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Abstract

The detection performance of a conventional control chart is usually degraded

by a large sample size as in Wang and Tsung. This paper proposes a new control

chart under data‐rich environment. The proposed chart is based on the

continuous ranked probability score and aims to simultaneously monitor the

location and the scale parameters of any continuous process. We simulate dif-

ferent monitoring schemes with various shift patterns to examine the chart per-

formance. Both in‐control and out‐of‐control performances are studied through

simulation studies in terms of the mean, the standard deviation, the median,

and some percentiles of the average run length distribution. Simulation results

show that the proposed chart keeps a high sensitivity to shifts in location and/

or scale without any distributional assumptions, and the outperformance

improves, as the sample size becomes larger. Examples are given for

illustration.
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1 | INTRODUCTION

Statistical process control has received extensive attention
for a long period and keeps evolving to meet the needs of
various industries. With the development of modern mea-
surement and inspection technology, such as the machine
vision systems and other high‐frequency in‐process sens-
ing technology, large amounts of process data are often
available within short time intervals. A typical example,
provided by Wang and Tsung,1 is that “since the in‐line
Optical Coordinate Measurement Machine needs to mea-
sure 100‐150 points on each major assembly with a 100%
sample rate, a tremendous amount of measurement data
would be generated every 10‐30 seconds.” Another exam-
ple given there is the cellular phone display, which is
tested by a machine vision system during its production
process. Since every image contains nearly 1000 pixels, 1
display is a sample with 1000 independent observations.
For the incoming big data era, how to make a good use
wileyonlinelibrary.com/jou
of those large amounts of data becomes a real challenge
for modern statistical process control techniques.

Compared with the existing control charts that only
monitor a single process parameter (location or scale), con-
trol charts that simultaneously monitor both of the loca-
tion and scale are considered to be more reasonable and
effective. Simultaneous shifts in both the location and scale
are likely to happen because a shift in one of the parame-
ters usually affects the other. Taking the normal distribu-
tion for instance, control limits of the mean chart may no
longer be effective because of the influence of shifts in
the variance, thus dramatically impacting the chart perfor-
mance. Gan et al2 pointed out that it is more reasonable to
combine the mean and variance information on 1 scheme
and study their behavior simultaneously.

Here, we focus on developing a new control chart for
simultaneously monitoring the location and scale under
data‐rich environment. The existing methods for handling
large sample size are to calculate sufficient statistics (such
Copyright © 2018 John Wiley & Sons, Ltd.rnal/qre 681
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as the mean or variance). However, Wang and Tsung1

noted that this approach may sometimes ignore some
serious defects that are due to partial out‐of‐control data
in a sample, as the out‐of‐control data would be averaged
out and buried in the large sample. To address this con-
cern, we propose to characterize each sample by the con-
tinuous ranked probability score (CRPS) statistic, which
has low sensitivity to the increasing sample size and thus
is appropriate for data‐rich monitoring situations. More-
over, a CRPS‐based control chart, which simultaneously
monitors shifts in the location and/or the scale without
distributional assumptions, is proposed.

The rest of the article is organized as follows. Section 2
reviews the current available literature on simultaneously
monitoring the location and scale. Preliminaries of the
CRPS method are given in Section 3. The proposed CRPS
chart is introduced in Section 4, including the determina-
tions of control limits and the charting procedure.
Section 5 illustrates examples with small and large sample
sizes to show how the proposed CRPS chart is imple-
mented in practice. Section 6 shows the in‐control and
out‐of‐control performances of the CRPS chart in terms
of different shift patterns and different sample sizes.
Performance comparisons with both the parametric
likelihood ratio‐based EWMA chart (denoted by ELR
chart) and nonparametric Shewhart‐Laplace (SL) and
Shewhart‐Cucconi (SC) charts are also provided there.
Section 7 gives some conclusions.
2 | LITERATURE REVIEW

Basically, there are 2 main approaches to simultaneously
monitoring the location and scale. The first approach uses
2 independent control charts to monitor the location and

scale, such as the conventional X&R chart. The second
approach is to construct a single control chart by using
an integrated plotting statistic or 2 independent plotting
statistics. A single chart is much simpler to use and has
better performance. As noted by McCracken and
Chakraborti,3 the overall false alarm rate of the 2‐chart
control schemes could be twice as high as the 1‐chart con-
trol schemes. See, for example, Chowdhury et al,4 Chen
and Cheng,5,6 Costa and Rahim,7 Yeh et al,8 Zhang
et al,9 and reviews on the subject by Cheng and Thaga,10

and McCracken and Chakraborti.3

A vast majority of the existing 1‐chart joint monitoring
schemes assume a normal distribution of the underlying
data. However, data in practice are more likely not nor-
mally distributed. It is desirable to develop monitoring
schemes that do not rely on normality. Some examples
are as follows. Zou and Tsung11 proposed a distribution‐
free EWMA control chart that integrates Zhang's12
goodness‐of‐fit test and EWMA process monitoring. They
show that the proposed scheme is efficient in detecting
shifts in location or scale, when the underlying process
distribution is unknown. Mukerjee and Chakraborti13

developed a distribution‐free SL chart with a charting sta-
tistic based on the Lepage14 statistic, which combines the
Wilcoxon rank sum test for location and the Ansari‐Brad-
ley test for scale. Although the SL chart is able to monitor
the location and the scale parameters for any continuous
process, 1 limitation there is that it is not capable for
detecting changes in the shape. Chowdhury et al15

extended the work to present a similar distribution‐free
control chart to monitor the location and scale simulta-
neously. The proposed SC chart is based on the Cucconi16

statistic, and they show by simulations that their chart
performs just as well or better than the SL chart. How-
ever, the problem of detecting shifts in the shape still
remains primitive.

