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Summary

In an order-of-addition experiment, each treatment is a permutation of m components. It is
often unaffordable to test all the m! possible treatments, and thus the design problem arises. We
consider a flexible model that incorporates the order of each pair of components and can also
account for the distance between the two components in every such pair. Under this model, the
optimality of the uniform design measure is established, via the approximate theory, for a broad
range of criteria. Coupled with an eigenanalysis, this result serves as a benchmark that paves the
way for assessing the efficiency and robustness of any exact design. The closed-form construction
of a class of robust optimal fractional designs that can also facilitate model selection is explored
and illustrated.

Some key words: Approximate theory; Association algebra; Optimality; Pairwise order; Robustness; Signed permuta-
tion; Tapered model.

1. Introduction

This paper deals with a problem where the output of a process depends on the order of adding
m different components into the system, and interest is in understanding this dependence. Order-
of-addition experiments have wide applications in chemistry and related areas. For example,
Ryberg (2008) studied a reaction in which the order of adding the reagents had a strong effect on
the performance of the reaction, and a series of experiments was conducted to evaluate different
orders of addition. More order-of-addition chemical experiments have been described by Fuleki
& Francis (1968), Shinohara & Ogawa (1998), Jiang & Ng (2014), Song et al. (2014) and Ding
et al. (2015), among others.

It is often unaffordable to test all the m! possible orders, and the design problem is then to
choose a subset of orders for comparison. The naïve design which randomly chooses orders is
often adopted in practice. Naturally, an optimal design, with a solid theoretical foundation, will
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2 J. Peng, R. Mukerjee AND D. K. J. Lin

be preferable to this naïve design. However, the statistical literature on this topic is limited. The
work of van Nostrand (1995) appears to be the first statistical reference on the order-of-addition
design; he suggested considering a design to detect the pairwise order effects that are often of
great interest, with practitioners wishing to know, for example, whether adding component 1
before component 2 or vice versa significantly influences the response. Voelkel (2017) studied
design criteria and design construction under a pairwise order model defined in § 2. A key feature
of his work is the idea of extending orthogonal arrays to designs that are naturally restricted, of
which the order-of-addition orthogonal array is an important example. He showed that such an
array leads to the same value of the D-criterion as the full design, but he did not report optimality
results.

We aim to initiate the systematic development of an optimal design theory for order-of-addition
experiments. This is done under a model which is more flexible than the pairwise order model
and includes it as a special case. In particular, our results provide firm justification for the work
of Voelkel (2017) from the perspective of optimality and robustness. The tools that we employ
include approximate theory via the use of signed permutation matrices and an eigenanalysis
motivated by association algebra. All proofs appear in the Appendix.

2. Model formulation

Suppose there are m � 3 components 1, . . . , m, which can be ordered in m! ways. Any such
ordering, say a = a1 . . . am, which is a permutation of 1, . . . , m, is a treatment. As in van Nostrand
(1995) and Voelkel (2017), our model incorporates the order of every pair of components in any
treatment. A new feature of the model is that it allows for possible tapering, as may happen in
practice, of the impact of any such pairwise order with an increase in the distance between the
components in the pair. Thus, the effect of component i preceding component j when they are at
the two extremes of a treatment can be smaller than when they are adjacent.

To present the model formally, we write A for the set of the m! treatments. For a ∈ A, let τ(a)

be the treatment mean of a, that is, the expectation of the response from a. It is assumed that the
responses have equal variance and are uncorrelated. Let S be the set of all pairs ij (1 � i < j � m).
For a = a1 . . . am ∈ A and ij ∈ S, write h(ij, a) for the distance between i and j in a; that is, if
ak = i and al = j, then h(ij, a) = |k − l|, so that h(ij, a) ∈ {1, . . . , m − 1}. Then, according to
our model,

τ(a) = β0 +
∑

ij
zij(a)βij (a ∈ A), (1)

where
∑

ij denotes summation over ij ∈ S, the βij and β0 are unknown parameters and, for each
ij ∈ S,

zij(a) =
{

ch(ij,a), i precedes j in a,

−ch(ij,a), j precedes i in a.
(2)

Thus, if m = 3, then τ(312) = β0 + c1β12 − c1β13 − c2β23. In (2), the ch (h = 1, . . . , m − 1)
are known quantities such that 1 = c1 � · · · � cm−1 � 0. These are intended to capture the
possible tapering as indicated above. For example, one can take ch = 1/h or ch = ch−1, with
known c such that 0 < c < 1. On the other hand, if no such tapering is anticipated, then one
could also take ch = 1 for all h, in which case (1) and (2) reduce to the pairwise order model
of van Nostrand (1995) and Voelkel (2017). As an example of a practical situation which is
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Design of order-of-addition experiments 3

well represented by model (1) with an appropriate choice of the ch in (2), we refer to the order-
of-addition experiment of Jiang & Ng (2014), who used the full design for m = 4. The usual
pairwise order model, given by c1 = c2 = c3 = 1, conforms well with their data on fluorescence
outputs at 445 nm, accounting for over 90% of the total variation. Moreover, if this dataset is
truncated to the 12-run optimal fractional design in § 5, then the same model accounts for over
93% of the total variation. Indeed, our findings indicate a high degree of robustness of the optimal
designs with respect to the specific choice of the ch. This facilitates model selection, as will be
seen in § 5.

