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A B S T R A C T

Since the London Great Smog of 1952 was estimated to have killed over 4000 people, scientists have studied the
relationship between air quality and acute mortality. Currently, the association between air quality and acute
deaths is usually taken as evidence for causality. As air quality has markedly improved since 1952, do con-
temporary datasets support this view? We use a large dataset, eight air basins in California for the years
2004–2007, to examine the possible association of ozone and PM2.5 with acute deaths after statistically removing
seasonal and weather effects. Our analysis dataset is available on request. We conducted a regression-corrected,
case-crossover analysis for all non-accidental deaths age 75 and older. We used stepwise regression to examine
three causes of death. After seasonal and weather adjustments, there was essentially no predictive power of
ozone or PM2.5 for acute deaths. The case-crossover analysis produced odds ratio very close to 1.000 (no effect).
The very narrow confidence limits indicated good statistical power. We study recent air quality in both time-
stratified, symmetric, bidirectional case-crossover and time series regression and both give consistent results.
There is no statistically significant association between either ozone or PM2.5 and acute human mortality. In the
absence of an association, causality is in question.

1. Introduction

A recent paper by Schwartz et al. (2016) points to many time series
studies that support an association of air quality and acute mortality. In
a meta-analysis of myocardial infarct triggers, 14 studies support of the
claim that " … air pollution is an important trigger of myocardial in-
farction …” (Nawrot et al., 2011), and in another meta-analysis
(Mustafic et al., 2012), another six studies are given, again making the
same claim. In contrast, other studies make the case that when potential
biases are taken into account, there is no association between air
quality and deaths (Chay et al., 2003; Cox et al., 2013; Enstrom, 2005;
Greven et al., 2011; Janes et al., 2007; Wang et al., 2015; Yang et al.,
2004; Zu et al., 2016). There are studies on both sides of the question,
“Is air quality causal of acute human deaths?”. The weight of evidence
is on the side of a positive association, but for any claim to be con-
sidered causal, it takes only one valid, negative association study to
negate the causality claim.

It is becoming clear that many scientific claims are failing to re-
plicate (Begley and Ellis, 2012; Ioannidis, 2005; Young and Karr, 2011).
Failure to replicate appears to be over many different scientific areas:
psychology, epidemiology, experimental biology, physics, astrophysics,

etc. The replication problem is old (Mayes et al., 1988); it has recently
gained prominence as people wonder about its extent and what might
be done to solve it. A survey of scientists (Baker, 2016) reports that 90%
of scientist think there is a crisis in reproducibility (52% a significant
crisis and 38% a slight crisis). Environmental epidemiology is likely
subject to the same problems of other areas of science.

One factor that exacerbates the examination of reproducibility is the
general lack of access to data. Cecil and Griffin (1985) note: “As an
abstract principle, the sharing of research data is a noble goal and meets
with little opposition. However, when data sharing is attempted in a
particular circumstance, the conflicting interests of the parties can
thwart the exchange. A glance at the benefits and obstacles to data
sharing … reveals the reason: few of the benefits and most of the
burdens fall to the possessor of a dataset.” For example, the owner of
the data might consider it burdensome to defend a claim. Finally, many
authors do not attempt to report negative results as editors, typically,
are much less likely to accept a negative study, so publication bias is
expected result.

We have three goals with this research. Our first objective is to
analyze a dataset for California relating mortality to levels of ozone and
PM2.5. The American Lung Association regards Ozone and PM2.5 as the
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most serious air quality health risks and notes that California has 7/10
US cities with poorest air quality (http://www.lung.org/assets/
documents/healthy-air/state-of-the-air/state-of-the-air-2017.pdf). We
use two independent analysis approaches, a case-crossover analysis,
CCO (Figueiras et al., 2005), and a standard time series regression
analysis, TSR. We give odds ratios along with confidence limits and p-
values, raw and adjusted, for each method. Our second objective is to
present a straightforward, stepwise regression analysis of the dataset.
Here, we analyze three categories of mortality, two air quality vari-
ables, with time lags of 0 or 1 day, and eight air basin subsets (defined
by geographical air basins in California), Fig. 1, https://www.arb.ca.
gov/ei/maps/statemap/abmap.htm, for a total of 96 separate analyses.
Our third objective is to provide the analysis dataset so that others can
replicate our results as well as try different analysis strategies.