As previously mentioned, the amount of data is usu-
ally very large in the modern manufacturing process.
However, little research really looks into how to make full
use of those high‐volume data to simultaneously monitor
the location and scale under data‐rich environment. In
this paper, we develop a distribution‐free control chart
to simultaneously monitor the location and the scale for
the data‐rich problem. For simplicity, we assume that
in‐control samples can be obtained from a phase 1 study.
3 | PRELIMINARIES FOR USING
CRPS

The CRPS (see Brown17) is a kind of scoring and verifica-
tion tool. It was originally developed for probabilistic fore-
cast systems to evaluate how accurately the forecast
system can describe the occurrence and nonoccurrence
of a certain event, mainly by measuring the difference
between the predicted and occurred cumulative distribu-
tion functions (CDFs; see Hersbach,18 Thorarinsdottir
and Gneiting,19 and Pinson et al20). Since the CRPS
method effectively calculates the distance from a distribu-
tion to a certain point, it is now commonly used for many
functions beyond forecasting. For example, Shi et al21 pro-
posed a CRPS‐based approach to analyze the process
capability and showed that their method is applicable to
both normal and nonnormal cases. Basically, the CRPS
statistic is defined as

CRPS ¼ S F; yð Þ ¼ ∫
þ∞

−∞
F tð Þ−H t−yð Þð Þ2dt (1)

Here y is the desired value and t is the observed
value; S(F, y) is the CRPS value obtained by computing
the integral of the square difference between F and H;
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F and H are 2 CDFs, among which H is the Heaviside

function, that is, H x−yð Þ ¼ 0

1

�
t<y

t≥y
.

Shi et al21 demonstrated that CRPS can also be
expressed as

S F; yð Þ ¼ ∫y
−∞ F tð Þð Þ2dt þ ∫þ∞

y F tð Þ−1ð Þ2dt
¼ Sl F; yð Þ þ Su F; yð Þ (2)

Here Sl(F, y) is the CRPS value below y, and Su(F, y) is
the CRPS value beyond y. Since the CRPS value measures
the dispersion of any continuous process, a smaller CRPS
value obviously indicates a smaller gap between the desired
and observed value, indicating a more capable process,
while large values indicate processes that are out of control.
A minimal CRPS value of zero is only obtained when
F = H, representing the ideal situation where the observed
process successfully produced an ideal part.

Friedman22 and Nau23 pointed out the relationship
between CRPS and distanceS(F,y) ≥ S(G, y) ⇔ d(f, y)
≥ d(g,y). Here d represents an arbitrary kind of distance
metric that satisfies 3 conditions: nonnegative, symmetric,
and the triangle inequality, for any 2 probability density
functions f and g, F and G being their corresponding CDFs.
With this encouraging discovery, we are able to use the CRPS
to compare the performance of different distributions. To
illustrate the effectiveness without any constraints on data
distribution, various simulations have been conducted,
including normal distribution and nonnormal distributions.
3.1 | Normal distribution

For each scenario below, 1000 random numbers are gen-
erated for different types of shifts on the CRPS value. Each
simulation is studied with 3 replicates, and results of all
obtained CRPS values are displayed in Table 1. Their cor-
responding Probability Density Function (PDF) and CDF
for an intuitive interpretation of the corresponding CRPS
TABLE 1 CRPS values for different shifts in a normal process

(a) θ = 0, σ = 1

Times 1 2 3

Sl(F, y) 0.111 0.098 0.11

Su(F, y) 0.109 0.118 0.09

S(F, y) 0.220 0.216 0.21

(c) θ = 0, σ = 2

Times 1 2 3

Sl(F, y) 0.230 0.212 0.20

Su(F, y) 0.200 0.216 0.23

S(F, y) 0.430 0.428 0.43
values were then plotted, as shown in Figure 1, where the
CRPS values are presented as the shaded area between
CDF and y. Four scenarios are reported here:

a. Process in‐control. Assume that the controlled pro-
cess follows the standard normal distribution, and
1000 random numbers that follow this distribution
are generated. It is shown that the variation among
CRPS values is very small when the desired value y
is considered to be the process mean 0.

b. A shift in the location. Assume that the process is cur-
rently out of control due to a shift in the location
which increases the mean from 0 to 1 and preserves
the variance simultaneously. It is easy to see that this
shift has a great impact on the corresponding CRPS
value, which is more than the double of that in the
first situation.

c. A shift in the scale. Similarly, assume there is a shift
in the scale, which increases the process variance
from 1 to 2, while the process mean is preserved.
Here, the CRPS value also shows a great difference
with the 2 situations above.

d. Shifts in both the location and scale. When there is a
shift in both the location and scale, take an increase
in the mean from 0 to 1 and meanwhile an increase
in the variance from 1 to 2. Table 1 shows that the
CRPS value has increased even more compared with
the above 3 situations, which can be simply
interpreted as a combined effect caused by the loca-
tion and scale shifts.
3.2 | Nonnormal distribution

When the normality assumption is invalid, for example, a
skewed or a heavier tailed distribution, the above 4 situa-
tions are also studied to show that similar influence also
appears for nonnormal cases. For simplicity, we only take
(b) θ = 1, σ = 1

1 2 3

7 0.006 0.006 0.006

8 0.583 0.589 0.581

5 0.589 0.595 0.587

(d) θ = 1, σ = 2

1 2 3

4 0.059 0.063 0.064

2 0.578 0.566 0.552

6 0.636 0.629 0.616



FIGURE 1 Schematic diagrams of CRPS for different types of shifts in a normal process [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 2 Schematic diagrams of CRPS for different types of shifts in a gamma process [Colour figure can be viewed at

wileyonlinelibrary.com]
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the heavy‐tailed gamma distribution as example. Simula-
tions are done using the same method as the normal case.
The simulation results are displayed in Figure 2A to D.
For each situation, results of all obtained CRPS values
are shown in Table 2, from which we can also see that
the variation of CRPS values is small within the same sit-
uation. However, when shifts occur, whether location
shift or scale shift or both, there is a great effect on the
CRPS value.
a. Process in‐control. We simulate a controlled process
that follows a gamma distribution with the shape
parameter α = 2 and the scale parameter β = 1. Then
1000 random numbers are generated. The desired
value y for CRPS is the in‐control process mean,
which equals to 2.

b. A shift in the location. Assume there is a shift in the
location, which moves all those random numbers
generated in the first situation 1 unit to the right.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


TABLE 2 CRPS values for different shifts in a gamma process

(a) α = 2, β = 1 (b) α = 2, β = 1 move (a) 1 unit to the right

Times 1 2 3 1 2 3

Sl(F, y) 0.2087 0.2042 0.2206 0.0150 0.0142 0.0126

Su(F, y) 0.1001 0.1018 0.0959 0.4054 0.4147 0.4211

S(F, y) 0.3088 0.3060 0.3164 0.4204 0.4289 0.4337

(c) α = 4, β = 1/2 (d) α = 4, β = 1/2 move (c) 1 unit to the right

Times 1 2 3 1 2 3

Sl(F, y) 0.1175 0.1324 0.1199 0.0021 0.0024 0.0035

Su(F, y) 0.0956 0.0789 0.0934 0.5064 0.5234 0.4781

S(F, y) 0.2131 0.2114 0.2133 0.5085 0.5258 0.4816
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For comparison, the corresponding CRPS values are
calculated with the same desired value y = 2.

c. A shift in the scale. In this scenario, to ensure
that there are no shifts in location but only in
scale, we generate 1000 random numbers from a
gamma distribution with parameters α = 4 and
β = 1/2.

d. Shifts in both the location and scale. To shift both
location and scale, again we use gamma distribution
with parameters α = 4 and β = 1/2, but move those
random numbers generated in the third situation 1
unit to the right.

