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ABSTRACT
Dimensional analysis (DA) is a methodology widely used in physics and engineering. The main idea is to
extract key variables based on physical dimensions. Its overlooked importance in statistics has been rec-
ognized recently. However, most literature treats DA as merely a preprocessing tool, leading to multiple
statistical issues. In particular, there are three critical aspects: (a) the nonunique choice of basis quantities
and dimensionless variables; (b) the statistical representation and testing of DA constraints; (c) the spurious
correlations between post-DA variables. There is an immediate need for an appropriate statistical method-
ology that integrates DA and the quantitativemodeling. In this article, we propose a power-law type of “DA
conjugate”model that is useful for incorporating dimensional information and analyzing post-DA variables.
Adapting the similar idea of “conjugacy” in Bayesian analysis, we show that the proposed modeling tech-
nique not only produces flexible and effective results, but also provides good solutions to the above three
issues. Amodifiedprojectionpursuit regressionanalysis is implemented tofit the additivepower-lawmodel.
A numerical study on ocean wave speed is discussed in detail to illustrate and evaluate the advantages of
the proposed procedure. Supplementary materials for this article are available online.

1. Introduction

Dimensional analysis (DA) is a variable extraction and reduc-
tion method that is widely used in physics and engineering
due to its generality (see Buckingham 1914; Sonin 2001; Szirtes
2007). It transforms the raw variables with certain physical
dimensions into dimensionless variables through a power-law
form, and states that the dimensionless variables are better
in characterizing the underlying physical mechanics that are
invariant to measurement scales. It has been applied to diverse
fields, such as in Asmussen and Heebooll-Nielsen (1955), Islam
and Lye (2009), and Stahl (1962). However, its importance
has not come into the view of statisticians until recently, as in
Albrecht et al. (2013), Shen et al. (2014), and Shen, Lin, and
Chang (2017), among others. The main benefits of applying
DA before statistical designs and analyses can be summarized
into the following three points: (i) it is an analytical method
based on physics that can be carried out before collecting the
data, which is useful even in the design and planning stage;
(ii) the reduction of the number of variables helps produce
more efficient and parsimonious models; (iii) the DA models
satisfying the dimensional constraints are easier to interpret for
practitioners and generate scalable results. A comprehensive
discussion on the combined use of DA in statistics is presented
inAlbrecht et al. (2013), Davis (2013), Lin and Shen (2013), Frey
(2013), Jones (2013), Piepel (2013), Plumlee, Joseph, and Wu
(2013) and the rejoinder by Albrecht et al. (2013). In addition to
the practical applications, Shen and Lin (in press) showed that
post-DA variables are sufficient and complete to some distribu-
tion family and maximal invariant to the scale transformation
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of physical dimensions, which supports its utility in statistical
applications from a theoretical point of view.

Although the capability and applicability of DA in statisti-
cal problems have been well justified, the modeling techniques
specifically customized to post-DA variables are still underde-
veloped. Most literature treats post-DA variables as the new
input variables, then feeds them into statistical procedures, with-
out investigating appropriate models for post-DA variables and
the corresponding theoretical properties of the resulting esti-
mates or predictions due to the DA transformation. In particu-
lar, there are three critical issues about constructing appropriate
models for post-DA variables.

(i) The choice of post-DA variables is not unique. The post-
DA variables are actually “independent” dimensionless
variables that cannot express each other. However, any
function of two dimensionless variables is still dimen-
sionless. Different investigators may choose different
basis quantities and deduce different post-DA variables.
Even if the same analysis strategies are implemented, the
resulting empirical models are very likely to be different
because the values of working variables are distinct.
The inconsistency lying between DA and statistical
procedures possibly increases ambiguity and confusion.
Intuitively, we would like to build models on statis-
tically significant dimensionless variables so that the
characterization of the dependence relationship relies
on important variables and does not involve those that
have little or no effect. Currently, there are no existing
procedures to systematically select “statistically optimal”
post-DA variables for a given model.
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(ii) DA is a framework to extract the dimensional constraints
out of the physical variables and produce post-DA vari-
ables that are free from the constraints that are neces-
sary for physically validmodels. Such constraints hold in
theories but it is not uncommon to observe the empir-
ical data revealing evidence against the constraints. In
those cases, it does not necessarily imply DA is wrong.
The violation of theories possibly indicates the missing
of other potentially important physical quantities includ-
ing physical constants as discussed by Albrecht et al.
(2013). Therefore, a good statistical procedure should be
able to test whether the constraints hold from an empir-
ical perspective. However, if DA is treated as a pure pre-
processing tool, it will be difficult to represent the con-
straints in the model and set up a hypothesis test on
them.

(iii) Transforming the response variables by explanatory vari-
ables will possibly generate the spurious correlation. The
concept of “spurious correlation” was initiated by Pear-
son (1897) to describe the correlation between ratios of
absolute measurements, which arises because of using
ratios, rather than any actual correlations between mea-
surements. This phenomenon is worth attention in DA
transformation. In fact, the post-DA variables are ratios
and have different dependence structure from the orig-
inal variables. Even if one explanatory variable has no
effect on the response variable, its correlation with other
explanatory variables by which the response variable is
transformedwill generate an artificial explanatory power
to the transformed response. In other words, the signif-
icant presence of an explanatory variable may be due to
its ability to explain other explanatory variables but not
the response. Further discussions on spurious correla-
tion related to DA can be found in the Shen et al. (2014)
and Piepel (2013).

In this article, we propose the concept of “conjugate model”
for post-DA analysis. The idea of “conjugacy” between probabil-
ity models and parameter priors in Bayesian analysis is adapted
and modified to represent a model family that satisfies a closure
property under the operation of applying DA. A specific type of
conjugate model is of an additive power-law form. The model
is of good generality and resolves the above three issues in the
following ways: (i) different choices of basis quantities lead to
exactly the same probability model, just with different param-
eterizations. The same data will produce the same fitted model
without worries on which post-DA variables to be included.
Important dimensionless variables are identified and used
automatically. (ii) The dimensional constraints from DA can be
expressed through a set of linear constraints on the parameters.
The hypothesis tests on the validity of DA are easily formulated
and conducted. (iii) The spurious correlation is avoided by
directly modeling on the original response variable rather than
the transformed one. A modified projection pursuit regression
is implemented as the estimation algorithm. Our contribution
is to be the first to establish an appropriate statistical analysis
methodology that incorporates DA as an integrated part of
modeling, instead of treating it as a preprocessing tool. The pro-
posed model resolves the three existing issues on DA modeling
in the literature (namely, nonunique choices of dimensionless

variables, tests on DA validity and spurious correlations), and
is shown to be flexible, consistent, and efficient.

The rest of the article is organized as follows. In Section 2, we
introduce the definitions and procedures of dimensional analy-
sis with an illustrative example. In Section 3, we define the “DA
conjugate model,” and propose the single and additive power-
law families that satisfy the DA conjugacy. The above threemain
concerns are shown to be resolved. A modified projection pur-
suit regression analysis is then implemented to fit the proposed
model. In Section 4, a numerical experiment of ocean wave
speed is conducted to illustrate the additive power-law model,
its generality, and its favorable performance. (Another study on
the particle physics data is included in the supplementary mate-
rial, which demonstrates the single power-law model, the three
modeling issues, and the test of DA validity.) Section 5 summa-
rizes concluding remarks and prospective researches.

