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Statistics, Statisticians, and the Internet
of Things

John M. Jordan and Dennis K. J. Lin

Abstract Within the overall rubric of big data, one emerging subset holds particular
promise, peril, and attraction.Machine-generated traffic from sensors, data logs, and
the like, transmitted using Internet practices and principles, is being referred to as
the “Internet of Things” (IoT). Understanding, handing, and analyzing this type of
data will stretch existing tools and techniques, thus providing a proving ground for
other disciplines to adopt and adapt new methods and concepts. In particular, new
tools will be needed to analyze data in motion rather than data at rest, and there
are consequences of having constant or near-constant readings from the ground-
truth phenomenon as opposed to numbers at a remove from their origin. Both
machine learning and traditional statistical approaches will coevolve rapidly given
the economic forces, national security implications, and wide public benefit of this
new area of investigation. At the same time, data practitioners will be exposed to the
possibility of privacy breaches, accidents causing bodily harm, and other concrete
consequences of getting things wrong in theory and/or practice. We contend that the
physical instantiation of data practice in the IoT means that statisticians and other
practitioners may well be seeing the origins of a post-big data era insofar as the
traditional abstractions of numbers from ground truth are attenuated and in some
cases erased entirely.
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1.1 Introduction

Even though it lacks a precise definition, the notion of an “Internet of Things” refers
generally to networks of sensors, actuators, andmachines that communicate over the
Internet and related networks. (Some years ago, the number of inanimate objects
on the Internet surpassed the number of human beings with connections.) In this
chapter, we will first elaborate on the components of the IoT and discuss its data
components. The place of statistics in this new world follows, and then we raise
some real-world issues such as skills shortages, privacy protection, and so on, before
concluding.

1.1.1 The Internet of Things

The notion of an Internet of Things is at once both old and new. From the earliest
days of the World Wide Web, devices (often cameras) were connected so people
could see the view out a window, traffic or ski conditions, a coffee pot at the
University of Cambridge, or a Coke machine at Carnegie Mellon University. The
more recent excitement dates to 2010 or thereabouts and builds on a number of
developments: many new Internet Protocol (IP) addresses have become available,
the prices of sensors are dropping, new data and data-processing models are
emerging to handle the scale of billions of device “chirps,” and wireless bandwidth
is getting more and more available.

1.1.2 What Is Big Data in an Internet of Things?

Why do sensors and connected devices matter for the study of statistics? If one
considers the definition of a robot—an electromechanical device that can digitally
sense and think, then act upon the physical environment—those same actions
characterize large-scale Internet of Things systems: they are essentially meta-robots.
The GE Industrial Internet model discussed below includes sensors on all manner of
industrial infrastructure, a data analytics platform, and humans to make presumably
better decisions based on the massive numbers from the first domain crunched by
algorithms and computational resources in the second. Thus, the Internet of Things
becomes, in some of its incarnations, an offshoot of statistical process control, six-
sigma, and other established industrial methodologies.

Unlike those processes that operated inside industrial facilities, however, the
Internet of Things includes sensors attached to or otherwise monitoring individual
people in public. Google Glass, a head-mounted smartphone, generated significant
controversy before it was pulled from distribution in 2015. This reaction was a
noteworthy step in the adoption of Internet of Things systems: both technical
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details and cultural norms need to be worked out. Motion sensors, cameras, facial
recognition, and voice recording and synthesis are very different activities on a
factory floor compared to a city sidewalk.

Thus, the Internet of Things is both an extension of existing practices and the
initial stage in the analysis of an ever-more instrumented public sphere. The IoT
(1) generates substantially large bodies of data (2) in incompatible formats (3)
sometimes attached to personal identity. Statisticians now need to think about new
physical-world safety issues and privacy implications in addition to generating new
kinds of quantitative tools that can scale to billions of data points per hour, across
hundreds of competing platforms and conventions. Themagnitude of the task cannot
be overstated.

1.1.3 Building Blocks1

The current sensor landscape can be understood more clearly by contrasting it to
the old state of affairs. Most important, sensor networks mimicked analog com-
munications: radios couldn’t display still pictures (or broadcast them), turntables
couldn’t record video, and newspapers could not facilitate two- or multi-way dialog
in real time. For centuries, sensors in increasing precision and sophistication were
invented to augment human senses: thermometers, telescopes, microscopes, ear
trumpets, hearing aids, etc. With the nineteenth-century advances in electro-optics
and electromechanical devices, new sensors could be developed to extend the human
senses into different parts of the spectrum (including infrared, radio frequencies,
measurement of vibration, underwater acoustics, etc.).