Through the analysis of the normal and nonnormal
cases, it is shown that the CRPS value can effectively iden-
tify changes in both the location and scale regardless the
underlying distribution. Since CRPS considers all avail-
able points by calculating its CDF, it gives a complete
indication of process variation, which can be beneficial
for quality control. In addition, the CRPS approach is
expected to become more sensitive to shifts when there
are more data in the sample.
4 | CONSTRUCTION OF THE CRPS
CHART

4.1 | Determinations of control limits

When determining the control limits of the chart, the
key problem is to find the reasonable range of CRPS
values from an in‐control process. Thus, an out‐of‐con-
trol process can be indicated whenever the CRPS value
is out of the given range. In this paper, we determine
the control limits by the following steps: First, collect k
reference samples X = (x1,⋯, xi,⋯, xk) from historical
data which all stem from an in‐control process. Each
sample includes multiple independent observations, and
the sample size is denoted by m. That is, xi = (d1,⋯,
dj,⋯,dm). Second, calculate the corresponding CRPS
value for each sample in X. Third, analyze the CRPS dis-
tribution with the obtained k CRPS values, so control
limits can be finally determined.

To gain a general understanding of the CRPS distribu-
tion, we conducted the following simulation experiments
with 3 representative distributions: normal, exponential,
and bimodal distributions are studied respectively. For
each scenario, 10 000 samples are generated from the cor-
responding population distributions. The sample size m
is respectively set at 10, 25, 50, 75, and 100 to
study the impact of sample size on the CRPS distribution.
Figures 3–5 show the PDF of each considered distribu-
tion, as well as the CRPS distribution obtained by the cor-
responding samples with different sizes. It is shown that
the CRPS distribution is similar to the normal distribution
in all scenarios, especially when m is larger than about
100. Clearly, regardless the underlying distribution, the
CRPS distribution has a similar pattern with the normal
distribution, and this characterization is becoming more
stable with an increasing sample size m.

We then use the parameter estimation method to
approximate the exact distribution function of CRPS.
Since our empirical (simulation) observations indicate
that Gamma distribution could be an ideal approxima-
tion for the CRPS distribution, we use the maximum
likelihood estimation method to estimate the shape
parameter α and scale parameter β of the gamma distri-
bution. Therefore, control limits can be determined by
choosing an acceptable false alarm rate. The acceptable
in‐control average run length (denoted by ARL0) can be
found for any lower control limit (LCL) and upper con-
trol limit (UCL) by Equations 3 and 4. It is worth men-
tioning that the right side of the equations is the CDF
of a gamma distribution while the acceptable ARL0
appears on the left. Finally, by setting the ARL0 equals

to some desired value ARL*
0, control limits can be deter-

mined by solving



FIGURE 3 Standard normal distribution population (left) and corresponding CRPS distributions with different sample size m (right)

FIGURE 4 Exponential distribution population (left) and corresponding CRPS distributions with different sample size m (right)

FIGURE 5 Bimodal distribution population (left) and corresponding CRPS distributions with different sample size m (right)
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1

2ARL*
0

¼ ∫
LCL

−∞

x α
∧
−1ð Þ 1= β

∧
� �α

∧

e −x= β
∧� �

Γ α∧ð Þ dt (3)

1−
1

2ARL*
0

¼ ∫
UCL

−∞

x α
∧
−1ð Þ 1= β

∧
� �α

∧

e −x= β
∧� �

Γ α∧
� � dt (4)

Here α∧ and β
∧
are the maximum likelihood estimation

of α and β. To get the solutions, simulations are called for.
Since the CRPS method is distribution‐free, data are
generated from the standard normal distribution. For
parameters selection, assume that 100 reference samples
are collected in the historical data (the more, the better),
and the sample size m is set at 50, 100, 300, and 500. In

addition, ARL*
0 is selected to be 250, 370, and 500. Each

simulation is done with 1000 replications. Results are
shown in Table 3.

Table 3 shows that as m increases, the distance

between LCL and UCL decreases under the same ARL*
0.

Figure 6 gives the profiles of variousm and its correspond-

ing limits when ARL*
0 ¼ 370, which indicates that

although the LCL‐UCL range continues to narrow as m
approaches 200, the increases are no longer as dramatic.
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When m increases beyond about 200, there is very little
change. This means that the CRPS chart becomes stable
with larger sample cases. This characteristic is especially
meaningful for data‐rich environments, since it is increas-
ingly common in practice for large amounts of process
data to be generated over short time intervals.
FIGURE 6 LCL and UCL profiles for various values m when

ARL*0=370 [Colour figure can be viewed at wileyonlinelibrary.com]
4.2 | Procedure for the CRPS chart

The proposed CRPS chart can be constructed as follows.

1. Collect reference samples X = (x1, x2,⋯, xk) from the
in‐control process, and use xi = (d1,d2,⋯,dm) repre-
sents the ith subgroup.

2. Calculate the CRPS values for each sample inX, deter-
mine the lower limit LCL, and the upper limit UCL
using Equations 3 and 4 in (4.1); thus, the CRPS chart
is constructed.

3. Collect test samples Y = (y1, y2,⋯ym) at regular time
intervals from the current unknown process. Assume
that the sample size is m. Let yj = (e1, e2,⋯, em) repre-
sent the jth test sample.