2. Methods

2.1. Data

For mortality, the state of California provides access to “death
public use files” for research. The cause of deaths is indicated by an ICD
10 code. We coded three mortality categories: AllCause, Cardiovascular
and Respiratory (AllCause65, CV65, and Resp65 respectively). In all
cases, accidental deaths were excluded. Deaths of individuals above
Age 65 and older were included in the regression analysis; AllCause75
was used in the case-crossover analysis. Each type of deaths was ag-
gregated to the day and year within each air basin. The complete
mortality data can be obtained from the California Department of

Public Health, www.cdph.ca.gov. Air quality variables, ozone and
PM2.5, were obtained from The California Environmental Protection
Agency's Air Resources Board Air Quality Data (PST) Query tool at the
following website https://www.arb.ca.gov/aqmis2/aqdselect.php.
Daily data can be retrieved for each combination of basin, day, and
year. The following statistics were retrieved on July 19, 2014: Daily
Average PM 2.5 in μg m−3; Daily Max 8 Hour Overlapping Average
Ozone in ppb. The Carbon Dioxide Information Analysis Center
(CDIAC) maintains data from the United States Historical Climatology

Fig. 1. Air basins of California.

Fig. 2. Screenshot of ten observations from the South Coase Air basin.

Fig. 3. South Coast Air Basin.
(a) Daily deaths versus Day of Year, DOY, for the years 2004–2007. Four years
are overprinted.
(b) Deviations from Day of Year time series smoother, linear and quadratic
model.

C. You et al. Regulatory Toxicology and Pharmacology 96 (2018) 190–196

191

http://www.lung.org/assets/documents/healthy-air/state-of-the-air/state-of-the-air-2017.pdf
http://www.lung.org/assets/documents/healthy-air/state-of-the-air/state-of-the-air-2017.pdf
https://www.arb.ca.gov/ei/maps/statemap/abmap.htm
https://www.arb.ca.gov/ei/maps/statemap/abmap.htm
http://www.cdph.ca.gov
https://www.arb.ca.gov/aqmis2/aqdselect.php


Network. Daily temperature data was retrieved from the following
website http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html. For each
combination of basin, day, and year, the minimum and maximum
temperature was obtained. The US Environmental Protection Agency
maintains daily humidity data. Daily humidity data was downloaded
from https://www.epa.gov/aqs. For each combination of basin, day,
and year, the daily maximum relative humidity was obtained. A
screenshot of ten observations in the analysis dataset is given in Fig. 2.
A plot of daily deaths versus DayOfYear is given in Fig. 3 (a); the four
years are overprinted. The residuals from a model including DOY and
DOY2 are displayed in Fig. 3 (b).

Mortality = b0 + b1*DOY + b2* DOY2

Deviations from this model are considered “seasonally adjusted”.
The analysis dataset used in this study, years 2004–2007, eight most

populous air basins, can be obtained from (Young et al., 2017). It is also
deposited at http://datadryad.org/

2.2. Statistical methods

For all air basins, the daily mortality data was complete. For three of
the air basins, all data was present, Sacramento Valley, San Joaquin,
and South Coast. To facilitate using the using same analysis on each of
the eight air basins, we imputed missing data using JMP SVD method
(JMP, 2016a). Table 1 gives the number of imputations for the other air
basins.