Where they were available, electromechanical sensors and later sensor net-
works

• Stood alone
• Measured one and only one thing
• Cost a lot to develop and implement
• Had inflexible architectures: they did not adapt well to changing circumstances

Sensors traditionally stood alone because networking them together was expen-
sive and difficult. Given the lack of shared technical standards, in order to build
a network of offshore data buoys for example, the interconnection techniques
and protocols would be uniquely engineered to a particular domain, in this case,
saltwater, heavy waves, known portions of the magnetic spectrum, and so on.
Another agency seeking to connect sensors of a different sort (such as surveillance
cameras) would have to start from scratch, as would a third agency monitoring road
traffic.

1This section relies heavily on John M. Jordan, Information, Technology, and Innovation
(Hoboken: John Wiley, 2012), ch. 23.
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In part because of their mechanical componentry, sensors rarely measured
across multiple yardsticks. Oven thermometers measured only oven temperature,
and displayed the information locally, if at all (given that perhaps a majority of
sensor traffic informs systems rather than persons, the oven temperature might only
drive the thermostat rather than a human-readable display). Electric meters only
counted watt-hours in aggregate. In contrast, today a consumer Global Positioning
Satellite (GPS) unit or smartphone will tell location, altitude, compass heading, and
temperature, along with providing weather radio.

Electromechanical sensors were not usually mass produced, with the exception
of common items such as thermometers. Because supply and demand were both
limited, particularly for specialized designs, the combination of monopoly supply
and small order quantities kept prices high.

1.1.4 Ubiquity

Changes in each of these facets combine to help create today’s emerging sensor
networks, which are growing in scope and capability every year. The many examples
of sensor capability accessible to (or surveilling) the everyday citizen illustrate the
limits of the former regime: today there are more sensors recording more data to
be accessed by more end points. Furthermore, the traffic increasingly originates and
transits exclusively in the digital domain.

• Computers, which sense their own temperature, location, user patterns, number
of printer pages generated, etc.

• Thermostats, which are networked within buildings and now remotely controlled
and readable.

• Telephones, the wireless variety of which can be understood as beacons, bar-
code scanners, pattern matchers (the Shazam application names songs from a
brief audio sample), and network nodes.

• Motor and other industrial controllers: many cars no longer have mechanical
throttle linkages, so people step on a sensor every day without thinking as they
drive by wire. Automated tire-pressure monitoring is also standard on many new
cars. Airbags rely on a sophisticated system of accelerometers and high-speed
actuators to deploy the proper reaction for collision involving a small child versus
a lamp strapped into the front passenger seat.

• Vehicles: the OBD II diagnostics module, the toll pass, satellite devices on heavy
trucks, and theft recovery services such as Lojack, not to mention the inevitable
mobile phone, make vehicle tracking both powerful and relatively painless.

• Surveillance cameras (of which there are over 10,000 in Chicago alone, and more
than 500,000 in London).2

2Brian Palmer, “Big Apple is Watching You,” Slate, May 3, 2010, http://www.slate.com/id/
2252729/, accessed 29 March 2018.

http://www.slate.com/id/2252729
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• Most hotel door handles and many minibars are instrumented and generate
electronic records of people’s and vodka bottles’ comings and goings.

• Sensors, whether embedded in animals (RFID chips in both household pets and
race horses) or gardens (the EasyBloom plant moisture sensor connects to a
computer via USB and costs only $50), or affixed to pharmaceutical packaging.

Note the migration from heavily capital-intensive or national-security applica-
tions down-market. A company called Vitality has developed a pill-bottle moni-
toring system: if the cap is not removed when medicine is due, an audible alert is
triggered, or a text message could be sent.3

A relatively innovative industrial deployment of vibration sensors illustrates the
state of the traditional field. In 2006, BP instrumented an oil tanker with “motes,”
which integrated a processor, solid-state memory, a radio, and an input/output board
on a single 2” square chip. Each mote could receive vibration data from up to ten
accelerometers, which were mounted on pumps and motors in the ship’s engine
room. The goal was to determine if vibration data could predict mechanical failure,
thus turning estimates—a motor teardown every 2000 h, to take a hypothetical
example—into concrete evidence of an impending need for service.