4. Calculate the CRPS values for each test sample in Y
and then display them on the constructed CRPS chart.

5. If the CRPS value of the jth test sample exceeds
LCL or UCL, the process is declared out‐of‐control
at the jth sample. If not, the process is considered
to be in‐control and we continue to test the next
sample.
5 | ILLUSTRATIVE EXAMPLE

Three case studies are given here to show how the pro-
posed CRPS chart can be implemented in practice.
Section 5.1 studies the piston ring data with small sample
(m = 5) to facilitate the comparison with the SL and SC
charts (Mukerjee and Chakraborti13 and Chowdhury
et al15). Section 5.2 studies the indoor noise detection data
with a sample size m = 300, which illustrates that the
CRPS chart is also effective when the sample size is
greatly increased. Section 5.3 studies the machine vision
TABLE 3 LCL and UCL of the CRPS chart for selective m

ARL*
0 ¼ 250 ARL*

0 ¼
m LCL UCL LCL

50 0.16605 0.34811 0.16313

100 0.18048 0.30623 0.17828

300 0.19509 0.26692 0.19373

500 0.19943 0.25520 0.19835
system, using a real industrial nonwoven textile image
that contains 62 500 pixels (m = 62 500) to show the CRPS
chart for the data‐rich environment.
5.1 | Example of piston ring data

The well‐known piston ring data discussed in Montgom-
ery24 are used to make a comparison among the perfor-
mance of CRPS chart with that of the SL and SC charts.
With the given 25 reference samples of inside diameter
measurements of forged automobile engine piston rings,
there are 5 piston rings in each sample. Another 15 sub-
groups with the same sample size are also provided as
the test samples. Thus, k = 25 and m = 5. What we
need to do is to judge whether the current process is
in‐control or out‐of‐control and detect shifts in the pro-
cess as early as possible.

Following our proposed charting procedure, first the
corresponding CRPS value for each reference sample
should be calculated with a desired value y equal to
the mean value 74.000. Then, the maximum likelihood
estimation method is adapted to gain the control limits
of the chart, and the results are LCL = 0.00063,

UCL = 0.0092 for a target ARL*
0 of 500. We next calcu-

late the corresponding CRPS value for each test sample.
Finally, by plotting the obtained CRPS values on the
constructed CRPS chart (see Figure 7), we are able to
make a judgment that the 12th sample is out‐of‐control.
370 ARL*
0 ¼ 500

UCL LCL UCL

0.35296 0.16100 0.35658

0.30938 0.17667 0.31173

0.26861 0.19272 0.26986

0.25648 0.19755 0.25744

http://wileyonlinelibrary.com
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Clearly, the CRPS value of the first 11 test samples are
all within the scope of LCL and UCL, while the 12th
test sample is the first sample beyond the control
limits. Note that this is consistent with the SL and SC
charts.
5.2 | Example of indoor environmental
noise

The mobile app Noise Detector installed in
smartphones is used to monitor its indoor environmen-
tal noises. We assume that the changes of noises are
under control when the air conditioning is turned off,
and it becomes out‐of‐control when the air conditioning
is turned on. Apart from the air conditioning, all other
factors that may influence the indoor noise value are
controlled at the same level. We next illustrate the pro-
posed CRPS chart under data‐rich environment with
large sample size by conducting an experiment of
indoor noise detection.

The air conditioning is first turned off, and the
detection frequency of the mobile app Noise Detector
is set at 1 Hz. The decibel value of indoor noise is
measured per second by this app. We made continuous
measurement for 5 minutes each time; thus, a total of
300 observations were obtained each time. That is, the
reference sample size m = 300. The whole experiment
was conducted for 10 times with intervals of every
hour, so 10 reference samples with sample size
m = 300 were finally collected. Next, the air condition-
ing was turned on, and we began to collect test sam-
ples using the same app Noise Detector. The sample
size was also 300, and we collected 5 test samples in
this experiment. Finally, the proposed CRPS chart is
FIGURE 7 CRPS chart for the piston ring data [Colour figure can

be viewed at wileyonlinelibrary.com]
used to find whether it is able to identity changes in
the indoor noises.

The desired value y for CRPS value is taken as the
population mean of all obtained in‐control samples.
This can be estimated by the sample mean of
y ¼ 63:50. Based on this, we calculate the CRPS values
for each reference sample, and the results are 1.7828,
1.5391, 1.4824, 1.5762, 1.437, 1.3291, 1.482, 0.8781,
1.3528, and 1.7684. Then, the LCL and UCL are respec-

tively found to be 0.782 and 2.412 with a target ARL*
0

set at 500. Finally, the CRPS values of each test sample
are calculated (with a same y value). Results of first 3
test samples are 2.4735, 3.9282, and 4.9075. Figure 8
displays all the CRPS values on the CRPS chart. The
chart immediately indicates an out‐of‐control signal at
the 11th sample. This is indeed the time point when
we turned on the air‐conditioning.
5.3 | Example of nonwoven textile images

A sample of nonwoven textile images in Megahed et al25is
used to illustrate the problem in a data‐rich environment.
The nonwoven textile testing process is a specific applica-
tion of machine vision system in industrial production
practice. The traditional manual visual is hard to evaluate
the quality of produced nonwoven textiles and to judge
whether the process maintains a similar pattern. There-
fore, image acquisition devices (working at high speed)
capture the product images and send them to a software
system to analyze.

Here, we are interested in using the proposed CRPS
chart to detect faults in nonwoven textile images. An
industrially produced nonwoven image that contains
FIGURE 8 CRPS chart for the indoor noise data [Colour figure

can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 9 CRPS chart for the nonwoven images [Colour figure

can be viewed at wileyonlinelibrary.com]
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62 500 (250 × 250) pixels is used, and each pixel is inde-
pendent of other pixels. A nonwoven textile image is
thus a sample with 62 500 independent observations.
Under the in‐control status, each pixel follows a normal
distribution and all produced nonwoven textile images
follow a specific pattern. In our simulation study, we
first used the real industrial image to generate 1000 sim-
ilar images by adding Gaussian noise, with mean 0 and
the standard deviation 1. We then calculate the CRPS
value of 62 500 pixel values for each obtained in‐control
nonwoven textile image. According to the proposed
monitoring scheme, the desired value y for calculating
the CRPS value is taken as the population mean of all
obtained pixels in the in‐control images, and this is esti-
mated by the sample mean of y ¼ 128:03. Based on this,
we are able to obtain 1000 CRPS values. The LCL and
UCL of CRPS chart are respectively found to be 38.63

and 39.31 with a target ARL*
0 of 370 (see Section 4.1

for details).
Under the out‐of‐control status, a shift in location

and/or scale may happen in the process at a certain
moment. This will lead to defective nonwoven textiles.
In the simulation experiment, this situation can be gener-
ated by adding a Gaussian noise with a different mean
and standard deviation. For simplicity, only a location
shift is considered here. To obtain the out‐of‐control sam-
ples, we add a Gaussian noise with its mean equals to 0.2
and the standard deviation remains 1 to the real textile
image. First, 10 in‐control images and 5 out‐of‐control
images are generated. Then, we calculated its correspond-
ing CRPS values. Results are 38.9592, 38.9987, 38.9270,
39.0904, 38.9304, 38.9735, 38.7356, 38.9201, 38.8985,
38.8084, 40.1016, 39.9594, and 40.0724. Since the control
limits were found to be 38.63 and 39.31, all obtained CRPS
values can be placed on the CRPS chart, as displayed in
Figure 9. The chart immediately indicates an out‐of‐con-
trol signal at the 11th sample. This is the exact time point
where a different Gaussian noise is added.
6 | PERFORMANCE ANALYSIS AND
COMPARISON