2.2.1. Case-crossover analysis
Case-crossover is a standard way to evaluate health-related effects

of air quality when the data is in the form of a time series (Figueiras
et al., 2005; Bateson and Schwartz, 1999). For each time point, time
stratified symmetric bidirectional case-crossover is proposed as a new
way of selecting “control” periods, with a multiple day control period
being chosen a week, two weeks, and up to four weeks before and after
the event day of interest. We use a total of eight days as controls in
total. As the comparison is within a narrow time window, other factors
such as age distribution, gender distribution, etc. are also controlled by
the nature of the design. In our case, the outcomes are daily mortality,
and the predictors are air quality measures (PM2.5 and ozone), and
weather variables. We use a Cox Proportional Hazard model:

logit(p) = b0 + b1 * tmin.0 + b2 * tmax.0 + b3 * MAXRH.0 + b4 *
(PM2.5 or ozone)

The regression coefficients, b1, b2, b3 and b4, measure the odds, p/
(1-p), for each of the factors in the model. An odds ratio of 1.0 indicates
the factor has no effect. Either PM2.5 or ozone is the last variable to be
fit into the model so that any effect they have after removing the
weather effects is tested. The R software package “survival” was used
for the computations (R survival, 2016). This model was fit for all eight
air basins.

2.2.2. Time series regression
A second analysis, time series regression, was computed for each air

basin. In our case, we used stepwise regression. First, to remove

seasonal effects, Day of Year and Day of Year squared, DOY and DOY2,
were fit into the model for each air basin. The following additional
variables were available for selection: Air quality variables (ozone and
PM2.5); weather variables (tmin, tmax, relative humidity) for the day at
issue and for the previous day; mortality variable for the day previous
to the current day; day before current day for air quality and weather
variables. A screenshot of a stepwise regression dialog is given in Fig. 4
with DOY and DOY2 fixed in the model.

For each air basin (8) and cause of deaths (3), we recorded four
marker p-values (4): PM2.5, Ozone, PM2.5–1, and Ozone-1, considering
that a change in the same day's air quality or the previous day's air
quality might increase mortality. A total of 96 p-values were computed.
All the predictor p-values for an air basin were examined. Terms were
inserted or taken out of the analysis if they were (p < 0.01) or not
(> 0.01) significant and affected the four marker p-values.

We examined the 96 resulting p-values in four ways. First, we
looked for a consistent effect, either for one of the marker p-values, air
basins or mortality types. Second, we provided a histogram of the p-
values. Third, we provided summary statistics of the p-values. Finally,
the 96 p-values were examined using a p-value plot: p-values plotted
against their expectations under the assumption of a uniform distribu-
tion using JMP Add-In (JMP, 2016b). If p-values fall on a 45-degree line
in a p-value plot, then they are consistent with there being no effect.

Both case-crossover and time series regression are standard methods
for evaluating time series air quality/health effect associations (Nawrot
et al., 2011). In the case-crossover analysis, we chose to look at the
same day's values only and not to include the previous day's values.
Lags are often introduced into the modeling process, but this approach
using a large dataset does not support lags for heart attacks or stroke
(Milojevic et al., 2014). We did use 0 and 1-day lags in the stepwise
regression analysis.

3. Results

3.1. Case-crossover analysis

The results of the case-crossover analysis odds ratios are given in
Table 2 for PM2.5 and ozone. There are 16 odds ratios. They range in
value from 0.998 to 1.001. All these odds are very close to one, the no-
effect value, for each air basin and air quality measure. The average
odds ratio for the eight air basins is 1.00040 for PM2.5 and 0.99977 for
ozone. For each odds ratio, we give lower and upper confidence limits:
CLL and CLH. That these confidence limits are very narrow indicates
there is high statistical power. We give two p-values for each combi-
nation of air basin and air quality measure, the unadjusted p-value, p-
val, and the false discovery rate p-value, FDR (Benjamini and Hochberg,
1995). The unadjusted p-value treats each combination without regard
to the other statistical tests. The FDR adjusts the p-values to reflect the
fact that multiple questions are at issue. With multiple tests, one expects
occasional nominal statistical significance. Here, the smallest un-
adjusted p-value is 0.008 for ozone/San Francisco. The adjusted p-
value, FDR, indicates that we would expect a p-value as small as 0.008,
in about 12.8% of experiments where there are 16 statistical tests, and
thus such a finding is not unexpected.