Let β̃ = (β12, β13, . . . , βm−1 m)T, where the superscript T denotes transpose. Then β =
(β0, β̃T)T represents the parameter vector of interest. Similarly, for any a ∈ A, let z(a) =
[z12(a), . . . , zm−1 m(a)]T and x(a) = [1, z(a)T]T. Then (1) can be expressed as

τ(a) = β0 + z(a)Tβ̃ = x(a)Tβ. (3)

Write q = m(m − 1)/2 and p = q + 1. Then β̃ and z(a) are q × 1, while β and x(a) are p × 1.
Also,

x(a)Tx(a) = 1 + (m − 1)c2
1 + · · · + c2

m−1 (4)

for each a, because by (2), m−h of the zij(a) (ij ∈ S) have absolute value ch, for h = 1, . . . , m−1.

3. Optimality of the uniform design measure

Let d0 be the full design which replicates each treatment once. Theorem 1 establishes the
optimality of d0 for inference on β under a broad range of criteria, among all designs with the
same number, m!, of runs. This result holds irrespective of the ch in (2). Although d0 is impractical
for large m, Theorem 1 provides a useful benchmark for assessing smaller designs.

One may anticipate the optimality of d0 because, with run size m!, a design that replicates some
treatments more than once while omitting others altogether is intuitively unappealing. However,
unlike in similar situations such as traditional full factorial experiments, the moment matrix of
d0, obtained in § 4, is rather involved. For instance, it need not be completely symmetric (Kiefer,
1975) in the sense of having all diagonal elements equal and all off-diagonal elements equal. The
ch in (2) further complicate matters. As a result, a direct combinatorial proof of the optimality
of d0 is quite challenging. An approach based on approximate theory is found to yield a subtle
noncomputational proof that does not require explicit evaluation of the moment matrix of d0.

To motivate the ideas, consider an N -run exact design d, where any treatment a ∈ A is replicated
r(a) times and the integers r(a) � 0 sum to N . By (3), d has per-run moment matrix

M (w) =
∑

a
w(a)x(a)x(a)T, (5)

where w(a) = r(a)/N and
∑

a denotes summation over a ∈ A. In approximate theory, the
requirement that the design weights w(a) be integer multiples of 1/N is relaxed, and they are
allowed to be any nonnegative quantities, subject to

∑
a w(a) = 1. Then w = {w(a) : a ∈ A} is

called a design measure, having moment matrix M (w). In particular, the full design d0 corresponds
to the uniform design measure w0 over A, which has moment matrix

M0 = M (w0) = (1/m!)
∑

a
x(a)x(a)T. (6)
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4 J. Peng, R. Mukerjee AND D. K. J. Lin

Let M denote the class of p×p nonnegative-definite matrices. Recall that a signed permutation
matrix is a square matrix having exactly one nonzero entry in each row and column, where each
nonzero entry is either 1 or −1. We consider optimality criteria φ(·) that are concave over M and
signed permutation invariant, that is, φ(RTMR) = φ(M ) for every signed permutation matrix R
of order p and every M ∈ M . Given any such φ(·), a design measure is said to be φ-optimal
if it maximizes φ{M (w)} among all design measures. The commonly used D-, A- and E-criteria
correspond to φ(M ) = log det(M ), − tr(M−1) and λmin(M ), respectively, where log det(M ) and
−tr(M−1) are interpreted as −∞ for singular M , and λmin stands for the smallest eigenvalue.
As all design measures here have the same tr{M (w)} by (4) and (5), our framework also covers
the MS-optimality criterion of Eccleston & Hedayat (1974), with φ(M ) = −tr(M 2). This is
equivalent to the E(s2) criterion for two-level supersaturated factorial designs (Booth & Cox,
1962) when ch = 1 for all h, in which case each x(a) has elements ±1. All these criteria are
concave and signed permutation invariant.

Theorem 1 establishes the optimality of the uniform design measure or, equivalently, that of the
full design. Its proof exploits the concavity and signed permutation invariance of the optimality
criteria along with the fact, proved in the Appendix, that the action of any permutation of 1, . . . , m
on the set of treatments induces an action of a signed permutation matrix on {x(a) : a ∈ A}.