The distribution of average run length is commonly used
to evaluate the performance of a control chart. Mean-
while, various summary measures such as the mean, the
standard deviation (SD), and several percentiles including
the 5th percentile, the 25th percentile, median, the 75th
percentile, and the 95th percentile are also studied here
to evaluate the chart performance. First we consider the
in‐control performance in Section 6.1, and then out‐of‐
control performance is analyzed in Section 6.2. Finally,
performance comparisons of the CRPS chart among the
parametric ELR chart and nonparametric SL and SC
charts are provided in Section 6.3.
6.1 | In‐control performance analysis

For in‐control case, we study the in‐control average run
length ARL0 distribution by simulation. Both reference
and test samples are simulated from the standard normal

distribution. Taking k = 100 andARL*
0 = 370, for example,

we choose different m to be 50, 100, 300, and 500. Control
limits for each given m with 1000 replications are
obtained in Table 3, with summary measures related to
ARL0 are shown in Table 4. For each m value, the median
is much smaller than the mean value, which indicates
that ARL0 is skewed to the right. For example, when
m = 50, the mean value of ARL0 is nearly 1.5 times larger
than the median. Moreover, as m becomes larger, the
mean value of ARL0 is getting closer to the desired value
370, and it remains about 370 when m is larger than
500. This indicates that the proposed CRPS chart has a
better in‐control performance for larger sample sizes.
6.2 | Out‐of‐control performance analysis

To study the out‐of‐control performance of the CRPS
chart, we study how the chart behaves when there are
shifts in location, scale, and both the location and scale.
We consider the following 2 cases: (1) the thin‐tailed sym-
metric normal distribution N(θ,σ) and (2) the heavy‐tailed
symmetric Laplace distribution Laplace(θ,σ). In both
cases, note that θ reflects the offset quantity of the loca-
tion parameter, and σ represents the degree of deviation

http://wileyonlinelibrary.com


TABLE 4 In‐control performance characteristics of ARL0 for a normal distribution with ARL*
0 ¼ 370

Simulated Values

m LCL UCL Mean SD 5th 25th Median 75th 95th

50 0.16313 0.35296 326.61 335.21 15.5 93 224.5 445.5 1037.5

100 0.17828 0.30938 341.80 328.81 18.5 100 237 504.5 1022

300 0.19373 0.26861 353.86 339.96 21 101 249.5 493 1037

500 0.19835 0.25648 364.75 366.85 20.5 96 249 497.5 1166.5
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for the scale parameter. We simulated different combina-
tions for θ and σ in each case.

In the first case, the out‐of‐control samples are gener-
ated from an N(θ,σ) distribution while in‐control samples
come from a standard normal distribution. We considered
25 combinations of (θ,σ) values via θ = 0, 0.1, 0.2, 0.3, 0.4

and σ= 1, 1.1, 1.2, 1.3, 1.4. Taken k= 100 andARL*
0 ¼ 370,

control limits are available by Table 3. Each simulation is
repeated with 1000 replications. Results for m = 50,
500 are given in Tables A1 and A2, respectively.
Figure 10 shows the profiles of out‐of‐control average
run length (ARL1) as θ/σ increases for a given number of
σ/θ values. Among them, Figure 10A,B gives the profiles
of ARL1 whenm = 50; and Figure 10C,D shows the results
form= 500. In general, the simulation results show that (i)
ARL1 distributions are right‐skewed, since the mean of
ARL1 is much larger than the median for all situations.
(ii) The CRPS chart is sensitive in detecting shifts in both
the location and scale, but more sensitive in the latter.
All simulated values decrease rapidly with only a small
shift in θ and/or σ. Taking m = 50 as an example, ARL1
FIGURE 10 Out‐of‐control performances for the normal distribution
decreases from 323.25 to 209.82 when θ increases from 0
to 0.1, while σ remains the same (σ = 1). However, it
decreases from 323.25 to 72.98 when σ increases from 1
to 1.1, while θ remains 0. (iii) The CRPS chart has a better
out‐of‐control performance as the sample sizem increases.
Similarly, taking θ = 0, 0.1 and σ = 1, for example, we see
that only a 10% rise on the location parameter θ brings a
35.1% reduction in ARL1 when m = 50, as well as a 67%
reduction for m = 500. This indicates that the CRPS chart
becomes more sensitive at reducing ARL1, when it applies
to large sample size.

In the second case, we repeat the above simulations
with data from the Laplace distribution. Similarly, in‐con-
trol samples are from Laplace(0, 1) and out‐of‐control
samples are from a Laplace(θ,σ) distribution. For simplic-

ity, we only take m = 500 and ARL*
0 ¼ 370 as an example,

and its corresponding LCL and UCL are found to be
0.1412 and 0.1979. Results are shown in Table A3. It indi-
cates that all the characteristics decrease sharply as case
(1) for the normal distribution. In addition, Figure 11
shows the falling speed of ARL1 with an increasing shift
[Colour figure can be viewed at wileyonlinelibrary.com]
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in θ and σ. It is shown that the general pattern for the
Laplace distribution remains the similar pattern as the
case of the normal distribution.
6.3 | Performance comparison

It is useful to compare both performances of the CRPS
chart with the existing (parametric and nonparametric)
charts. First, we compare the CRPS chart with the para-
metric ELR chart (Zhang et al9). Then, the CRPS chart
is compared with 2 competing nonparametric charts, the
SL chart (Mukerjee and Chakraborti13) and the SC chart
(Chowdhury et al15).