3.2. Time series regression

For each mode of deaths, air basin, and air quality measure, we
undertook a stepwise regression analysis where we first put DOY and
DOY2 into the model to correct for seasonal effects. Fig. 3 (a) displayed
daily deaths versus DOY, overlaying all four years in the same figure. A
seasonal effect is apparent. Once DOY and DOY2 are used to detrend the
time series, we see that most of the seasonal effects are removed, Fig. 3
(b). We give the four, marker p-values for each type of deaths and air
basin in Table 3. There are four p-values< 0.05, but there is no con-
sistent pattern of small p-values. The p-values are uniformly distributed

Table 1
Numbers of data values imputed in the analysis dataset. PM25davg is the daily
average PM2.5 level. Tmin and tmax are the minimum and maximum tem-
perature. MAXRH is the maximum relative humidity.

Air Basin Mountain Salton Sea San Diego San Francisco South Central

PM25davg 26 3 4 0 1
tmin 0 93 20 0 0
tmax 0 94 18 0 0
MAXRH 325 3 0 267 0
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over the interval 0 to 1 in the histogram of Fig. 5, indicating pure
randomness. The mean and median p-values are 0.4965 and 0.4788,
respectively; they indicate no effect of the same day's or the previous
day's air quality on acute mortality. The p-value plot for these data is
consistent with pure randomness, Fig. 6.

4. Discussion

Neither the case-crossover or stepwise regression analyses support a
PM2.5 or ozone association with acute deaths in the eight California air
basins over the period 2004–2007. A common assumption today is that
“air pollution,” no matter what level or what component is under
consideration, may be detrimental to health. During the Great Smog of
London, there was a dramatic increase in statistical deaths. It is fair to
say the air was polluted as there was demonstrable harm. Air quality
has improved dramatically since 1952 (Schwartz and Hayward, 2007).
The current paradigm, based on many epidemiological studies, is that
air quality is causal of acute deaths. However, an association does not

imply causation. If there is real causation, then well-conducted asso-
ciation studies using large datasets should almost always find an asso-
ciation. Multiple studies going back to at least 2000 (Krewski et al.,
2000), indicate air quality geographic heterogeneity. If there is real
causality, and one size fits all, there should be effects everywhere. In
addition to geographic heterogeneity, a number of studies find no as-
sociation between air quality and acute deaths, for example, (Cox et al.,
2013; Wang et al., 2015; Yang et al., 2004). Meta-analysis studies
suggest health effects of air quality (Nawrot et al., 2011; Mustafic et al.,
2012; Shah et al., 2015). The primary/base studies for these meta-
analysis studies are only observational. These types of studies are not
free of bias as none of them correct for multiple testing or multiple
modeling. Careful counting of many of these studies shows that the
analysis search space, the number of possible claims at issue, is large for
each paper, for example, (Young, 2017), so their reliability is ques-
tionable, and verification is needed.

In epidemiology, quasi-experiments/natural experiments are con-
sidered more reliable. In a natural experiment, there is some event that

Fig. 4. Stepwise regression dialog from SAS JMP Pro. Day Of Year, DOY, and DOY2 were forced into the model, South Coast Air Basin.

Table 2
Results of case-crossover analysis: odds ratio(OR), for eight air basins, con-
fidence limits, p-values (raw and adjusted for 16 test); PM2.5 and ozone. There
are 16 statistical tests of hypothesis.

Air Basin OR CLL CLH p-val FDR

PM2.5

mountain-counties 0.99947 0.99780 1.00100 0.536 0.673
sacramento-valley 1.00100 0.99990 1.00200 0.092 0.288
salton-sea 1.00000 0.99800 1.00200 0.956 0.989
san-diego 1.00056 0.99940 1.00200 0.341 0.673
san-francisco 1.00098 1.00010 1.00200 0.024 0.192
san-joaquin 1.00067 1.00000 1.00100 0.044 0.235
south-central-coast 1.00052 0.99900 1.00200 0.501 0.673
south-coast 1.00000 0.99990 1.00060 0.223 0.510
Average 1.00040

Air Basin OR CLL CLH p-val FDR
Ozone

mountain-counties 1.00017 0.99720 1.00300 0.911 0.989
sacramento-valley 1.00000 0.99930 1.00200 0.437 0.673
salton-sea 0.99795 0.99570 1.00000 0.080 0.288
san-diego 1.00048 0.99930 1.00200 0.407 0.673
san-francisco 1.00111 1.00030 1.00200 0.008 0.128
san-joaquin 1.00000 0.99890 1.00100 0.989 0.989
south-central-coast 0.99855 0.99680 1.00000 0.108 0.288
south-coast 0.99990 0.99940 1.00030 0.547 0.673
Average 0.99977

Table 3
P-values testing health effects versus air quality. AllCause deaths; CV: cardio-
vascular deaths; respiratory deaths for 8 air basins. There are 96 tests of hy-
pothesis.