2. Introduction of Dimensional Analysis

2.1 Physical Background of DA

The dimension in physics refers to the physical classification
of a quantity’s type. SI system (International System of Units)
defines seven fundamental physical dimensions, namely, length
[L], mass [M], time [T], electrical current [I], absolute temper-
ature [�], amount of substance [N], and luminous intensity
[J]. Other physical dimensions, which are expressed through
combinations of fundamental physical dimensions, are called
derived dimensions. For instance, speed has the dimension
length per time [L/T]. A measurement system consists of the
definitions of units for each dimension. In SI system of units,
we measure length by meters, time by seconds and so on. Other
derived physical dimensions are measured correspondingly,
such as speed by meters per second. An extension to the
dimensions above was proposed by Siano (1985a, 1985b) in his
orientational analysis, which basically treats components of a
physical vector as separate dimensions. Therefore, practically
groups of independent dimensions (unable to derive each other)
may consist of more than seven dimensions.

Dimensional analysis (DA) stems from the principle that a
physical phenomenon must be independent of units used in
the measurement. Thus, any meaningful equation or inequality
should have exactly the same dimensions on both sides. A
foundational theorem of DA is the Buckingham’s �-theorem
(Buckingham 1914). It states that a physically valid equation
involving n variables can be reduced to an equation with
p = n− k variables, where k is the number of variables whose
dimensions are independent and representative. These k vari-
ables are called basis quantities, as they form a basis in terms of
dimensions. DA provides a scheme to select the basis quantities
and transform the other variables into dimensionless. Equiva-
lently, it is also a scheme that generates dimensionless variables,
where each of them is not a function of the rest.

2.2 Procedures of DA and ThreeModeling Issues

Suppose X1, . . . ,Xn are positive variables with dimensions
D1, . . . ,Dn and e1, . . . , em are fundamental dimensions.
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Thus, Di =
∏m

j=1 e
di j
j . Let D = (di j) be the dimensional

matrix whose (i, j) element is di j, and k = rank(D). With-
out loss of generality, suppose the first k rows are linearly
independent and the other rows can be linear represented as
dt j =

∑k
i=1 btidi j for t = k+ 1, . . . , n; j = 1, . . . ,m. When

X1, . . . ,Xk are taken as basis quantities, Xk+1, . . . ,Xn can be
transformed into dimensionless as πt = XtX−bt11 . . .X−btkk for
t = k+ 1, . . . , n. The general function f (X1, . . . ,Xn) =
0 can be written as g(X1, . . . ,Xk, πk+1, . . . , πn) =
f (X1, . . . ,Xk, πk+1

∏k
i=1 X

bk+1,i
i , . . . , πn

∏k
i=1 X

bn,i
i ) = 0. By

the Buckingham’s �-theorem, g(X1, . . . ,Xk, πk+1, . . . , πn) =
g(πk+1, . . . , πn) = 0.

There are several important issues with DA. First, the
choices of valid basis quantities X1, . . . ,Xk are not unique
and the resulting dimensionless variables πk+1, . . . , πn depend
on the selected X1, . . . ,Xk. One can always multiply two
dimensionless variables and get a third one. Generally, for any
function q, q(πk+1, . . . , πn) is a dimensionless variable. In
practice, specialists and technicians may have a list of common
dimensionless variables in their disciplines with specific phys-
ical meanings. Such choice depends on domain knowledge and
is often subjective. Another option is to select variables that
best explain the system or trend in terms of parsimony and
significance. This article is perhaps the first work to propose a
statistical modeling procedure that is invariant of the choices
of basis quantities and implicitly selects the most appropriate
post-DA variables. Second, data may show empirical evidence
against the theoretical dimensional constraints: there may exist
significant effects from basis quantities, and the reduction is
not valid. In fact, DA requires that all relevant variables should
be included in the original model. Otherwise, the key variables
may be ruled out due to the lack of presentation in dimensions.
See Albrecht et al. (2013) for details. If the basis quantities
are highly significant, there is high possibility of missing such
relevant key variables. This article is perhaps the first one to
develop inference methods that are capable of testing whether
DA assumptions are violated, and whether basis quantities
should be kept within the model in the statistical literature.
Finally, models based on transformed πk+1, . . . , πn may result
in spurious effects of X1, . . . ,Xn. For example, suppose the true
predictive model is X1 ≡ c = f (X2,X3), that is, X1 is a constant
c and does not depend on X2,X3, with X1,X2,X3 having the
same physical dimensionD. After DA, we obtain dimensionless
π1 = X1/X2, π3 = X3/X2 and model by π1 = g(π3), that is,
X1/X2 = g(X3/X2). Although, X1 and X3 are not correlated
(because X1 = c is a constant), π1 and π3 are likely to have
significant positive correlation just because they share X2 in
common: small X2 generates large π1 and π3, while large X2
generates small π1 and π3. Estimated from such data, the model
may possibly take the form of X1/X2 = k̂X3/X2 for some sig-
nificant coefficient k̂, leading to the final model X1 = k̂X3. The
seemingly significant effect from X3 is actually spurious and X3
should not be in the model. Detail discussion can be found in
Shen et al. (2014) and Piepel (2013). In fact, the relationship dis-
covered between dimensionless variables is valid. The issue lies
within the back transformation into dimensional variables and
the inference made outside the dimensionless framework. Our
method focuses on modeling the original response (X1 in the

above case) and circumvents the issue of spurious correlation.
To demonstrate the above modeling issues in a more realistic
setting, an ocean wave speed example is discussed as follows.

2.3 Illustrative Example of DA

Understanding the speed of ocean waves is crucial for the pre-
diction of a natural disaster like tsunami. There are multiple
sources of driving forces that generate wave motions on the sea
surface, such as wind, gravity, and rotation of the earth. There-
fore, it is a complicate system whose analytical behavior may
not be tractable. Suppose we consider the wave whose restor-
ing force is the gravity of the earth, that is, gravity waves. The
phase speed of the gravity waves v is of the main interest. Our
predictors are g the gravity constant of the earth, λ the wave-
length, ρ the density of water,H the depth of the sea. The func-
tion we want to estimate is f , where v = f (g, λ, ρ,H). Note
that in practice this collection of variables will be achieved from
expert knowledge of the specialized field. It is completely valid
to include other potential variables of interest into the model,
such as the speed of sound in the water. Here, we use the model
v = f (g, λ, ρ,H) as an example.