When comparing the CRPS chart with the ELR chart,
in‐control samples are generated from a standard normal
distribution using simulations. Various magnitudes of
shifts in the mean and variance are studied viz θ = 0,
0.25, 0.5, 0.75, 1.0, 2.0 and σ = 1, 1.2, 1.4, 1.6, 1.8, 2.0. The

ARL*
0 is taken as 370, and sample size is considered to

be 5. Results of the mean and standard variation of ARL
(SDRL) for both 2 charts are shown in Table A4.
Table A4 shows that the ELR chart performs better than
the CRPS chart for cases that shifts in both the mean and
variance are less than one, since ARL of the ELR chart
decreases faster than that of the CRPS chart. However, as
shift increases, the 2 charts have comparable out‐of‐
control performances and the CRPS charts begin to per-
form better than the ELR chart. For example, when the
mean parameter shifts from 0 to 0.25, the ARL decreases
sharply by 90.2% for ELR chart, and 71.1% for CRPS chart.
Similarly, for a 20% increase in the variance, there is about
91.8% reduction in ARL for ELR chart, compared with a
72.4% reduction for the CRPS chart. This indicates that
both the charts are more sensitive to shifts in the variance
than in the mean. Finally, when both the mean and vari-
ance shift to 1, the ARL is 3.39 for the ELR chart, compared
with 2.78 for the CRPS chart. As shift increases, the CRPS
chart trends to perform better than the ELR chart in terms
of both the mean and standard deviation of ARL.

We then compare the in‐control performances of the
CRPS chart with the SL and SC charts. For our
FIGURE 11 Out‐of‐control performances for the Laplace distribution
simulation study, all samples are from a standard nor-
mal distribution. The reference sample size m is set at
100 and 150, and sample size n is set at 5, 11, and 25.
The target ARL*

0 = 500. Table 5 shows the results of
the standard deviation (SDRL) and percentiles of ARL0
for all the 3 charts. It is shown that the CRPS chart
has the smallest SDRL value, indicating that the in‐con-
trol performance of the CRPS chart is more stable com-
pared with the SL and SC charts. Next, we study the
out‐of‐control performances of the 3 charts. Both nor-
mal distribution and Laplace distribution are considered
here. We only present m = 100 and n = 5. Control
limits of the CRPS chart are obtained as 0.0828 and
0.7338 for the normal distribution, 0.0461 and 0.6785
for the Laplace distribution. Different shifts in location
and scale are studied viz. θ = 0, 0.25, 0.5, 1.0 and
σ = 1, 1.25, 1.5, 2.0. Results are displayed in Tables A5
and A6, respectively, for the normal distribution and the
Laplace distribution. Similar conclusions can be reached
for the 2 different distributions, and we take the normal
distribution as an example. As shift increases, all perfor-
mance characteristics decrease sharply. However, those
characteristics' decreasing speed varies for a same shift.
For example, when there is a 25% increase in the loca-
tion parameter (the scale parameter remains 1), ARL1
mean dropped by 49.8% for the SL chart, 50.2% for the
SC chart, and 56.3% for the CRPS chart. It indicates
the CRPS chart has relatively better detection abilities
than the SL and SC charts. In addition, a 25% increase
in the scale parameter (the location parameter remains
0) brings a 79.9% reduction of ARL1 for the SL chart,
compared with 85.4% for the SC chart, and 79.3% for
the CRPS chart. It shows that all the 3 charts detect a
shift in the scale faster than that in the location. On
the other hand, for all considered situations, the SDRL
value of the CRPS chart is the smallest compared with
the SL and SC charts. It indicates that the out‐of‐control
performance of the CRPS chart is much more stable.

In summary, Tables A5 and A6 show that all of the SL,
SC, and CRPS charts are reasonably effective for monitor-
ing shifts in the location and scale, regardless the
[Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 5 In‐control performance comparisons among the SL, SC and CRPS charts with ARL*
0 = 500

Sample size

m n SL Chart SC Chart CRPS Chart

100 5 690.00 (21,108,274,606,1710) 788.4 (15,95,253,604,1831) 461.88 (30,140,329,694,1433)

100 11 703.58 (18,99,281,611,1742) 886.1 (12,74,210,547,1900) 480.92 (29,157,279,633,1607)

100 25 703.81 (13,89,255,648,1837) 743.8 (12,78,243,621,1899) 450.68 (28,144,335,685,1390)

150 5 692.79 (18,113,287,632,1633) 723.9 (18,107,277,629,1737) 451.60 (31,142,305,700,1175)

150 11 627.38 (20,113,291,659,1675) 821.2 (15,87,237,575,1780) 473.26 (30,161,291,687,1595)

150 25 660.91 (16,95,272,645,1712) 688.5 (15,89,254,622,1780) 443.73 (31,156,349,718,1554)

The first number of each cell shows the SDRL, and parentheses( ) shows the 5th, 25th, 50th, 75th, and 95th of ARL0.
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underlying distribution. The CRPS chart generally outper-
forms the SL and SC charts except for a small portion of
the cases. When the shift is very small, the CRPS chart
has no obvious advantages in the decreasing rate of
ARL, but its stability is much better than the other 2
charts. As shift increases, the advantages of the CRPS
chart are much more obvious in terms of both the
decreasing rate of ARL and the stability. It is worth men-
tioning that when the sample size becomes larger, Section
6.2 illustrates that the CRPS chart also work well or even
better.
7 | CONCLUSION

With the increasing complexity of industrial production
system, large amounts of generated data have put forward
higher challenges for process monitoring. Since the
related literature on simultaneously monitoring the loca-
tion and scale under data‐rich environment is quite lim-
ited, this paper proposes a new control chart called the
CRPS chart to fit in with the data‐rich environment. The
charting statistic is constructed based on the CRPS
method, and control limits are determined by approximat-
ing the CRPS distribution via a gamma distribution. Both
in‐control and out‐of‐control performances are analyzed
via the mean, the standard deviation, and some percen-
tiles of the average run length distribution. In addition,
both in‐control and out‐of‐control performances of the
CRPS chart are compared with the parametric ELR chart
and the nonparametric SL and SC charts. Our results
show that the proposed CRPS chart generally outperforms
the competing distribution‐free SL and SC charts.