Theorem 1. The uniform design measure w0 is φ-optimal for every optimality criterion φ(·)
which is concave and signed permutation invariant.

Theorem 1 has several important implications.
(i) It shows the D-, A-, E- and MS-optimality of the uniform design measure w0. By the equiv-

alence theorem (Kiefer & Wolfowitz, 1960), D-optimality of w0 also implies its G-optimality;
that is, for every design measure w,

max
{
x(a)TM−1(w)x(a) : a ∈ A

}
� p = max

{
x(a)TM−1

0 x(a) : a ∈ A
}
.

Thus, w0 minimizes the maximum variance of the estimated responses at a ∈ A.
(ii) In view of (i), the full design d0 is D-, A-, E-, MS- and G-optimal among all designs having

m! runs. An exact design, with a smaller number of runs but having the same moment matrix
M0 as d0, also enjoys these optimality properties. More generally, such a design is φ-optimal for
every φ(·) as in Theorem 1. The matrix M0 will be examined in more detail in § 4 with a view to
assessing the efficiencies of any given exact design under the aforementioned criteria.

(iii)While w0 may not be the unique design measure having the optimality properties mentioned
in (i), any other design measure which is D-,A- or MS-optimal must have the same moment matrix
M0 as w0. This is because these three criteria are strictly concave.

(iv) In particular, for the usual pairwise order model given by ch = 1 for all h, the order-
of-addition orthogonal arrays of Voelkel (2017) have, by definition, moment matrix M0, and
therefore, as noted in (ii) above, these are indeed optimal in the sense of Theorem 1. Conversely,
in this situation, an exact design that corresponds to a D-, A- or MS-optimal design measure must
have moment matrix M0, in view of (iii) above. Hence it is not hard to see that such a design has
to be an order-of-addition orthogonal array. This settles an issue left open by Voelkel (2017).

4. Eigenanalysis and efficiency assessment

Although the proof of Theorem 1 does not require explicit knowledge of M0, we need to find
M0 and its eigenvalues to assess the efficiencies of a given design measure or a given exact design
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Design of order-of-addition experiments 5

under various optimality criteria. Write I for the identity matrix of order q, and define V as the
q × q matrix with rows and columns indexed by the elements of S such that for ij, kl ∈ S, the
(ij, kl)th element of V is

V (ij, kl) =

⎧⎪⎨
⎪⎩

1, i = k , j |= l or i |= k , j = l,

−1, i = l or j = k ,

0, otherwise.

(7)

For instance, if m = 4, then S = {12, 13, 14, 23, 24, 34} and

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 −1 −1 0
1 0 1 1 0 −1
1 1 0 0 1 1

−1 1 0 0 1 −1
−1 0 1 1 0 1

0 −1 1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where V (12, 12) = V (12, 34) = 0, V (13, 23) = 1, V (23, 12) = −1, and so on. Let

b0 = 2
{
(m − 1)c2

1 + · · · + c2
m−1

}/{
m(m − 1)

}
, (8)

b1 = 2
∑

h

{
m − h(1) − h(2)

}
ch(1)

{
2ch(1)+h(2) − ch(2)

}/{
m(m − 1)(m − 2)

}
, (9)

where
∑

h denotes summation over all positive integers h(1) and h(2) such that h(1) + h(2) �
m − 1. In general, (8) and (9) do not permit further simplification, although when ch = 1 for all
h, they reduce to

b0 = 1, b1 = 1/3. (10)

Theorem 2. The moment matrix of the uniform design measure w0 is M0 = diag(1, b0I +b1V ),
having eigenvalues 1, b0+(m−2)b1 and b0−2b1 with multiplicities 1, m−1 and (m−1)(m−2)/2,
respectively.

If every −1 in V were 1 instead, V would equal an association matrix of the triangular
association scheme (Raghavarao, 1971, Ch. 8), and the related association algebra could be
useful in studying the eigenvalues of M0 in Theorem 2. Somewhat in the same spirit, the proof
in the Appendix obtains and uses an expression for V 2 as a linear combination of I and V .

Theorem 2 enables us to assess the efficiencies of any design measure w under various criteria,
relative to the uniform design measure w0 seen to be optimal in Theorem 1. In particular, the D-
and A-efficiencies of w, defined as [det{M (w)}/ det(M0)]1/p and tr(M−1

0 )/ tr{M−1(w)}, are

D-eff(w) =
[

det{M (w)}
{b0 + (m − 2)b1}m−1(b0 − 2b1)(m−1)(m−2)/2

]1/p

, (11)
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6 J. Peng, R. Mukerjee AND D. K. J. Lin

A-eff(w) = 1 + (m − 1)
[{b0 + (m − 2)b1}−1 + {(m − 2)/2}(b0 − 2b1)

−1
]

tr{M−1(w)} . (12)