The first step of DA is to identify the dimensions of variables.
The fundamental dimensions involved in the system are length,
mass, and time. The dimensions of the variables and the dimen-
sional matrix R can be found in Table 1. The second step is to
choose the basis quantities. We select g, λ, ρ. The third step is to
transform other variables into dimensionless using basis quanti-
ties. Thus, we get πv = v/

√
gλ, and πH = H/λ. The final step is

to rewrite the function of interest.πv = h(g, λ, ρ, πH ) = h(πH )

because of the Buckingham’s �-theorem, which results in the
DA model v = √gλ · h(H/λ). (Throughout this article, we will
use · for a proper multiplication of two quantities, which can
be a scaler times a scaler, a scaler times a matrix or a matrix
multiplication.)

The actual wave speed can be approximated analytically
by v = √gλ/2π · √

tanh(2πH/λ) as in Phillips (1977).
Thus, the true function of h actually takes the form of
h(x) = √tanh(2πx)/2π . From an empirical point of view,
DA helps us remove the nuisance variable ρ and reduce the
number of variables to 1 to estimate h. From a physical point of
view, the dimensionless sea depth πH = H/λ actually charac-
terizes the key feature of the sea waves. When in the deep water
(as in the ocean), H >> λ, πH >> 1. Thus, tanh(2ππH ) ≈ 1
and the wave speed v ≈ √gλ/2π , mainly depends on the
wavelength; while in the shallow water (as along the coastline),
H << λ, πH << 1. Thus, tanh(2ππH ) ≈ 2ππH and the wave
speed v ≈ √gH , mainly depends on the depth of the water. As
a result, DA also induces better physical interpretability.

Table . Dimensions of variables in ocean waves example.

Variables Description Dimensions SI units ri,Length ri,Mass ri,Time

v Wave speed LT−1 m/s   −
g Gravity constant LT−2 m/s2   −
λ Wavelength L m   
ρ Water density ML−3 kg/m3 −  
H Sea depth L m   
γ Surface tension MT−2 kg/s2   −
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If the wavelength λ is very small, the effect of surface tension
should also be taken into account. Denote γ as the surface
tension of water–air interfaces whose dimension can also be
found in Table 1. Then, without DA, the function of interest is
v = f (g, λ, ρ,H, γ ). With DA, another dimensionless variable
πγ = γ /gλ2ρ is generated to include the capillary effect. There-
fore, πv = h(πH, πγ ), that is, v = √gλ · h(H/λ, γ /gλ2ρ).
According to Phillips (1977), the phase speed of gravity-
capillary waves is v = √(gλ/2π + 2πγ /ρλ) tanh(2πH/λ),
with h(x, y) = √(1/2π + 2πy) tanh(2πx). The capillarywave-
length is defined as λc = 2π

√
γ /gρ = λ · 2π√πγ ≈ 1.7 cm

for water–air interfaces. Roughly speaking, the surface ten-
sion is negligible if λc << λ. The derived dimensionless
πγ = (λc/2πλ)2, characterizing their ratio, determines the
impact of surface tension on the wave speed.

The proposed three issues in modeling can be clearly illus-
trated in this example. Consider the case of gravity waves with
negligible influence from the surface tension. First, instead
of (g, λ, ρ), one can select (g,H, ρ) as the basis quan-
tities. This leads to dimensionless quantities π∗v = v/

√
gH

and π∗λ = λ/H . Modeling on π∗v = h∗(π∗λ ) results in h∗(x) =√
x tanh(2π/x)/2π . While h is close to a piecewise linear func-

tion, h∗ resembles a logarithmic function. Even estimating from
the same dataset, we can expect that the two models (ĥ and ĥ∗)
will produce different results. Second, suppose that the water
density ρ turns out to have noticeable impact on the wave
speed v from the data perspective. Then, the dimensional con-
straints that rule out the dependence between v and ρ may
be violated. A formal hypothesis test needs to be conducted to
decide whether such violation is due to random errors or sys-
tematic biases. If the effect of ρ turns out to be statistically sig-
nificant, it should be kept in the model and viewed as an indi-
cator of missing key variables with the dimension mass (M).
Third, theDAmodel we assume is v/

√
gλ = h(H/λ). Under the

situation of deep water with H >> λ and πH >> 1, H hardly
affects thewave speed v . See Figure 1(a).With g = 9.8 m/s2,ρ =
1.025× 103 kg/m3, and γ = 0.074 kg/s2, under different values
of λ (in meters), v does not depend on H . However, because πv

andπH shareλ in common in the denominator, it is highly possi-
ble that πv and πH have strong relationship, inducing a spurious
significant effect from H . See Figure 1(b) for the relationship of

πv and πH under the same conditions as Figure 1(a). With the
same range ofH from 1 to 1.5 m, πv and πH show a strong pos-
itive correlation. From that, models such as v = k̂ ·H/λ ·√gλ
might be concluded, leading to a false interpretation of the effect
of the sea depth H in the wave speed v .

3. A Conjugate Model for Dimensional Analysis

Although practical successes of implementing DA in statistical
problems prove DA to be a useful reduction methodology, the
studies on appropriate statistical models customized to post-DA
variables remain absent. As shown in the previous section, the
potential issues inmodeling would generate false inferences and
predictions, if DA is treated as merely a preprocessing tool. In
this section, we propose a DA conjugate family and an additive
power-law model to resolve the issues. In this framework, it can
be shown that the dimensional constraints can be represented by
a set of linear constraints on the parameters, leading to a model
that is (i) invariant to choices of basis quantities, (ii) easy to test
dimensional constraints, and (iii) free from spurious correlation.

3.1 DA Conjugate Family and a Power-LawModel Family

A probability model family that is invariant to changes of
measurement system is called a dimensionless model. Typically,
invariant models are built on invariant statistics. In the case
of DA, the (maximal) invariant statistics are exactly the post-
DA dimensionless variables (Shen and Lin in press). Among
all dimensionless models, a special type of parametric family
is of most interest and we call it “DA Conjugate Family.” It has
the property that if post-DA variables πk+1, . . . , πn are mod-
eled under a DA conjugate family, then the model expressed in
original variables (X1, . . . ,Xn) remains within one same fam-
ily, regardless of the specific form of DA transformation that has
been carried out.

Definition 1. Suppose X1, . . . ,Xn are physical quantities and
M is an DA transformation. Therefore, (πk+1, . . . , πn) =
M(X1, . . . ,Xn) are the corresponding post-DA variables. Sup-
pose F = {Pθ , θ ∈ �} is a parametric family on (X1, . . . ,Xn),
G = {Qλ, λ ∈ 	} is a parametric family on (πk+1, . . . , πn). The

Figure . Spurious correlation among dimensionless variables in the ocean wave speed example. v = √(gλ/2π + 2πγ /ρλ) tanh(2πH/λ) (Phillips ) with g=
9.8m/s2 , ρ = 1.025× 103 kg/m3 , and γ = 0.074 kg/s2 . H and λ have units of m (meters) and v has a unit of m/s (meters per second).
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pair (F ,G) is called a DA conjugate family, if for any DA trans-
formation M, there exists �0, such that G = {Qλ, λ ∈ 	} =
{Pθ ◦M−1, θ ∈ �0}, where �0 ⊆ � is called a dimensionally
homogenous parameter subspace.