The proposed CRPS chart has several clear advan-
tages: (1) The CRPS chart can simultaneously monitor
shifts in the location and/or the scale under data‐rich
environment. (2) There are no requirements based on
the data distribution, both normal and nonnormal cases
are equally applicable. (3) The CRPS chart is sensitive
to both small and large shifts and can be used effectively
to detect shifts when the out‐of‐control process follows a
different distribution from the in‐control process.
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APPENDIX A
e normal distribution with ARL*
0 = 370 and m = 50

25th Median 75th 95th

92 219 440 1051

58 150 287.5 642

19.5 47.5 93.5 208

5 13 26 56

2 4 9 18

21 50 98 216.5

16 36 69 138.5

5 12 25 55
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TABLE A2 Out‐of‐control performance characteristics of ARL1 for the normal distribution with ARL*
0 = 370 and m = 500

θ σ Mean SD 5th 25th Median 75th 95th

0 1 364.75 366.85 20.5 96 249 497.5 1166.5

0.1 1 120.28 120.72 8 35.5 84 164.5 382.5

0.2 1 10.42 10.35 1 3 7 14 30

0.3 1 1.84 1.25 1 1 1 2 4

0.4 1 1.05 0.21 1 1 1 1 1

0 1.1 4.32 3.89 1 2 3 6 13

0.1 1.1 2.84 2.28 1 1 2 4 7

0.2 1.1 1.51 0.84 1 1 1 2 3

0.3 1.1 1.07 0.26 1 1 1 1 2

0.4 1.1 1.00 0.32 1 1 1 1 1

0 1.2 1.10 0.33 1 1 1 1 2

0.1 1.2 1.09 0.32 1 1 1 1 2

0.2 1.2 1.02 0.141 1 1 1 1 1

0.3 1.2 1 0 1 1 1 1 1

0.4 1.2 1 0 1 1 1 1 1

0 1.3 1 0.04 1 1 1 1 1

0.1 1.3 1 0.03 1 1 1 1 1

0.2 1.3 1 0 1 1 1 1 1

0.3 1.3 1 0 1 1 1 1 1

0.4 1.3 1 0 1 1 1 1 1

TABLE A1 (Continued)

θ σ Mean SD 5th 25th Median 75th 95th

0.3 1.1 8.41 8.16 1 3 6 11 24

0.4 1.1 3.96 3.44 1 1 3 5 11

0 1.2 13.64 13.53 1 4 9.5 19 43

0.1 1.2 10.99 10.88 1 3 8 15 33

0.2 1.2 6.84 6.34 1 2 5 10 18

0.3 1.2 3.97 3.41 1 1 3 5 11

0.4 1.2 2.53 1.87 1 1 2 3 6

0 1.3 4.51 3.81 1 2 3 6 12

0.1 1.3 4.24 3.89 1 1.5 3 5 12

0.2 1.3 3.37 2.82 1 1 3 4 9

0.3 1.3 2.39 1.78 1 1 2 3 6

0.4 1.3 1.78 1.13 1 1 1 2 4

0 1.4 2.34 1.80 1 1 2 3 6

0.1 1.4 2.21 1.62 1 1 2 3 6

0.2 1.4 1.99 1.36 1 1 2 3 5

0.3 1.4 1.63 1.02 1 1 1 2 4

0.4 1.4 1.38 0.72 1 1 1 2 3
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TABLE A3 Out‐of‐control performance characteristics of ARL1 for the Laplace distribution with ARL*0 = 370 and m = 500

θ σ Mean SD 5th 25th Median 75th 95th

0 1 350.14 336.96 19 111 256 474.5 1059.5

0.1 1 86.59 85.13 5 24 59 125 256.5

0.2 1 4.222 3.56 1 2 3 6 12

0.3 1 1.16 0.44 1 1 1 1 2

0.4 1 1.0 0.04 1 1 1 1 1

0 1.1 9.1 8.49 1 3 7 12 26

0.1 1.1 4.41 3.75 1 2 3 6 12

0.2 1.1 1.46 0.77 1 1 1 2 3

0.3 1.1 1.02 0.14 1 1 1 1 1

0.4 1.1 1 0 1 1 1 1 1

0 1.2 1.60 0.93 1 1 1 2 4

0.1 1.2 1.34 0.70 1 1 1 1 3

0.2 1.2 1.07 0.26 1 1 1 1 2

0.3 1.2 1 0.03 1 1 1 1 1

0.4 1.2 1 0 1 1 1 1 1

0 1.3 1.05 0.23 1 1 1 1 1

0.1 1.3 1.03 0.16 1 1 1 1 1

0.2 1.3 1 0.03 1 1 1 1 1

0.3 1.3 1 0 1 1 1 1 1

0.4 1.3 1 0 1 1 1 1 1

0 1.4 1 0.07 1 1 1 1 1

0.1 1.4 1 0 1 1 1 1 1

0.2 1.4 1 0 1 1 1 1 1

0.3 1.4 1 0 1 1 1 1 1

0.4 1.4 1 0 1 1 1 1 1

TABLE A2 (Continued)

θ σ Mean SD 5th 25th Median 75th 95th

0 1.4 1 0 1 1 1 1 1

0.1 1.4 1 0 1 1 1 1 1

0.2 1.4 1 0 1 1 1 1 1

0.3 1.4 1 0 1 1 1 1 1

0.4 1.4 1 0 1 1 1 1 1
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TABLE A4 Out‐of‐control performance comparisons between the ELR chart and CRPS chart for a normal distribution with ARL*
0 = 370

Shifts ELR chart CRPS chart

Mean Variance ARL SDRL ARL SDRL

0 1 370 369 373.4 371.2

1.2 30.3 26.9 103.2 114.4

1.4 8.58 6.17 27.4 30.4

1.6 4.62 2.9 12.1 12.2

1.8 3.2 1.87 5.18 4.72

2.0 2.46 1.36 3.82 3.78

0.25 1 36.5 31.6 107.84 110.36

1.2 16.2 12.9 45.29 46.68

1.4 7.18 4.88 20.22 22.16

1.6 4.28 2.61 10.12 10.87

1.8 3.06 1.78 4.74 3.75

2.0 2.40 1.31 3.12 2.53

0.5 1 9.41 5.61 20.84 17.56

1.2 7.46 4.77 13.84 11.71

1.4 5.12 3.12 6.28 5.63

1.6 3.66 2.13 5.34 4.23

1.8 2.78 1.56 3.96 3.29

2.0 2.26 1.23 2.52 2.03

0.75 1 5.01 2.27 6.66 6.02

1.2 4.51 2.34 5.56 5.47

1.4 3.69 2 3.82 3.12

1.6 2.97 1.62 3.66 2.90

1.8 2.46 1.32 3.38 2.57

2.0 2.08 1.10 1.94 1.28

1 1 3.39 1.35 2.78 1.91

1.2 3.18 1.47 2.34 1.63

1.4 2.84 1.39 2.28 1.61

1.6 2.46 1.26 2.02 1.61

1.8 2.13 1.09 2.10 1.43

2.0 1.90 0.97 1.68 1.12

2 1 1.50 0.54 1.09 0.32

1.2 1.46 0.56 1.07 0.26

1.4 1.42 0.56 1.06 0.24

1.6 1.39 0.56 1.05 0.22

1.8 1.35 0.54 1.03 0.17

2.0 1.31 0.52 1.01 0.1

Scenarios where the CRPS chart is superior are highlighted in bold.
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TABLE A5 Out‐of‐control performance comparisons among the SL, SC, and CRPS charts for the normal distribution with ARL*
0 = 500