The design measure w in (11) and (12) can correspond to an exact design.
Equations (11) and (12) are pivotal in efficiency calculations for a given choice of the ch

in (2), as well as for studying robustness across such choices. For illustration, we study the
performance of the order-of-addition orthogonal arrays of Voelkel (2017) under tapered models
given by (i) ch = 1/h and (ii) ch = (1/2)h−1 (h = 1, . . . , m − 1). In § 3 these arrays were found
to be optimal under the usual pairwise order model. By (11) and (12), for m = 5, the 12-run
array in Table 3 of Voelkel (2017) has D- and A-efficiencies of 0.985 and 0.972 under (i), and of
0.989 and 0.980 under (ii). Similarly, for m = 6, the 24-run arrays in Table 7 of Voelkel (2017)
are also quite robust, the best being the leftmost one in that table, having D- and A-efficiencies
of 0.992 and 0.984 under (i) and of 0.994 and 0.988 under (ii). Indeed, even these figures can
be conservative, as under (i) or (ii) there may not exist any exact design of the same run size as
these arrays that has moment matrix M0.

5. Optimal fractional designs

The literature on order-of-addition design lacks a systematic procedure for the construction of
optimal fractional designs. To this end, we now propose a method that yields optimal fractions
much smaller than the full design d0 and has potential for further improvement, as discussed in
§ 6. Our construction is based on the fact, noted in § 3, that an N -run exact design d having the
same moment matrix M0 as d0 is optimal among all N -run designs, for every criterion φ(·) as
in Theorem 1. Throughout this section, we work under the usual pairwise order model given by
ch = 1 for all h. Then, by (10) and Theorem 2,

M0 = diag{1, I + (1/3)V }. (13)

The resulting designs are found to be very efficient under tapered models as well. We first illustrate
the structure of the proposed designs, and then present the general construction procedure.

Let m = 4. Consider the 12-run half fractional design d, given in transposed form by

1 2 4 3 1 3 4 2 1 4 3 2
2 1 3 4 3 1 2 4 4 1 2 3
3 4 1 2 2 4 1 3 2 3 1 4
4 3 2 1 4 2 3 1 3 2 4 1

This can be obtained from the first design in Table 2 of Voelkel (2017) by relabelling the compo-
nents and row permutation. The design d has moment matrix M0 and hence enjoys the optimality
properties of d0. To see the structure of d, let

B1 =
(

1 2
2 1

)
, B̄1 =

(
3 4
4 3

)
, B2 =

(
1 3
3 1

)
, B̄2 =

(
2 4
4 2

)
,

B3 =
(

1 4
4 1

)
, B̄3 =

(
2 3
3 2

)
.
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Design of order-of-addition experiments 7

Then d can be expressed as [DT
1 DT

2 DT
3]T where

Du =
(

Bu B̄u

∼B̄u Bu

)
(u = 1, 2, 3), (14)

with ∼ representing the operator of column reversal of any matrix; for example, ∼B̄1 has first
column (4, 3)T and second column (3, 4)T.

We now show how the above design structure allows an extension to the case of general even
m � 4. Let s = m/2, L = m!/{2(s!s!)} and � = {1, . . . , m}. Consider lexicographically arranged
distinct sets C1, . . . , CL, where each Cu consists of 1 and s−1 other elements of �. For each u, let
C̄u be the complement of Cu in �. In both Cu and C̄u, the elements are arranged in ascending order.
For u = 1, . . . , L, let Bu be the s! × s array with rows formed by all permutations of the elements
of Cu, and define B̄u similarly with reference to C̄u. Thus, if m = 4, then C1 = {1, 2}, C̄1 = {3, 4},
C2 = {1, 3}, C̄2 = {2, 4}, C3 = {1, 4} and C̄3 = {2, 3}, entailing Bu and B̄u (u = 1, 2, 3) as shown
above. Similarly, if m = 6, then, for example, C5 = {1, 3, 4} and C̄5 = {2, 5, 6}, and hence

B5 =
⎛
⎝1 1 3 3 4 4

3 4 1 4 1 3
4 3 4 1 3 1

⎞
⎠

T

, B̄5 =
⎛
⎝2 2 5 5 6 6

5 6 2 6 2 5
6 5 6 2 5 2

⎞
⎠

T

.

For u = 1, . . . , L, now define Du as in (14). Along the lines of the 12-run design shown above
for m = 4, let d∗ be the design consisting of the m!/s! treatments given by the rows of D =
(DT

1 . . . DT
L)T.

Theorem 3. For every even m � 4, the design d∗ has moment matrix M0 and hence is φ-
optimal among designs with the same number of runs, for every optimality criterion φ(·) which
is concave and signed permutation invariant.