Specifically, F is a pre-DA model on n-dimensional vec-
tor (X1, . . . ,Xn), while G is a post-DA model on (n− k)-
dimensional vector (πk+1, . . . , πn). Therefore, G is a dimen-
sionless model. If G is actually composed of induced measures
(byM) from a subfamily F0 = {Pθ , θ ∈ �0} of F , then (F ,G)

is a DA conjugate family. Notice that the subspace �0 and
subfamily F0 do not depend on the specific form of DA trans-
formationM, as long as it gives a complete set of dimensionless
variables. However, they do depend on the physical dimensions
of X1, . . . ,Xn.

The idea of defining DA conjugate model is to bring the
modeling scope from (πk+1, . . . , πn) back to (X1, . . . ,Xn).
Instead of questioning the best set of basis quantities and dimen-
sionless variables to use, we model on the original variables,
with the dimensional constraints represented in the parame-
ters. Although different peoplemay have different choices ofM,
as long as they model by G, the same results can be achieved
as if modeling by F0 on original (X1, . . . ,Xn) without DA
transformation.

Furthermore, it is analogous to the conjugacy concept in
Bayesian inference. In fact, pre-DAmodel is like the “prior”; DA,
which is the physical information, resembles the “likelihood,”
which is the empirical information in Bayesian inference; post-
DAmodel is like the “posterior.” The “prior”model gets updated
with the physical information fromDA, and turns into a “poste-
rior”model. The distinction here is that theDA conjugatemodel
is on data variables and the conjugate prior/posterior distribu-
tion is on parameters.

There are certain advantages of using DA conjugate fami-
lies in DA modeling. First, the consistency in representation
in terms of the original variables benefits the comparisons of
models with different sets of basis quantities, leading to a more
comprehensive view of significant factors. Second, the resulting
model can be compared to non-DAmodels directly, to assess the
impact and validity of DA. Dimensional constraints are repre-
sented by constraints on the parameters (instead of variables),
which makes hypothesis testing of DA a straightforward task
as H0 : θ ∈ �0 versus Ha : θ ∈ �. Third, modeling in original
variables with constrained parameters (instead of transformed
variables with free parameters) avoids spurious correlations.
Finally, if DA holds, we focus on a lower dimensional subspace
of parameters within the same parametric family, resulting in
more power.

Sometimes, it is convenient to assume that F and G belong
to the same type of model families, but on different number of
variables (such as linear regressions). In this case, the collection
of such model families is defined as a strict DA conjugate family.

Definition 2. Suppose Fd is a parametric family on d-
dimensional vector. The collection F = {Fd : d = 1, 2, . . .} is a
strict DA conjugate family if the pair (Fd1,Fd2 ) is a DA conju-
gate family for any d1 ≥ d2.

An example of a strict DA conjugate family that mod-
els univariate response is the single power-law family with

multiplicative errors P : Y =∏n
i=1 X

βi
i · ε, where Y is response,

Xi’s are n predictors, and ε is an independent random error,
following lognormal distribution, for example. Suppose
X1, . . . ,Xk are basis quantities, and Y,Xk+1, . . . ,Xn have
corresponding post-DA variables π0, πk+1, . . . , πn. Apply-
ing P to π0, πk+1, . . . , πn, we have π0 =

∏n
t=k+1 π

βt
t · ε.

Since π0 = YX−b011 . . .X−b0kk , πt = XtX−bt11 . . .X−btkk for t =
k+ 1, . . . , n, expressing themodel in the originalY,X1, . . . ,Xn

yields Y =∏n
i=1 X

gi(βk+1,...,βn)

i · ε, where gi(βk+1, . . . , βn) =
b0,i −

∑n
t=k+1 bt,iβt for i = 1, . . . , k and gi(βk+1, . . . , βn) = βi

for i = k+ 1, . . . , n. Any values of parameters βi’s model-
ing π0, πk+1, . . . , πn produce an equivalent model based on
Y,X1, . . . ,Xn within the same family P but with a different set
of parameters g1, . . . , gn. In general, an appropriate scale family
is capable to serve as a strict DA conjugate family.

The proposed single power-law family P solves the three
modeling issues. First, different choices of basis quantities yield
exactly the same model with particular sets of parameters βi. In
fact, we have the following theorems.

Theorem 1.
∏n

i=k+1 π
αi
i spans all possible dimensionless vari-

ables of the form Xα1
1 . . .Xαn

n .

Theorem 2. Suppose based on two sets of basis quantities, DA
leads to two sets of dimensionless variables {π0, πk+1, . . . , πn}
and {π ′0, π ′k+1, . . . , π ′n}. The following two models are con-
structed: π0 =

∏n
t=k+1 πt

βt · ε and π ′0 =
∏n

t=k+1 π ′t
β ′t · ε. Then,

expressed in terms of Y,X1, . . . ,Xn, the above two models are
equivalent with different parameterizations.

Practically, although different people may conduct DA in a
distinct way, as long as the power-law model is used, they will
achieve the same results, including estimates, predictions, and
inferences.

Second, by using the single power-law model, the DA con-
straints can be expressed as a set of linear constraints. In fact,
withoutDA, applyingP toY,X1, . . . ,Xn leads to themodelY =∏n

i=1 X
βi
i · ε. Through applying P to π0, πk+1, πn, the result-

ing model is of the form Y =∏n
i=1 X

gi(βk+1,...,βn)

i · ε, where
gi(βk+1, . . . , βn) = b0,i −

∑n
t=k+1 bt,iβt for i = 1, . . . , k and

gi(βk+1, . . . , βn) = βi for i = k+ 1, . . . , n, as shown before.
Thus, implementing DA literally puts a set of linear constraints
(βi = b0,i −

∑n
t=k+1 bt,iβt , for i = 1, . . . , k) on the parameters

βi from the original modelY =∏n
i=1 X

βi
i · ε. Testing validity of

DA is equivalent to testing whether these linear constraints hold
empirically for the current data.

Third, when modeling post-DA variables π0, πk+1, . . . , πn,
the final equation to be fitted is Y =∏n

i=1 X
gi(βk+1,...,βn )

i · ε,
where gi(βk+1, . . . , βn) = b0,i −

∑n
t=k+1 bt,iβt for i = 1, . . . , k

and gi(βk+1, . . . , βn) = βi for i = k+ 1, . . . , n. Since the
response is the original Y without any transformations by Xi’s,
the spurious correlation is circumvented.

3.2 Reparameterization

The proposed single power-law family consists of models that
are invariant to the selection of basis quantities and express
dimensional constraints as a set of linear constraints on the
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parameters. These properties can be more clearly illustrated
through the following reparameterization.

Assume a conjugate power-law model Y =∏n
i=1 X

βi
i ε for a

physical system with k fundamental dimensions, e1, . . . , ek. Y
has dimension D0 =

∏k
j=1 e

d0 j
j and Xi have dimensions Di =∏k

j=1 e
di j
j , respectively. We call di j as dimensional coefficients.

The dimensionally homogenous assumption leads us to the fol-
lowing equations:

d0, j =
n∑

i=1
βidi j, for j = 1, . . . , k.