Mortality Air Basin PM2.5 Ozone PM2.5-1 Ozone-1

AllCause Mountain 0.6195 0.7955 0.2183 0.6973
AllCause Sacramento 0.2602 0.9916 0.3532 0.8088
AllCause Salton Sea 0.4203 0.9666 0.0504 0.2702
AllCause San Diego 0.5767 0.1055 0.4064 0.3587
AllCause San Francisco 0.7555 0.0101 0.9943 0.9598
AllCause San Joaquin 0.1465 0.2895 0.0457 0.2283
AllCause South Central 0.3723 0.6815 0.4472 0.9577
AllCause South Coast 0.5209 0.1728 0.1480 0.9722
CV Mountain 0.2661 0.7684 0.3831 0.5008
CV Sacramento 0.1650 0.8144 0.7806 0.3712
CV Salton Sea 0.8177 0.1488 0.2897 0.6428
CV San Diego 0.3004 0.4052 0.0313 0.9563
CV San Francisco 0.5823 0.5642 0.7499 0.3862
CV San Joaquin 0.1535 0.4022 0.8076 0.3879
CV South Central 0.7077 0.1666 0.3564 0.3569
CV South Coast 0.7189 0.1142 0.7544 0.3380
Resp Mountain 0.1804 0.9537 0.9665 0.7769
Resp Sacramento 0.4111 0.5675 0.3990 0.7982
Resp Salton Sea 0.9185 0.9624 0.4824 0.6192
Resp San Diego 0.5025 0.6570 0.7591 0.6939
Resp San Francisco 0.1539 0.6546 0.0344 0.1809
Resp San Joaquin 0.6757 0.0538 0.5801 0.0716
Resp South Central 0.4753 0.5464 0.0710 0.7504
Resp South Coast 0.0923 0.4710 0.5538 0.8612
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is largely independent of the outcome, and there are other covariates
that can be used to examine the relationship between outcomes and
predictors, human mortality and air quality. The process looks like a
real experiment. For example, some counties in the US were designated
as out of compliance with respect to air quality and special efforts were
made to improve air quality in those counties (Chay et al., 2003). Air
quality did improve, but elderly mortality did not. There was no ex-
perimental verification that improving air quality improved mortality.
A re-analysis of the dataset in (Chay et al., 2003) reached the same
conclusion (Obenchain and Young, 2017). In another study, an increase
in PM2.5 happened in New York City and Boston, due to forest fires in
Canada (Zu et al., 2016). They found that PM2.5 increased, but the
mortality did not. These studies carefully controlled for confounding
variables.

It is worth pointing to early evidence on etiology and atmospheric
chemistry. Nemery et al. (Nemery and Hoet, 2001) examined the
technical report of the Meuse Valley event of 1930. A thick fog formed,
and 60 people died, of whom ten were necropsied. The necropsies
showed no cardiovascular involvement, which supports Milojevic et al.
(2014), discussed later. The lung effects were consistent with acid in-
juries. They proposed sulfuric acid carried deep into the lungs adsorbed
onto small particles. Wang et al. (2016) present evidence on the at-
mospheric chemistry of sulfur compounds. To get to sulfuric acid you
need a combination of conditions, “The sulfate formation was greatly
facilitated by high RH (relative humidity), low temperature, and the
presence of large fog droplets (45), yielding elevated sulfuric acid levels
that persisted throughout the event.” These conditions held for the

London Smog and the Muse Valley fog. This combination of conditions
rarely occurs in Los Angeles air basin. It appears that a complex in-
teraction is needed for acute deaths. Over time, sulfur compounds are
dramatically reduced, so this complex interaction is much less likely in
the California or indeed the US.