The above construction readily yields φ-optimal designs for odd m = 2s + 1 (s � 2) as well.
To get such a design in (2s + 1)!/s! runs, one has to stack 2s + 1 copies of D. Then it suffices to
insert a column consisting only of 2s+1 just before the lth column of the lth copy (l = 1, . . . , 2s)
and also after the last column of the last copy.

In order to explore the performance of the above fractional designs under tapered models, we
again consider (i) ch = 1/h and (ii) ch = (1/2)h−1 (h = 1, . . . , m − 1). Quite reassuringly, the
D- and A-efficiencies of our fractional designs for m = 4, . . . , 10, calculated from (11) and (12),
turn out to be over 0.99 under both (i) and (ii). For the reason indicated at the end of § 4, even
these figures may be conservative. Moreover, the same pattern is seen for other choices of the ch.
This robustness facilitates the use of our fractional designs in model selection, allowing a wide
range of models to choose from. One does not need to prespecify the ch in (2), but rather can
make a post-experimentation data-driven choice of these quantities with the assurance that the
design will remain highly efficient under the model so reached. For illustration, let m = 4 and
suppose that the design d∗ in Theorem 3 leads to observations

8.27, 3.09, 10.21, 7.26, 0.76, 12.15, 3.90, 5.09, 11.95, 1.62, 4.03, 7.77,

which correspond to treatments in the same order as in d∗ that are generated by adding perturba-
tions, each uniform over [−1, 1], to a random permutation of 1, . . . , 12. Standard crossvalidation
techniques may be used to compare various choices of the ch in (2). For instance, one could
employ leave-one-out crossvalidation and find the ratio of the predictive residual sum of squares
for any choice of the ch to that for a model involving only the general mean. A choice of the ch
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8 J. Peng, R. Mukerjee AND D. K. J. Lin

may be considered satisfactory if this ratio is sufficiently small. With observations as above, this
ratio is found to be only 0.083 for ch = 1/h (h = 1, 2, 3). Thus, a model given by this choice
of the ch in (2) is reasonable and one remains assured of high efficiency of our fractional design
under the model so reached. Indeed, as indicated in the next section, our designs remain highly
efficient when the model incorporates some three-way orderings in addition to the pairwise terms,
and thus they allow even more flexibility in model selection, if necessary.

The optimal design d∗ in Theorem 3 permits a natural blocking, with treatments arising from
each Du constituting one block. In model (1) for the treatment mean τ(a),β0 then has to be replaced
by a block effect parameter depending on the block where any treatment a in d∗ appears, and
we focus on β̃ = (β12, . . . , βm−1 m)T. The proof of Lemma A4(a) in the Appendix shows that the
blocking of d∗ as envisaged above is a case of orthogonal blocking under the usual pairwise order
model. Therefore, under this model, the resulting block design remains φ-optimal for inference
on β̃, for every monotone criterion φ(·) which is concave and signed permutation invariant, such
as the D- and A-criteria. Moreover, for m up to 10, the D- and A-efficiencies of these blocked
fractional designs, calculated from appropriate versions of (11) and (12), are again found to be
over 0.99, under both of the tapered models given by (i) and (ii) in the previous paragraph.

6. Discussion

Theorem 3 is a first step towards systematic construction of optimal fractional designs for
order-of-addition experiments. There is a need to develop optimal or efficient designs in even
smaller run sizes. Theorems 1 and 2, along with the resulting expressions (11) and (12) for D-
and A-efficiencies which facilitate the study of robustness, are powerful tools for this purpose.
Initial studies suggest that a refinement of the procedure in § 5, via the use of certain incomplete
block designs and partial rather than full permutations, should work. Some progress has already
been made in this direction, covering in particular the cases of m = 7, . . . , 12. For example,
with m = 8, we have found a design that requires only 168 runs and has a moment matrix M0
when ch = 1 for all h. Thus, under the usual pairwise order model, the design is optimal in the
sense of Theorem 3. It is also very robust with respect to the choice of the ch, and has D- and
A-efficiencies of over 0.99 under the tapered models given by ch = 1/h and ch = (1/2)h−1

(h = 1, . . . , m − 1). Step-down and exchange algorithms are quite promising in the construction
of still smaller efficient designs. Thus, with m = 8, from the 168-run design mentioned above, we
could obtain an 84-run design having D- and A-efficiencies of 0.986 and 0.973 for ch = 1; 0.973
and 0.946 for ch = 1/h; and 0.972 and 0.945 for ch = (1/2)h−1 (h = 1, . . . , m − 1). As noted in
§ 4, these efficiency figures are conservative. Streamlining of these algorithms could yield even
better results.