The above linear system contains n variables βi and k equations.
Without loss of generality, suppose they are linearly indepen-
dent, that is, k = rank(D), (otherwise, find e1, . . . , ek such that
k = rank(D)). Then we have n− k dimensions left to be esti-
mated from the data.

Denote dj = (d1 j, . . . , dnj)T as the dimensional coefficient
vector of predictors for dimension j, β = (β1, . . . , βn)

T as
the model parameter vector of predictors. D = Span{dt : t =
1, . . . , k}. k = rank(D) implies that dj are linearly independent
and k = dim(D). The above equations can be written as

d0, j = βT · dj, for j = 1, . . . , k. (1)

Let P−j be the projection matrix onto the linear space
D− j spanned by {dt : t �= j}. Then dj = P−jdj + P⊥−jdj can be
decomposed into two parts: the part spanned by D− j and the

part orthogonal to that. Denote bj = P⊥−jdj
||P⊥−jdj||22 as the standardized

normal vector for j = 1, . . . , k. Note that P⊥−jdj can be achieved
as the residual vector of the linear regression dj ∼

∑
t �= j dt and

bj is a scaled version of it. bj can be viewed as the dual basis ofD
with basis {dt : t = 1, . . . , k} in the Euclidean (Hilbert) space.
In fact, it is straightforward to show the duality

Property: bjT · dj = 1 and bjT · dt = 0,∀t �= j.

In addition, Theorem 3 shows that {bj} is a basis ofD.

Theorem 3. Denote dj and bj as above, if dj are linearly indepen-
dent, then bj are linearly independent and D = Span{dj, j =
1, . . . , k} = Span{bj, j = 1, . . . , k}.

Take an orthonormal basis of the orthogonal linear spaceD⊥,
and denote as {bk+1, . . . , bn}. Then {b1, . . . , bn} constitutes a
basis forRn. We reparameterize the n-dimensional parameter β

by 	 as β = λ1b1 + · · · + λnbn = B	, where (λ1, . . . λn)T =
	 is an n-dimensional parameter and B = (b1, . . . , bn) is a
fixed matrix. Equation (1) turns out to be

d0, j = λ j, for j = 1, . . . , k. (2)

Equation (2) implies that the DA procedure can be interpreted
as a prior knowledge on the first k elements of 	 after repa-
rameterization. Furthermore, identical projection and reparam-
eterization are achieved no matter which basis quantities are
chosen, as long as the single power-law model is used. From
a Bayesian points of view, we may further suggest that infor-
mative priors should be assigned to λ1, . . . , λk (concentrating
on d0,1, . . . , d0,k, respectively), while uninformative priors be
assigned to the rest λk+1, . . . , λn.

Notice that although D⊥ is unique, bk+1, . . . , bn are not
unique. Choice of them may depend on other knowledge such
as PCA. Under a general model setting, similar results can be
derived, but no general formulas are available.

The previous derivation suggests that the power-law model
has a compatible structure with post-DA variables and resolves
those three modeling issues. In the following two sections, two
specific power-law models, single and additive power-law mod-
els, are discussed in detail. The hypothesis testing of DA validity
is introduced with explicit formulation in the context of single
power-lawmodel. Amodified projection pursuit regression pro-
cedure is implemented as the algorithm to estimate the additive
power-law model.

3.3 Single Power-LawModel

The benefits shown in the previous section lead us toP , the sin-
gle power-law model

Y =
n∏

i=0
Xβi
i ε, (3)

whereX0 = exp(1) to capture a constantmultiplier and ε is pos-
itive (saywithmean 1). The responseY therefore ought to follow
a distribution in a positive valued scaling family {Pa : Pa = P1 ◦
a−1, a > 0,P1 positive measure}: for example, the exponential
distribution, the half-normal distribution, and the lognormal
distribution with fixed unknown variance. In fact, model (3) is a
special generalized linear model: we take the lnXi as predictors
and βi as corresponding parameters. The link function is g(u) =
eu and E[Y |Xi] = g(

∑n
i=0 βi lnXi). The inference of model (3)

can be conducted by the conventional procedure for general-
ized linear model. By specifying the distribution of Y , the max-
imum likelihood estimator for the parameters can be derived.
The asymptotic variance of the estimator can be achieved by the
inverse Fisher informationmatrix. Statistical testings of individ-
ual parameters can be formulated by establishing z-statistic and
finding its null distribution or the asymptotic version of that.
Variable selections can be implemented by using penalized like-
lihood. Goodness-of-fit test can be conducted by Kolmogorov–
Smirnov type of nonparametrical test or by Shapiro–Wilk type
of parametrical test. A simple example is illustrated below.

Assume model π0 = eβ0 ·∏n
i=k+1 π

βi
i · ε, where ε fol-

lows the lognormal distribution with lnN(0, σ 2). Notice
that taking logarithms on both sides, we have ln(π0) =
β0 +

∑n
i=k+1 βi ln(πi)+ ln ε, ln ε ∼ N(0, σ 2), which is a linear

regression model. Expressed in original variable, the model is
Y = eβ̃0 ·∏n

i=1 X
β̃i
i · ε, where β̃0 = β0, β̃i = gi(βk+1, . . . , βn)

for i = 1, . . . , n as shown before. Taking logarithms,
ln(Y ) = β̃0 +

∑n
i=1 β̃i ln(Xi)+ ln ε, ln ε ∼ N(0, σ 2). The

only difference from the multiple linear regression is that
the coefficients after reparameterization are subject to the
dimensional constrains. One can either model through βi
for unique unconstrained presentation, or model through
β̃i under the linear constrains (1). For a general distribu-
tion family, after constructing the likelihood, the estimation
of coefficients can be achieved through Lagrange multiplier
method. However, for this simple case, analytic solutions can
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be derived. Denote β̃ = (β̃0, . . . , β̃n)
T , D0 = (d0,1, . . . , d0,k)T ,

X̃ = (1, ln(X1), . . . , ln(Xn)), Ỹ = ln(Y ), and

D =
(
0 · · · 0
d1 · · · dk

)
.

The least-square estimate subject to the dimensional constraints
(1), that is,DT β̃ = D0, is

ˆ̃
β = (X̃T X̃)−1D(DT (X̃T X̃)−1D)−1D0

+ [I− (X̃T X̃)−1D(DT (X̃T X̃)−1D)−1DT ](X̃T X̃)−1X̃TỸ .

One special hypothesis testing problem on the parameters
is of great interest because it can be interpreted as a testing on
the DA validity. As reasoned before, the violation of DA valid-
ity from the data point of view could be an indicator of missing
important physical quantities, and thus worth exploring.

In the setting of the single power-lawmodel (3)with specified
distributional assumptions on the response, the hypothesis test
of DA validity can be done through likelihood ratio test of linear
constraints on coefficients in a straightforward way. Suppose
the likelihood function is L(β) and the log-likelihood function
is l(β). The maximum likelihood estimator of β is β̂ without

dimensional constraints and ˆ̃
β with dimensional constraints.