The motes had a decided advantage over traditional sensor deployments in that
they operated over wireless spectrum. While this introduced engineering challenges
arising from the steel environment as well as the need for batteries and associated
issues (such as lithium’s being a hazardous material), the motes and their associated
sensors were much more flexible and cost-effective to implement compared to hard-
wired solutions. The motes also communicate with each other in a mesh topology:
each mote looks for nearby motes, which then serve as repeaters en route to the
data’s ultimate destination. Mesh networks are usually dynamic: if a mote fails,
signal is routed to other nearby devices, making the system fault tolerant in a
harsh environment. Finally, the motes could perform signal processing on the chip,
reducing the volume of data that had to be transmitted to the computer where
analysis and predictive modeling was conducted. This blurring of the lines between
sensing, processing, and networking elements is occurring in many other domains
as well.4

All told, there are dozens of billions of items that can connect and combine in
new ways. The Internet has become a common ground for many of these devices,
enabling multiple sensor feeds—traffic camera, temperature, weather map, social
media reports, for example—to combine into more useful, and usable, applications,
hence the intuitive appeal of “the Internet of Things.” As we saw earlier, network
effects and positive feedback loops mean that considerable momentum can develop
as more and more instances converge on shared standards. While we will not

3Ben Coxworth, “Ordinary pill bottle has clever electronic cap,” New Atlas, May 5, 2017, https://
newatlas.com/pillsy-smart-pill-bottle/49393/, accessed 29 March 2018.
4Tom Kevan, “Shipboard Machine Monitoring for Predictive Maintenance,” Sensors Mag, Febru-
ary 1, 2006. http://www.sensorsmag.com/sensors-mag/shipboard-machine-monitoring-predictive-
maintenance-715?print=1

http://www.unwiredview.com/2009/10/08/pill-bottle-caps-to-call-you-via-att-and-remind-you-to-take-your-medicine
http://www.sensorsmag.com/sensors-mag/shipboard-machine-monitoring-predictive-maintenance-715?print=1
http://www.sensorsmag.com/sensors-mag/shipboard-machine-monitoring-predictive-maintenance-715?print=1
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discuss them in detail here, it can be helpful to think of three categories of sensor
interaction:

• Sensor to people: the thermostat at the ski house tells the occupants that the
furnace is broken the day before they arrive, or a dashboard light alerting the
driver that the tire pressure on their car is low.

• Sensor to sensor: the rain sensor in the automobile windshield alerts the
antilock brakes of wet road conditions and the need for different traction-control
algorithms.

• Sensor to computer/aggregator: dozens of cell phones on a freeway can serve
as beacons for a traffic-notification site, at much lower cost than helicopters or
“smart highways.”

An “Internet of Things” is an attractive phrase that at once both conveys
expansive possibility and glosses over substantial technical challenges. Given 20C
years of experience with the World Wide Web, people have long experience
with hyperlinks, reliable inter-network connections, search engines to navigate
documents, and Wi-Fi access everywhere fromMcDonalds to over the mid-Atlantic
in flight. None of these essential pieces of scaffolding has an analog in the
Internet of Things, however: garage-door openers and moisture sensors aren’t able
to read; naming, numbering, and navigation conventions do not yet exist; low-
power networking standards are still unsettled; and radio-frequency issues remain
problematic. In short, as we will see, “the Internet” may not be the best metaphor for
the coming stage of device-to-device communications, whatever its potential utility.

Given that “the Internet” as most people experience it is global, searchable, and
anchored by content or, increasingly, social connections, the “Internet of Things”
will in many ways be precisely the opposite. Having smartphone access to my
house’s thermostat is a private transaction, highly localized and preferably NOT
searchable by anyone else. While sensors will generate volumes of data that are
impossible for most humans to comprehend, that data is not content of the sort that
Google indexed as the foundation of its advertising-driven business. Thus, while an
“Internet of Things” may feel like a transition from a known world to a new one,
the actual benefits of networked devices separate from people will probably be more
foreign than being able to say “I can connect to my appliances remotely.”