From the viewpoint of model robustness, it is of interest to examine how our designs behave
when the model is allowed to include some three-way orderings in addition to the pairwise terms.
For m = 3 and any fixed ch, under model (1), the space of possible 6 × 1 vectors with elements
τ(a) (a ∈ A) has dimension four, and its two-dimensional orthocomplement does not depend
on the ch. Hence, for m = 3, the three-way ordering of components 1, 2 and 3 can be taken
care of via augmentation of (1) by two more terms that account for this orthocomplement. The
same idea can be extended to general m through the inclusion of two additional terms for each
triplet of components for which the three-way ordering is intended to be captured, with only a
few such triplets being entertained from the perspective of model parsimony. We omit the details
to save space but note that, for m � 5, our fractional designs in § 5 perform very well even under
such augmented models. For example, the design there for m = 7 has a D-efficiency of at least
0.95 and an A-efficiency of at least 0.9, under every such augmented model that incorporates
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Design of order-of-addition experiments 9

three-way orderings of one or two triplets, this being true for various choices of the ch including
ch = 1, 1/h and (1/2)h−1 (h = 1, . . . , m − 1); in fact, the D- and A-efficiencies exceed 0.98 and
0.95, respectively, in a vast majority of cases. The smaller designs mentioned in the preceding
paragraph also tend to perform quite well, particularly under the D-criterion and often under
the A-criterion. This allows further flexibility in model selection along the lines indicated in
§ 5, perhaps now with a provision for penalty for the additional parameters that correspond to
three-way orderings. As before, one remains assured of high design efficiency under the model
that one arrives at.

Our results do not require normality of the responses, but do assume their homoscedasticity.
This is violated if the response variance is treatment-dependent. While theoretical results are
then hard to obtain, algorithms in approximate theory can be readily employed to find a D- or an
A-optimal design measure, say w∗, at least for m � 7; see, for example, Torsney & Martín-Martín
(2009). Numerical studies based on comparison with w∗ show that our optimal designs retain
high efficiency when the variances do not differ widely. In contrast, if such heteroscedasticity is
more severe, then, as intuitively expected, w∗ turns out to be far from uniform, and this leads to a
pleasant surprise, making the conversion of w∗ to an efficient exact design rather easy. One needs to
include only those treatments where w∗ assigns greater weights and exclude others. Such designs
are quite robust, with high efficiency across various tapered models and over an appreciable range
of the variances. Thus, with m = 4, if it is believed that responses from treatments beginning
with component 1 may have a common variance greater than that of the rest, then under model
(1) the 12-run design {2134, 2143, 2341, 2431, 3124, 3142, 3241, 3421, 4123, 4132, 4231, 4321},
obtained as above, has D-efficiency over 0.98 and A-efficiency over 0.95, for a variance ratio
greater than 1.2 and for ch = 1, 1/h or (1/2)h−1. While a good design here is expected to exclude
treatments beginning with 1, approximate theory guides us as to which 12 of the remaining 18
should be included. Incidentally, these heuristics do not work under homoscedasticity, where,
by Theorem 1, the uniform design measure is optimal. This gives no immediate clue to which
treatments should be retained in a smaller design and necessitates the development of further
theory. Of course, the optimal design algorithms can become unmanageable for larger m, and
more work is needed in this regard.

As pointed out by a reviewer, our work here may have connections with other types of ordering
problems, such as the crossover experiment and the choice of splitting order in decision trees.
We conclude with the hope that the present endeavour will generate further interest in order-of-
addition designs and related topics.
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Appendix

Proof of Theorem 1

Let π = π1 · · · πm be a permutation of 1, . . . , m, and let

πa = πa1 · · · πam (A1)

for any treatment a = a1 . . . am ∈ A. Clearly, A is also the set of all such m! permutations π .
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10 J. Peng, R. Mukerjee AND D. K. J. Lin

Lemma A1. Given any π ∈ A, there exists a signed permutation matrix R(π) of order p such that
x(πa)T = x(a)TR(π) for every a ∈ A.

Proof. Given any π = π1 · · · πm, for ij ∈ S let π̄iπ̄j equal πiπj if πi < πj and πjπi if πi > πj. By (A1),
for every ij ∈ S and every a ∈ A, (i) i precedes j in a if and only if πi precedes πj in πa, and (ii) the distance
between i and j in a equals that between πi and πj in πa. Recalling (2), by (i), therefore, zπ̄i π̄j (πa) and
zij(a) have the same sign if and only if πi < πj, while by (ii) they have the same absolute value. In other
words, zπ̄i π̄j (πa) equals zij(a) if πi < πj and −zij(a) if πi > πj. Thus, z(πa)T = z(a)TR̃(π) for every a ∈ A,

where R̃(π) is a signed permutation matrix of order q such that for each ij ∈ S, the (ij, π̄iπ̄j)th element of
R̃(π) is 1 or −1, according to whether πi < πj or πi > πj, respectively, and all other elements of R̃(π) are
zeros. Hence x(πa)T = x(a)TR(π) for every a ∈ A, where R(π) = diag{1, R̃(π)} is a signed permutation
matrix of order p. �

Consider a design measure w = {w(a) : a ∈ A}. For any π ∈ A, let πw be the design measure that
assigns, for each a ∈ A, weight w(a) to treatment πa. Because φ(·) is concave, writing

∑
π for summation

over π ∈ A,

φ

{
(1/m!)