The hypothesis testing of DA validity is formulated as

H0 : DTβ = D0; vs. Ha : DTβ �= D0.

Under the null distribution that DA is valid, the test statistics

2(l(β̂)− l( ˆ̃
β)) ∼ χ2

k

follows a χ2 distribution with degrees of freedom k, which is
the rank of the dimension matrix.

In the previous example with ε following a lognormal dis-
tribution, the testing procedure can be explicitly written out.
l(β) = −N

2 ln(2π)− N
2 − N

2 ln(||Ỹ − X̃β||2)+ N
2 ln(N), β̂ =

(X̃T X̃)−1X̃TỸ , while ˆ̃
β is shown in the previous section:

2(l(β̂)− l( ˆ̃
β)) = N ln

⎛
⎝ ||Ỹ − X̃ ˆ̃

β||2
||Ỹ − X̃β̂||2

⎞
⎠ (4)

= N ln

(
1+ ||X̃(X̃T X̃)−1D(DT (X̃T X̃)−1D)−1(DT β̂ − D0)||2

||Ỹ − X̃β̂||2

)
,

which should follow χ2 distribution with degrees of freedom
k = rank(D) under the null hypothesis that DA is valid. Small
p-value indicates violation of the dimensional constraints and
suggests further investigations on issues such as missing key
variables.

3.4 Additive Power-LawModel

The single power-law model (3) is not so generic to capture the
arbitrary functional dependence f betweenY and Xi’s. We pro-
pose a more general DA conjugate model in the following:

E(Y |X ) = β1
0

n∏
i=1

Xβ1
i

i + β2
0

n∏
i=1

Xβ2
i

i + · · · + β
p
0

n∏
i=1

Xβ
p
i

i . (5)

Or equivalently,

E(Y |X ) =
p∑

j=1
β

j
0 exp(β j · X̃ ), (6)

where β j = (β
j
1, . . . , β

j
n) and X̃ = (ln(X1) . . . , ln(Xn))

T . It
belongs to the additive index model with fixed ridge functions,
and we call it additive power-law model. Here, we do not have
further constraints on the distribution ofY except the first con-
ditional moment.

The additive power-law model (5) offers a good approx-
imation to the general relationship between Y and X . Sup-
pose that there is a smooth function f such that E(Y |X ) =
f (X1, . . . ,Xn). We have the kth-order Taylor’s expansion on
(0, 0, . . . , 0) to approximate f :

f (k)(X1, . . . ,Xn) = f (0, 0, . . . , 0)+
n∑
i=1

∂ f
∂xi

(0, 0, . . . , 0)Xi

+
n∑

i, j=1

∂2 f
∂xi∂x j

(0, 0, . . . , 0)XiXj + · · ·

+
n∑

i1,...,ik=1

∂k f
∂xi1 . . . ∂xik

(0, 0, . . . , 0)Xi1 . . .Xik .

(7)

The Taylor’s expansion with finite terms in (7) turns out to be
a special case of the additive power-law model (5). However,
model (5) allows powers βk

i to be real numbers (rather than just
nonnegative integers). As a result, any smooth function can be
approximated by the proposedmodel to a given degree with suf-
ficiently large p. Usually, a small p is enough to offer an effi-
cient and parsimonious model with real numbered βk

i . Note
that it is easy to verify that (5) is indeed a strict DA conjugate
model and solves the three modeling issues aforementioned.
(See Theorem 4.) In real-world applications, we recommend
this additive power-law model (5) over the single power-law
model (3), since it is more flexible and useful.

Theorem 4. (Additive power-law model is a strict DA conjugate
model.)

Suppose X1, . . . ,Xk are basis quantities and Y,Xk+1, . . . ,Xn
are transformed into post-DA variables by the function
M: π0 = YX−b011 . . .X−b0kk , πt = XtX−bt11 . . .X−btkk for t = k+
1, . . . n. Suppose the pth-order n-variable additive power-law
model Pn

p is defined as

E(Y |X ) = β1
0

n∏
i=1

Xβ1
i

i + β2
0

n∏
i=1

Xβ2
i

i + · · · + β
p
0

n∏
i=1

Xβ
p
i

i ,

β
q
i ∈ R for i = 0, . . . , n; q = 1, . . . , p.

Then the collection Pp = {P1
p,P2

p, . . . ,Pn
p , . . .} is a

strict DA conjugate family. That is, as probability mod-
els on (Y,X1, . . . ,Xn), Pk+1

p (π0, πk+1, . . . , πn) = Pk+1
p ◦

M(Y,X1, . . . ,Xn)⊆ Pn
p (Y,X1, . . . ,Xn).

There are some identifiability issues for this model: the label-
ing for the indices is arbitrary. Thus, there will be p! permuted
versions that result in the same fitting. Such issue may not be
essential for parameter estimations, but will produce difficulties
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in estimating parameters’ variances when conducting statistical
inference. Investigation on the labeling problem is still an ongo-
ing research topic. Here, the order is determined by the explana-
tory capability of the index. The first index explains the most
variance/deviation of Y ; the second index explains the most
variance/deviation of the residual after fitting the first index, and
so forth. Practically, we fit term by term until the added index
has no significant improvement.On the other hand, if one thinks
a single power-law model may be enough, we can stop at our
first step and turn to the model E(Y |X ) =∏n

i=0 X
βi
i , where no

identifiability issues are present. Below, we introduce amodified
projection pursuit regression as a detail procedure for estimating
β

j
i in (5).
The projection pursuit regression proposed by Friedman and

Stuetzle (1981) is a nonparametric multiple regression tech-
nique. It aims for solving E(Y |X ) =∑p

j=1 Sβ j (β j · X ), where
β j ’s are unknown parameters and Sβ j ’s are unknown functions.
If Sβ j ’s are fixed to be exponential functions; X replaced with X̃ ,
then the regression surface is exactly model (6). Therefore, the
additive power-lawmodel can be solved by themodified projec-
tion pursuit regression algorithm with known Sβ j .

Without distributional assumptions on Y , we resort to a
regression approach instead of a likelihood approach. The main
benefits include more freedom in the model and wider appli-
cations. These are especially important because the variation
and the distribution of the response Y are often unknown.
Here, we use least absolute deviations as the criterion in
the projection pursuit regression. The least absolute devia-
tions criterion is believed to be more robust to outliers, than
the least-square criterion. Due to the multiplicative nature
of the relationship between Y and Xi’s, the propagation of
errors from Xi’s to Y is likely to generate residuals that are
inhomogenous and associated with the conditional means.
For example, if the observational errors are multiplicative,
Y =∑p

j=1 β
j
0
∏n

i=1(Xiεi)
β

j
i =∑p

j=1 β
j
0
∏n

i=1 X
β

j
i

i
∏n

i=1 ε
β

j
i

i as∑p
j=1 β

j
0 (
∏n

i=1 X
β

j
i

i )ε j . Even when p = 1 and E(ε j) = 1, we
have var(Y |X ) = [E(Y |X )]2 · var(ε). The conditional vari-
ance is proportional to the squared conditional mean. If the
errors εi are additive and small compared to values of Xi,
then Y =∑p