1.1.5 Consumer Applications

The notion of networked sensors and actuators can usefully be subdivided into
industrial, military/security, or business-to-business versus consumer categories. Let
us consider the latter first. Using the smartphone or a web browser, it is already
possible to remotely control and/or monitor a number of household items:

• Slow cooker
• Garage-door opener
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• Blood-pressure cuff
• Exercise tracker (by mileage, heart rate, elevation gain, etc.)
• Bathroom scale
• Thermostat
• Home security system
• Smoke detector
• Television
• Refrigerator

These devices fall into some readily identifiable categories: personal health
and fitness, household security and operations, and entertainment. While the data
logging of body weight, blood pressure, and caloric expenditures would seem to be
highly relevant to overall physical wellness, few physicians, personal trainers, or
health insurance companies have built business processes to manage the collection,
security, or analysis of these measurements. Privacy, liability, information overload,
and, perhaps most centrally, outcome-predicting algorithms have yet to be devel-
oped or codified. If I send a signal to my physician indicating a physical abnormality,
she could bear legal liability if her practice does not act on the signal and I
subsequently suffer a medical event that could have been predicted or prevented.

People are gradually becoming more aware of the digital “bread crumbs” our
devices leave behind. Progressive Insurance’s Snapshot campaign has had good
response to a sensor that tracks driving behavior as the basis for rate-setting:
drivers who drive frequently, or brake especially hard, or drive a lot at night,
or whatever could be judged worse risks and be charged higher rates. Daytime
or infrequent drivers, those with a light pedal, or people who religiously buckle
seat belts might get better rates. This example, however, illustrates some of the
drawbacks of networked sensors: few sensors can account for all potentially causal
factors. Snapshot doesn’t know how many people are in the car (a major accident
factor for teenage drivers), if the radio is playing, if the driver is texting, or when
alcohol might be impairing the driver’s judgment. Geographic factors are delicate:
some intersections have high rates of fraudulent claims, but the history of racial
redlining is also still a sensitive topic, so data that might be sufficiently predictive
(postal codes traversed) might not be used out of fear it could be abused.

The “smart car” applications excepted, most of the personal Internet of Things
use cases are to date essentially remote controls or intuitively useful data collection
plays. One notable exception lies in pattern-recognition engines that are grouped
under the heading of “augmented reality.” Whether on a smartphone/tablet or
through special headsets such as Google Glass, a person can see both the physical
world and an information overlay. This could be a real-time translation of a road sign
in a foreign country, a direction-finding aid, or a tourist application: look through
the device at the Eiffel Tower and see how tall it is, when it was built, how long
the queue is to go to the top, or any other information that could be attached to the
structure, attraction, or venue.
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While there is value to the consumer in such innovations, these connected devices
will not drive the data volumes, expenditures, or changes in everyday life that will
emerge from industrial, military, civic, and business implementations.

1.1.6 The Internets of [Infrastructure] Things

Because so few of us see behind the scenes to understand how public water mains,
jet engines, industrial gases, or even nuclear deterrence work, there is less intuitive
ground to be captured by the people working on large-scale sensor networking.
Yet these are the kinds of situations where networked instrumentation will find its
broadest application, so it is important to dig into these domains.

In many cases, sensors are in place to make people (or automated systems) aware
of exceptions: is the ranch gate open or closed? Is there a fire, or just an overheated
wok? Is the pipeline leaking? Has anyone climbed the fence and entered a secure
area? In many cases, a sensor could be in place for years and never note a condition
that requires action. As the prices of sensors and their deployment drop, however,
more and more of them can be deployed in this manner, if the risks to be detected
are high enough. Thus, one of the big questions in security—in Bruce Schneier’s
insight, not “Does the security measure work?” but “Are the gains in security worth
the costs?”—gets difficult to answer: the costs of IP-based sensor networks are
dropping rapidly, making cost-benefit-risk calculations a matter of moving targets.

In some ways, the Internet of Things business-to-business vision is a replay
of the RFID wave of the mid-aughts. Late in 2003, Walmart mandated that all
suppliers would use radio-frequency tags on their incoming pallets (and sometimes
cases) beginningwith the top 100 suppliers, heavyweight consumer packaged goods
companies like Unilever, Procter & Gamble, Gillette, Nabisco, and Johnson &
Johnson. The payback to Walmart was obvious: supply chain transparency. Rather
than manually counting pallets in a warehouse or on a truck, radio-powered scanners
could quickly determine inventory levels without workers having to get line-of-sight
reads on every bar code. While the 2008 recession contributed to the scaled-back
expectations, so too did two powerful forces: business logic and physics.