∑
π

M (πw)

}
� (1/m!)

∑
π

φ
{
M (πw)

}
. (A2)

Now, {πa : π ∈ A} = A for every fixed a ∈ A, so that by (6),
∑

π x(πa)x(πa)T = ∑
a x(a)x(a)T = m!M0.

Hence, by (5),

(1/m!)
∑

π
M (πw) = (1/m!)

∑
π

∑
a

w(a)x(πa)x(πa)T =
∑

a
w(a)M0 = M0. (A3)

Also, by (5) and Lemma A1, any π leads to a signed permutation matrix R(π) such that

M (πw) =
∑

a
w(a)x(πa)x(πa)T

= R(π)T

{∑
a

w(a)x(a)x(a)T

}
R(π) = R(π)TM (w)R(π),

and hence φ{M (πw)} = φ{M (w)} because φ(·) is signed permutation invariant. Consequently, in view of
(A3), from (A2) we get φ(M0) � φ{M (w)}, and the result follows.

Proof of Theorem 2

Lemma A2.
(a) For ij ∈ S,

∑
a zij(a) = 0 and

∑
a z2

ij(a) = (m!)b0.
(b) For i, j and k satisfying 1 � i < j < k � m,

∑
a zij(a)zik(a) = (m!)b1,

∑
a zik(a)zjk(a) = (m!)b1,

and
∑

a zij(a)zjk(a) = −(m!)b1.
(c) For ij, kl ∈ S, if the sets {i, j} and {k , l} are disjoint, then

∑
a zij(a)zkl(a) = 0.

Proof. (a) This follows from (2) and (8), noting that among the zij(a) (a ∈ A), each of ch and −ch occurs
with frequency (m − 2)!(m − h) (h = 1, . . . , m − 1).

(b) By (2), considering the positions, in increasing order, occupied by some permutation of i, j and k in
any treatment,

∑
a

zij(a)zik(a)

= 2{(m − 3)!}
∑

u

{
cu(2)−u(1)cu(3)−u(1) − cu(2)−u(1)cu(3)−u(2) + cu(3)−u(1)cu(3)−u(2)

}
,
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where
∑

u denotes summation over all integers u(1), u(2) and u(3) satisfying 1 � u(1) < u(2) < u(3) � m.
Given any positive integers h(1) and h(2) such that h(1)+ h(2) � m − 1, there are m − h(1)− h(2) triplets
{u(1), u(2), u(3)} as above such that u(2) − u(1) = h(1) and u(3) − u(2) = h(2). Therefore

∑
a

zij(a)zik(a)

= 2{(m − 3)!}
∑

h
{m − h(1) − h(2)}{ch(1)ch(1)+h(2) − ch(1)ch(2) + ch(2)ch(1)+h(2)

}
,

where
∑

h is as in (9). Because

∑
h
{m − h(1) − h(2)}ch(2)ch(1)+h(2) =

∑
h
{m − h(1) − h(2)}ch(1)ch(1)+h(2)

by symmetry, the first of the three identities in (b) is now evident from (9). The other two identities follow
similarly.

(c) This is evident from (2), upon noting that the set of treatments A can be partitioned into disjoint pairs
such that the two treatments within each pair have the positions of i and j interchanged and every other
component is in the same position. �

Lemma A3.
(a) Let V 2 = 2(m − 2)I + (m − 4)V ;
(b) V has eigenvalues m − 2 and −2, with respective multiplicities m − 1 and (m − 1)(m − 2)/2.

Proof. (a) For any ij, kl ∈ S, write ρ for the (ij, kl)th element of V 2. It suffices to show that ρ equals
2(m − 2) if ij = kl and (m − 4)V (ij, kl) otherwise. As V is symmetric, ρ equals the scalar product of
the ijth and klth rows of V . Thus ρ = μ++ − μ+− − μ−+ + μ−−, where μ+− is the number of positions
with the ijth row having 1 and the klth row having −1, and so on. The assertion now follows from (7) via
consideration of the cases (i)–(vi) below. In the following, μ = (μ++, μ+−, μ−+, μ−−).