j=1 β
j
0
∏n

i=1(Xi + εi)
β

j
i ≈∑p

j=1 β
j
0
∏n

i=1[X
β

j
i

i (1+
εiβ

j
i /Xi)] ≈

∑p
j=1 β

j
0
∏n

i=1 X
β

j
i

i (1+∑n
i=1 εiβ

j
i /Xi) as

∑p
j=1

β
j
0 (
∏n

i=1 X
β

j
i

i )(1+ ε′j), just like the multiplicative case. When
p = 1 and E(ε′i ) = 0, var(Y |X ) = [E(Y |X )]2 · var(ε). The least
absolute deviations protect against possible outliers (resulting
from the inhomogenous errors) and are more robust in the
projection pursuit regression. Note that the least absolute
deviations estimates correspond to the maximum likelihood
estimates under additive Laplace distributed errors. The com-
plete procedure is as follows. Suppose the sample size is N,
Y = (y1, . . . , yN )T , and Xi = (xi,1, . . . , xi,N )T .

1. Initialize current residuals and term counter

rt ← yt , for t = 1, . . . ,N; j← 1.

2. Search for the next term in the model and the
estimate β̂ j = (β̂

j
0, . . . , β̂

j
n), by minimizing the least

absolute deviations criterion
N∑
t=1

∣∣∣∣∣rt − β
j
0

n∏
i=1

xβ
j
i

i,t

∣∣∣∣∣ . (8)

If the model is applied with DA, the estimate ˆ̃
β j =

(
ˆ̃
β

j
0, . . . ,

ˆ̃
β

j
n) are achieved under dimensional constrains

(1), that is, d0,k =
∑n

i=1
ˆ̃
β

j
i dik.

3. Termination. If the criterion (8) is smaller than a thresh-
old value, stop. Otherwise, update the current residuals
and the term counter

rt ← rt − β̂
j
0

n∏
i=1

xβ̂
j
i

i,t , for t = 1, . . . ,N; j← j + 1

and go to Step 2.
The optimization problem related to the least absolute

deviations (8) among other M-estimators has been well investi-
gated in the literature. Among other alternatives, the iteratively
reweighted least-square method first proposed by Schloss-
macher (1973) has been widely used. Green (1984) discussed
its applications to general distributions or criteria, nonlinear
parameterizations, and dependent observations. Considering
the nonlinear relationship, we suggest its modification proposed
by Phillips (2002), which is formulated through the generalized
EM algorithm. Notice that the problem can also be formulated
as a linear programming with nonlinear constraints. General
robust optimization techniques can also be applied such as the
augmented Lagrangian methods (Hestenes 1969; Powell 1969)
and the Nelder and Mead (1965) method.

The algorithm termination rule can be specified in sev-
eral different ways. Most are analogous to those for the
step-wise regression. The threshold value we use here is
calculated in terms of the percentage of explained devia-

tions: if
∑N

t=1 |β̂ j
0
∏n

i=1 x
β̂

j
i

i,t |/
∑N

t=1 |rt | is sufficiently small, the
algorithm is terminated. Other alternatives using likelihood
information are also available. These include Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), and
likelihood ratio test of significance of additional terms.

As for the hypothesis testing of DA validity, the formulation
is similar as before:

H0 : DTβ j = D0; vs. Ha : DTβ j �= D0, for j = 1, . . . , p.

Given some distributional assumption, under the null hypothe-
sis that DA is valid, the test statistics

2(l(β̂1, . . . , β̂p)− l( ˆ̃
β1, . . . ,

ˆ̃
βp)) ∼ χ2

k·p

follows a χ2 distribution with degrees of freedom k · p, where k
is the rank of the dimension matrix, p is the number of terms.

4. Numerical Study

In this article, the proposed models are implemented in two
applications, where the benefits and limitations of respective
models are investigated in detail. The first example is in the
supplementary material due to the length of the article. It uses
“prim7” dataset in particle physics and illustrates the threemod-
eling issues if DA is only perceived as a preprocessing tool. The
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Figure . The relationship between the wave speed v and the wave length λ in the
log-scale of respective units, meters per second and meters.

single power-law model is implemented to show the ease of
use of the proposed framework, and the need of the more gen-
eral additive power-law model. The second simulation exam-
ple shown below uses the DA additive power-law model on the
“Ocean Wave Speed” problem. It focuses on the algorithm and
the performance. The purpose is to obtain a goodDAmodel that
at the same time circumvents the modeling issues. The results
demonstrate that the additive power-law model is flexible and
efficient, and thus it is recommended.

In this study, we revisit the example of ocean wave speed
in Section 2.3, to illustrate the implementation and perfor-
mance of additive power-law model. As stated in Phillips
(1977), the phase speed of gravity-capillary waves is v =√

(gλ/2π + 2πγ /ρλ) tanh(2πH/λ). Figure 2 shows the func-
tional dependence between the speed v and wave length λ

in the log-scale with H = 1 m, as well as the constants g =
9.8 m/s2, ρ = 1.025× 103 kg/m3, and γ = 0.074 kg/s2. When
λ is smaller than λc = 1.73× 10−2 m (−1.76 in the log-scale),
the surface tension is the dominant driving force. Longer waves
have smaller phase speed. When λc << λ << H , the grav-
ity turns out to dominate the kinetics in the waves. Longer
waves propagate faster. λc is about the wave length with the
minimal phase speed. When λ >> H , the horizontal move-
ment of water is restrained by the sea bed, leading to a
constant speed regardless of the wave length. Here, we con-
sider the case where the depth of the ocean H is very large
(H >> λ, usually H around 4× 103 m), and the phase speed
follows the functional form:

v = √(gλ/2π + 2πγ /ρλ)ε, (9)

where ε denotes random errors. It is reasonable to assume a
multiplicative error here because v is always positive and larger
values of v may be observed with larger errors. Through the
simulation, we want to study whether the proposed additive
power-law model is able to fit the data well and whether it
discovers both the gravity and capillary components.

To capture the capillary waves where the corresponding wave
length is in a much smaller scale, the design of λ consists of 100
equally spaced grid points in the log-scale instead of the original
scale (from−3 to 2, that is, 10−3 m ∼ 102 m). The responses v ’s

are generated by (9) with constants g = 9.8 m/s2, ρ = 1.025×
103 kg/m3, γ = 0.074 kg/s2 and independent errors following
log-normal distributionwithμ = 0, σ = 0.3. The problemhere
is to discover the functional relationship of v = f (λ, g, ρ, γ ).

There are four explanatory variables and typically we need
a design that varies the values of all four of them to distinguish
respective effects. However, g, ρ, γ are all physical constants
that are related to the experimental environment and difficult
to change. With the help of DA, the effect of these physical
constants can be automatically discovered and incorporated
into the results without actually varying them.With some phys-
ical assumptions, the final empirical model may cover extreme
physical conditions with unusual physical constants g, ρ, γ

under which experiments are impractical, such as calculating
the speed of waves through mercury on the moon.