To take the latter first, RFID turned out to be substantially easier in labs than in
warehouses. RF coverage was rarely strong and uniform, particularly in retrofitted
facilities. Electromagnetic noise—in the form of everything from microwave ovens
to portable phones to forklift-guidance systems—made reader accuracy an issue.
Warehouses involve lots of metal surfaces, some large and flat (bay doors and
ramps), others heavy and in motion (forklifts and carts): all of these reflect radio
signals, often problematically. Finally, the actual product being tagged changes
radio performance: aluminum cans of soda, plastic bottles of water, and cases
of tissue paper each introduce different performance effects. Given the speed of
assembly lines and warehouse operations, any slowdowns or errors introduced by a
new tracking system could be a showstopper.
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The business logic issue played out away from the shop floor. Retail and
consumer packaged goods profit margins can be very thin, and the cost of the
RFID tagging systems for manufacturers that had negotiated challenging pricing
schedules with Walmart was protested far and wide. The business case for total
supply chain transparency was stronger for the end seller than for the suppliers,
manufacturers, and truckers required to implement it for Walmart’s benefit. Given
that the systems delivered little value to the companies implementing them, and
given that the technology didn’t work as advertised, the quiet recalibration of the
project was inevitable.

RFID is still around. It is a great solution to fraud detection, and everything from
sports memorabilia to dogs to ski lift tickets can be easily tested for authenticity.
These are high-value items, some of them scanned no more than once or twice in a
lifetime rather than thousands of times per hour, as on an assembly line. Database
performance, industry-wide naming and sharing protocols, and multiparty security
practices are much less of an issue.

While it’s useful to recall the wave of hype for RFID circa 2005, the Internet
of Things will be many things. The sensors, to take only one example, will be
incredibly varied, as a rapidly growing online repository makes clear (see http://
devices.wolfram.com/).5 Laboratory instruments are shifting to shared networking
protocols rather than proprietary ones. This means it’s quicker to set up or
reconfigure an experimental process, not that the lab tech can see the viscometer
or Geiger counter from her smart phone or that the lab will “put the device on the
Internet” like a webcam.

Every one of the billions of smartphones on the planet is regularly charged by
its human operator, carries a powerful suite of sensors—accelerometer, temperature
sensor, still and video cameras/bar-code readers, microphone, GPS receiver—and
operates on multiple radio frequencies: Bluetooth, several cellular, andWi-Fi. There
are ample possibilities for crowdsourcing news coverage, fugitive hunting, global
climate research (already, amateur birders help show differences in species’ habitat
choices), and more using this one platform.

Going forward, we will see more instrumentation of infrastructure, whether
bridges, the power grid, water mains, dams, railroad tracks, or even sidewalks.
While states and other authorities will gain visibility into security threats, potential
outages, maintenance requirements, or usage patterns, it’s already becoming clear
that there will be multiple paths by which to come to the same insight. The state of
Oregon was trying to enhance the experience of bicyclists, particularly commuters.
While traffic counters for cars are well established, bicycle data is harder to gather.
Rather than instrumenting bike paths and roadways, or paying a third party to do
so, Oregon bought aggregated user data from Strava, a fitness-tracking smartphone
app. While not every rider, particularly commuters, tracks his mileage, enough do
that the bike-lane planners could see cyclist speeds and traffic volumes by time of
day, identify choke points, and map previously untracked behaviors.

5Wolfram Connected Devices Project, (http://devices.wolfram.com/), accessed 29 March 2018.

http://devices.wolfram.com/
http://devices.wolfram.com/
http://devices.wolfram.com/
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Strava was careful to anonymize user data, and in this instance, cyclists were
the beneficiaries. Furthermore, cyclists compete on Strava and have joined with the
expectation that their accomplishments can show up on leader boards. In many other
scenarios, however, the Internet of Things’ ability to “map previously untracked
behaviors” will be problematic, for reasons we will discuss later. To provide merely
one example, when homes are equipped with so-called smart electrical meters, it
turns out that individual appliances and devices have unique “fingerprints” such that
outside analysis can reveal when the toaster, washing machine, or hair dryer was
turned on and off.6 Multiply this capability across toll passes, smartphones, facial
recognition, and other tools, and the privacy threat becomes significant.

1.1.7 Industrial Scenarios

GE announced its Industrial Internet initiative in 2013. The goal is to instrument
more and more of the company’s capital goods—jet engines are old news, but also
locomotives, turbines, undersea drilling rigs, MRI machines, and other products—
with the goal of improving power consumption and reliability for existing units and
to improve the design of future products. Given how big the company’s footprint is
in these industrial markets, 1% improvements turn out to yield multibillion-dollar
opportunities. Of course, instrumenting the devices, while not trivial, is only the
beginning: operational data must be analyzed, often using completely new statistical
techniques, and then people must make decisions and put them into effect.