The level of precision exhibited in our case-crossover analysis is
very high; the confidence limits are very narrow. Confidence limits
reflect the statistical precision of an analysis process, but do not ne-
cessarily correct for bias. In this case, any small bias could lead to what
looks like a significant effect. The fact that we see no effect suggests that
there is little or no bias in this dataset and analysis. The few nominally
statistically significant results could be due to small biases or be due to
chance.

We define acute death in this study as death due to some immediate
change of weather or air quality. The hypothesis is that something
happened with these variables on the same day or previous day that is
associated with mortality. If one concedes that air quality is not causal
of acute deaths, then there still might be a chronic causal effect. No
chronic effect of fine particles in California was found using a large
cohort database (Enstrom, 2005). Since then Enstrom has accumulated
other estimates of the chronic effect of PM2.5 on AllCause deaths for
California. Results of relative risk, computed from several studies by
(Enstrom, 2017), are given in Table 4. The average over the 20 given
results is 1.010 with a standard error of the mean of 0.010. There is no
apparent difference between the observed value and 1.000, the no-ef-
fect value.

Positive association studies on air quality and human mortality
often point to cardiovascular effects as a possible etiology. Heart attacks
and stroke were studied in a large UK dataset and the time of the event,

Fig. 5. Histogram of p-values. If the effects are random, we should see a uniform distribution.

Fig. 6. P-value plot of 96 tests of hypothesis, -Log10 of p-values versus the
expectation of p-values coming from a uniform distribution. If the points fall on
a 45-degree line, then the results are consistent with randomness.

Table 4
AllCause risk ratios from cohort studies for PM2.5 deaths in California. See
Enstrom (2017) for details.

Reference Years RR CI

McDonnell et al., 2000 1976–1992 1.03 0.95–1.12
Krewski, 2000 1982–1989 0.872 0.805–0.944
Enstrom, 2005 1973–1982 1.039 1.010–1.069
Enstrom, 2005 1983–2002 0.997 0.978–1.016
Jerrett et al., 2005 1982–2000 1.11 0.99–1.25
Enstrom, 2006 1973–1982 1.061 1.017–1.106
Enstrom, 2006 1983–2002 0.995 0.968–1.024
Zeger et al., 2008 2000–2005 0.989 0.970–1.008
Jerrett, 2010 1982–2000 0.994 0.965–1.025
Krewski, 2010 1982–2000 0.96 0.920–1.002
Krewski, 2010 1982–2000 0.968 0.916–1.022
Jerrett, 2011 1982–2000 0.994 0.965–1.024
Jerrett, 2011 1982–2000 1.002 0.992–1.012
Lipsett et al., 2011 2000–2005 1.01 0.95–1.09
Ostro et al., 2010 2002–2007 1.06 0.96–1.16
Jerrett et al., 2013 1982–2000 1.06 1.003–1.120
Jerrett et al., 2013 1982–2000 1.028 0.957–1.104
Ostro et al., 2015 2001–2007 1.01 0.98–1.05
Thurston et al., 2016 2000–2009 1.02 0.99–1.04
Enstrom, 2016 (unpub) 2000–2009 1.001 0.949–1.055
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heart attack or stroke, determined down to the hour (Milojevic et al.,
2014). They found no lag effects for CO, NO2, Ozone, PM10, PM2.5, or
SO2. Tellingly, they found no association between ozone and PM2.5 and
heart attacks or stroke. The association of hospital heart attack ad-
missions for CO, NO, NO2, Ozone or PM2.5 was investigated; no asso-
ciations were found (Wang et al., 2015). The reliability of cause of
death on death certificate is poor (Ravakhah, 2006), so it makes sense
that attention should focus on AllCause deaths as the primary endpoint
of analysis. We present an analysis of three death endpoints so that our
results can be matched against the literature. We find no association
between PM2.5 and ozone and acute deaths in California.

5. Conclusions

In the absence an association of air quality, as measured by ozone or
PM2.5, with acute mortality (AllCause, Cardiovascular or Respiratory),
there is no evidence supporting current air quality being causal of acute
deaths in California.
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