Suppose the following additive power-law model is used:

E(v|λ, g, ρ, γ ) =
p∑

j=1
β

j
0λ

β
j
1 gβ

j
2ρβ

j
3γ β

j
4 . (10)

The dimensional constraints induce the parameterization as
⎧⎨
⎩

β
j
1 + β

j
2 − 3β j

3 = 1 · · · [L]
−2β j

2 − 2β j
4 = −1 · · · [T]

β
j
3 + β

j
4 = 0 · · · [M]

→
⎧⎨
⎩

β
j
2 = 0.5β j

1 + 0.25
β

j
3 = 0.5β j

1 − 0.25
β

j
4 = 0.25− 0.5β j

1

,

(11)
for all j = 1, . . . , p. The model (10) reduces to E(v|λ) =∑p

j=1 α
j
0λ

β
j
1 and β

j
0 = α

j
0/gβ

j
2ρβ

j
3γ β

j
4 . After fitting E(v|λ) =∑p

j=1 α
j
0λ

β
j
1 and achieving estimated α̂

j
0 and β̂

j
1 , all other param-

eter estimates β̂
j
0 , β̂

j
2 , β̂

j
3 , β̂

j
4 in (10) are calculated accordingly.

We implement the proposed modified projection pursuit
regression to fit the parameters. By the first iteration, the esti-
mated model is Ê(v|λ) = 1.4434λ0.4035. Figure 3(a) shows the
scatterplot and the model fitness after the first iteration. On the
log scale, the fitted values lie on a line. Apparently, it captures
the major trend of data in the gravity wave region. The second
iteration attaches an additional term of 6.020× 10−4λ−0.9766;
while the third iteration adds a term of −0.05500λ0.06590.
The estimated model then becomes Ê(v|λ) = 1.4434λ0.4035 +
6.020× 10−4λ−0.9766 − 0.05500λ0.06590. Figure 3(b) displays
the model fitness after the second and third iteration. It can
be seen that the second added term describes the “abnormal
dispersion” behavior in the capillary wave region, capturing the
trend to have faster waves with smaller wave lengths. The third
iteration adjusts the curves in the dipping region around λc, by
canceling out the attempt in the first iteration to fit the “abnor-
mal dispersion” that has been captured in the second iteration,
and moving fitness curve downward to better represent the
data. In the fourth iteration, the additional term with estimated
coefficients α̂4

0 = 6.104× 10−6 and β̂4
1 = 5.000× 10−2 makes

almost no improvement on the explained deviation (< 0.002%).
Therefore, the iteration is stopped at the p = 3. Expressing by
physical constants g, ρ, and γ , the final estimated model is

Ê(v|λ, g, ρ, γ ) = 0.8148λ0.4035g0.4517ρ−0.0483γ 0.0483

+ 1.1626λ−0.9766g−0.2383ρ−0.7383γ 0.7383

− 0.2272λ0.0659g0.2830ρ−0.2170γ 0.2170. (12)
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Figure . Scatterplot of the data and additive power-law model fitness through iterations of modified projection pursuit regression.

From Figure 3(b), it is safe to conclude that model (12) fits
the data reasonably well. It successfully discovers both the grav-
ity and capillary wave behaviors in different wave length regions.
This result is significant because the model is actually fitted in
the original scale of v and λ. Figure 3(c) displays the data and
estimated curve in the original scale, where the actual calcula-
tions take place.Most deviations are described after the first iter-
ation. It is noticeable how the algorithm accurately captures the
dipping behavior in such a small scale withinλ < 0.1 and v < 1.

5. Conclusion

DA has been used in various quantitative studies for almost
100 years. However, most literature treats DA as a preprocessing
tool, which results in modeling issues, such as the nonunique
choices of dimensionless variables, the representation and test-
ing on DA validity, and the spurious correlations. A statistical
modeling method tailored for DA is an immediate need. In this
article, we propose a power-law type of “conjugate model” to
solve the three critical issues in statistical modeling with DA.
By implementing the proposed modeling procedure, (a) differ-
ent choices of basis quantities induce the same model with dif-
ferent parameterizations. The preference of basis quantities is
implicit and does not affect statistical modeling. (b) The dimen-
sional constraints and Buckingham’s �-theorem can be repre-
sented by the constraints on the parameters in a straightforward
way. The testing of the physical principles based on empirical
data becomes available and intuitive. (c) By modeling the origi-
nal response, the spurious correlations of post-DA variables are
avoided. The projection pursuit regression is modified to fit the
additive power-law model. The numerical examples show that
the proposed models and corresponding algorithms perform
quite well in practice. Our contribution here is to propose a gen-
uine framework to integrate DA as a part of probabilistic model-
ing, and to solve the three existing modeling issues found in the
literature. Hopefully, this work could provide some guidance in
constructing appropriate analysis techniques to incorporate DA
and other physical information.

There may be several directions that are worth exploring to
improve the procedure. From the algorithmic aspect, backward
adjustment of previous coefficients in the subsequent iterations
may improve the efficiency and reduce the number of terms
needed. On the other hand, the coefficients β j may be preferred
to have sparse components so that the effects of individual
Xi’s can be separated. Following the concept of group LASSO,

additional penalized terms on the L1-norm of β
j
i ’s can be used

in the least absolute deviation criterion. This is currently under
investigation.

From the modeling aspect, one may prefer a Bayesian frame-
work to include DA and its physical principles merely as prior
information, instead of a mandatory constraint. It is partic-
ularly applicable when hypothesis of DA validity is rejected
based on the empirical data. Under the notations in Section 3.2,
suppose Y =∏n

i=1 X
βi
i ε. Let X̃ = (lnX1, . . . , lnXn), then Y =

exp{X̃β}ε = exp{X̃B	}ε = exp{XT	}ε, where X̃T = X̃B is the
transformed data matrix. Section 3.2 suggests that DA is a prior
knowledge ofλ1 = d0,1, . . . , λk = d0,k after reparameterization.
An atomic prior of (λ1 = d0,1, . . . , λk = d0,k) yields standard
Bayesianmodeling approach based onπ0, πk+1, . . . , πn that sat-
isfies dimensional constraints. If DA only serves as an informa-
tive prior instead of a necessary constraint, onemay assign priors
concentrating on d0,1, . . . , d0,k. For instance, λ j ∼ N(d0, j, σ 2

0 )

for j = 1, . . . , k, while λ j ∼ N(d0, j, σ 2) for j = k+ 1, . . . , n,
where the relative magnitude of σ 2

0 /σ 2 reflects the strength of
belief in DA. Such a conservative choice is often more robust
and consistent in practice when DA is available but in question.

Supplementary Materials

Numerical Study on Particle Physics Experiment prim7: A detail discus-
sion on the threemodeling issues ofDA in “prim7” dataset using a single
power-law model.

Technical proofs of theorems: The technical details on the proofs of
Theorems 1, 2, 3, and 4.

R code for numerical studies: A package contains R code that is used to
perform the numerical study of prim7 in supplementary materials and
the study of ocean wave speed in Section 4.
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