(i) If ij = kl, then μ = (m − i + j − 3, 0, 0, m + i − j − 1); ρ = 2(m − 2).
(ii) If i = k and j |= l, then i � m−2 and μ = (m− i −2, 0, 1, i −1) or (m− i −2, 1, 0, i −1) according

to whether j < l or j > l, respectively; ρ = m − 4.
(iii) If i |= k and j = l, then j � 3 and μ = (j − 3, 1, 0, m − j) or (j − 3, 0, 1, m − j) according to whether

i < k or i > k , respectively; ρ = m − 4.
(iv) If i = l, then i � 2 and μ = (1, m − i − 1, i − 2, 0); ρ = −(m − 4).
(v) If j = k , then j � m − 1 and μ = (1, j − 2, m − j − 1, 0); ρ = −(m − 4).

(vi) If none of the above five cases arises, then {i, j} and {k , l} are disjoint sets. In this situation, μ equals
(1, 1, 1, 1) if i > l or k > j, (2, 2, 0, 0) if i < k < l < j, (2, 0, 2, 0) if k < i < j < l, and (2, 1, 1, 0)

if i < k < j < l or k < i < l < j. So ρ = 0.

(b) By part (a), any eigenvalue λ of V satisfies λ2 = 2(m − 2) + (m − 4)λ and hence equals m − 2 or
−2. As tr(V ) = 0, these eigenvalues have multiplicities m − 1 and (m − 1)(m − 2)/2, respectively. �

We now complete the proof of Theorem 2. The expression for M0 follows from (6), (7) and Lemma A2,
recalling that x(a) = [1, z(a)T]T. Hence, by Lemma A3, eigenvalues of M0 are as stated.

Proof of Theorem 3

Let X = (X0, X12, . . . , Xm−1 m) be the model matrix of d∗, arising from (1) and (2), with ch = 1 for all h.
Thus X0 is a column of ones and each Xij corresponds to βij (ij ∈ S). Write N = (m!)/(s!) for the run size
of d∗. Because d∗ has moment matrix (1/N )X TX , the result follows from (7), (13) and Lemma A4 below,
which is akin to Lemma A2 but has a different proof.
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Lemma A4.
(a) For ij ∈ S, X T

0 Xij = 0 and X T
ij Xij = N. Also, X T

0 X0 = N.
(b) For i, j and k satisfying 1 � i < j < k � m, X T

ij Xik = N/3, X T
ik Xjk = N/3, and X T

ij Xjk = −N/3.
(c) For ij, kl ∈ S, if the sets {i, j} and {k , l} are disjoint, then X T

ij Xkl = 0.

Proof. (a) Clearly, X T
ij Xij = X T

0 X0 = N for ij ∈ S, as X has elements ±1. Next, let Gu(ij) be the
contribution of Du to X T

0 Xij. By (2) and (14), Gu(ij) = 0, irrespective of whether i is in Cu or C̄u and
whether j is in Cu or C̄u. Hence X T

0 Xij = 0 for any ij ∈ S.

(b) Write Gu for the row vector with elements Gu(ij, ik), Gu(ik , jk) and Gu(ij, jk), where Gu(ij, ik) is the
contribution of Du to X T

ij Xik and Gu(ik , jk) and Gu(ij, jk) are similarly defined. Because the rows of Bu and
B̄u in (14) are formed by all permutations of the elements of Cu and C̄u, respectively, in view of (7) and
(13) the following hold:

(i) Gu = (2/3)(s!)(1, 1, −1) if either i, j, k ∈ Cu or i, j, k ∈ C̄u;
(ii) Gu = 2(s!)(1, 0, 0) if either j, k ∈ Cu and i ∈ C̄u, or i ∈ Cu and j, k ∈ C̄u;

(iii) Gu = 2(s!)(0, 1, 0) if either i, j ∈ Cu and k ∈ C̄u, or k ∈ Cu and i, j ∈ C̄u;
(iv) Gu = 2(s!)(0, 0, −1) if either i, k ∈ Cu and j ∈ C̄u, or j ∈ Cu and i, k ∈ C̄u.

Because situation (i) corresponds to (2s − 3)!/{s!(s − 3)!} choices of u, and each of (ii), (iii) and (iv)
corresponds to (2s − 3)!/{(s − 1)!(s − 2)!} choices of u, part (b) follows after a little algebra.

(c) Let Gu(ij, kl) be the contribution of Du to X T
ij Xkl . Then, by (2) and (14),

(i) Gu(ij, kl) = 2(s!) if either i, k ∈ Cu and j, l ∈ C̄u, or j, l ∈ Cu and i, k ∈ C̄u;
(ii) Gu(ij, kl) = −2(s!) if either i, l ∈ Cu and j, k ∈ C̄u, or j, k ∈ Cu and i, l ∈ C̄u;

and Gu(ij, kl) = 0 in all other situations. Part (c) is now immediate, because each of (i) and (ii) corresponds
to (2s − 4)!/{(s − 2)!(s − 2)!} choices of u. �
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