Shifts

Location Scale SL Chart SC Chart CRPS Chart

0 1 513.0(738.9)18,106,276,635,1792 509.4(788.4)15,95,253,604,1831 490.73(461.88)30,140,329,694,1433

0.25 1 257.6(410.3)9,47,127,303,917 253.6(456.4)8,43,116,285,935 212.47(188.95)14,66,149,298,581

0.5 1 66.5(98.6)3,13,35,80,237 68.6(117.2)3,14,34,80,239 34.97(35.26)1.5,10,26,50,104

1 1 7.7(8.8)1,2,5,10,24 7.7(9.4)1,2,5,10,24 2.7(3.1)1,1,1,4,10

0 1.25 102.9(124.1)5,25,62,133,337 74.5(92.2)3,18,45,96,243 100.6(107.2)2,24,71,128,370

0.25 1.25 70.6(92.3)3,17,41,89,232 54.9(70.8)3,13,32,69,183 51.1(49.3)2,15,34,74,151

0.5 1.25 30.9(38.8)2,8,18,40,101 26.2(32.4)1,7,15,34,86 15.1(20.2)1,5,10,19,38

1 1.25 6.7(7.0)1,2,4,9,20 6.2(6.6)1,2,4,8,19 2.1(2.5)1,1,1,3,8

0 1.5 37.5(42.2)2,10,24,50,118 24.3(27.1)2,6,16,32,76 26.1(30.3)1,6,18,33,102

0.25 1.5 29.9(34.2)2,8,19,39,91 20.4(22.7)1,6,13,27,64 18.9(19.8)1,4,12,29,63

0.5 1.5 17.8(19.7)1,5,12,24,55 13.4(15.1)1,4,9,17,42 8.6(8.9)1,2,6,12,24

1 1.5 6.1(6.1)1,2,4,8,18 5.3(5.3)1,2,4,7,15 2.0(2.0)1,1,1,3,6

0 2 11.5(11.9)1,3,8,15,35 7.1(6.9)1,2,5,10,21 3.7(3.8)1,1,3,6,11

0.25 2 10.8(10.9)1,3,7,15,32 6.8(6.6)1,2,5,9,20 3.2(3.5)1,0.5,2,5,9.5

0.5 2 8.6(8.5)1,3,6,11,25 5.8(5.7)1,2,4,8,17 2.7(3.0)1,1,1.5,4,9

1 2 4.8(4.5)1,2,3,6,14 3.8(3.4)1,1,3,5,11 1.4(1.8)1,1,1,2,5

The first number of each cell shows the mean of ARL1, parentheses( ) indicates the SDRL value, and the last five numbers of each cell show the 5th, 25th, 50th,
75th, and 95th of ARL1; scenarios where the CRPS chart is superior are highlighted in bold.

TABLE A6 Out‐of‐control performance comparisons between the SL, SC, and CRPS charts for the Laplace distribution with ARL*
0 = 500

Shifts

Location Scale SL Chart SC Chart CRPS Chart

0 1 508.3.2(728.1)18,106,277,626,1742 509.6(817.7)15,93,251,589,1909 486.29(456.67)27,153,349,686,1645

0.25 1 366.9(589.4)11,64,177,440,1318 381.6(758.8)11,63,175,429,1351 225.4(198.67)7.5,71,167,337,629

0.5 1 159.2(286.2)5,25,68,174,608 191.0(482.9)5,25,73,191,722 30.4(38.9)2.5,9,17,35.5,99

1 1 19.9(37.3)1,4,9,21,73 26.5(86.1)1,4,11,27,95 2.4(1.82)1,1,2,3,7

0 1.25 153.2(198.4)6,35,88,197,512 124.5(173.2)5,27,68,150,437 90.2(88.94)7,22,60,131,291

0.25 1.25 121.5(161.6)5,26,68,153,422 100.6(145.6)4,21,54,122,345 41.78(46.3)4,11,27,52,134

0.5 1.25 66.19(103.7)3,13,35,78,227 61.7(101.9)3,12,31,73,215 17.6(17.5)1,5,12,24,51

1 1.25 14.0(19.6)1,3,8,17,47 14.6(22.2)1,3,8,17,50 2.1(1.6)1,1,1.5,2.5,5.5

0 1.5 66.8(80.5)4,17,41,86,218 47.8(59.7)2,12,29,61,156 26.8(21.8)4,12,20,37,79

0.25 1.5 55.2(65.6)3,14,33,72,184 42.1(52.4)2,10,25,53,139 22.3(24.4)2,7,16,30,66

0.5 1.5 36.8(46.7)2,8,22,46,124 29.6(39.1)2,7,17,37,101 9.4(7.9)1,3,7,14,24

1 1.5 11.1(14.2)1,3,7,14,36 10.7(15.2)1,3,6,13,34 2.3(1.9)1,1,2,3,6

0 2 22.9(25.3)2,6,15,31,71 14.5(16.2)1,4,9,19,45 5.7(5.1)1,2,5,7,17

0.25 2 21.1(23.5)1,6,14,28,66 13.6(15.1)1,4,9,18,43 5.2(4.6)1,2,4,7,14

0.5 2 16.6(18.1)1,5,11,22,51 11.3(12.4)1,3,7,15,35 4.6(4.1)1,2,3,7,15

1 2 7.9(8.7)1,2,5,10,25 6.3(6.7)1,2,4,8,19 1.9(1.2)1,1,1,2,4.5

The first number of each cell shows the mean of ARL1, parentheses( ) indicates the SDRL value, and the last five numbers of each cell show the 5th, 25th, 50th,
75th, and 95th of ARL1; scenarios where the CRPS chart is superior are highlighted in bold.
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