand, implement, and utilize OofA
designs. This review also provides some suggestions
for statistical research on this topic. For example,
fruitful future work is anticipated in the design and
analysis under higher-order models (see More order-
of-addition models section).
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We refer interested readers to Voelkel (2017), Mee
(2017), and Yang, Sun, and Xu (2017) for more results
(which we have not covered here) on the OofA prob-
lem. For instance, Voelkel (2017) introduced the v2

criterion for PWO designs to measure the design effi-
ciency of estimating higher-order effects; Mee (2017)
introduced a real example as well as a simulated
example of OofA experiments; and Yang, Sun, and Xu
(2017) established the connection between difference
matrix and the OofA design.

The OofA problem has recently become popular in
the field of design of experiment. Besides the research
topics covered in this article, there have been several
more directions of tackling this problem. One direc-
tion of future work is to explore and extend the
“position-effect” model proposed by Yang, Sun, and
Xu (2017). They define the predictors in an OofA
model via the positions of all components, rather than
the precedence patterns among them. It is notable
that they have obtained, via a smart algorithm, designs
that are (nearly)-optimal under the position effect
model and highly efficient under the PWO model.
Construction of designs that are robust to different
models is worth studying. Another future work is on
the simultaneous design and inference of both the
OofA effects and the real-factor effects. This topic is
strongly motivated by the practical needs in chemistry,
food science, and related areas. In chemical experi-
ments, the formation of product depends on both the
addition order and the amounts of each reactants.
Many designs (such as fractional factorial designs) are
available to control the levels of different reactants.
Then how to combine such designs with our OofA
designs, so as to estimate the OofA effects and the
real-treatment effects simultaneously? We look for-
ward to new models and designs along this line.
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