The other striking advantage of the GE approach is financial focus: 1% savings
in a variety of industrial process areas yields legitimately huge cost savings oppor-
tunities. This approach has the simultaneous merits of being tangible, bounded, and
motivational. Just 1% savings in aviation fuel over 15 years would generate more
than $30 billion, for example. To realize this promise, however, GE needs to invent
new ways of networking, storage, and data analysis. As Bill Ruh, the company’s
vice president of global software services, stated, “Our current jet aircraft engines
produce one terabyte of data per flight. : : : On average an airline is doing anywhere
from five to ten flights a day, so that’s 5–10 terabytes per plane, so when you’re
talking about 20,000 planes in the air you’re talking about an enormous amount
of data per day.”7 Using different yardsticks, Ruh framed the scale in terms of
variables: 50 million of them, from 10 million sensors.

To get there, the GE vision is notably realistic about the many connected
investments that must precede the harvesting of these benefits.

6Ariel Bleicher, “Privacy on the Smart Grid,” IEEE Spectrum, 5 October 2010, http://spectrum.
ieee.org/energy/the-smarter-grid/privacy-on-the-smart-grid, accessed 29 March 2018.
7Danny Palmer, “The future is here today: How GE is using the Internet of Things, big data and
robotics to power its business,” Computing 12 March 2015, http://www.computing.co.uk/ctg/
feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-
robotics-to-power-its-business, accessed 29 March 2018.

http://spectrum.ieee.org/energy/the-smarter-grid/privacy-on-the-smart-grid
http://spectrum.ieee.org/energy/the-smarter-grid/privacy-on-the-smart-grid
http://www.computing.co.uk/ctg/feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-robotics-to-power-its-business
http://www.computing.co.uk/ctg/feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-robotics-to-power-its-business
http://www.computing.co.uk/ctg/feature/2399216/the-future-is-here-today-how-ge-is-using-the-internet-of-things-big-data-and-robotics-to-power-its-business
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1. The technology doesn’t exist yet. Sensors, instrumentation, and user interfaces
need to be made more physically robust, usable by a global workforce, and
standardized to the appropriate degree.

2. Information security has to protect assets that don’t yet exist, containing value
that has yet to be measured, from threats that have yet to materialize.

3. Data literacy and related capabilities need to be cultivated in a global workforce
that already has many skills shortfalls, language and cultural barriers, and
competing educational agendas. Traditional engineering disciplines, computer
science, and statistics will merge into new configurations.8

1.2 What Kinds of Statistics Are Needed for Big IoT Data?

The statistical community is beginning to engage with machine learning and
computer science professionals on the issue of so-called big data. Challenges
abound: data validation at petabyte scale; messy, emergent, and dynamic underlying
phenomena that resist conventional hypothesis testing; and the need for program-
ming expertise for computational heavy lifting. Most importantly, techniques are
needed to deal with flowing data as opposed to static data sets insofar as the
phenomena instrumented in the IoT can be life-critical: ICU monitoring, the power
grid, fire alarms, and so on. There is no time for waiting for summarized, normalized
data because the consequences of normal lags between reading and analysis can be
tragic.

1.2.1 Coping with Complexity

In the Internet of Things, we encounter what might be called “bigˆ2 data”: all the
challenges of single-domain big data remain, but become more difficult given the
addition of cross-boundary complexity. For example, astronomers or biostatisticians
must master massive data volumes of relatively homogeneous data. In the Internet
of Things, it is as if a geneticist also had to understand data on particle physics or
failure modes of carbon fiber.

Consider the example of a military vehicle instrumented to determine transmis-
sion failure to facilitate predictive maintenance. The sensors cannot give away any
operational information that could be used by an adversary, so radio silencing and
data encryption are essential, complicating the data acquisition process. Then comes
the integration of vast quantities of multiple types of data: weather (including tem-

8Peter C. Evans and Marco Annunziata, Industrial Internet: Pushing the Boundaries of Minds and
Machines, 26 November 2012, p. 4, http://www.ge.com/docs/chapters/Industrial_Internet.pdf, p.
4., accessed 29 March 2018.

http://www.ge.com/docs/chapters/Industrial_Internet.pdf


14 J. M. Jordan and D. K. J. Lin

perature, humidity, sand/dust, mud, and so on); social network information (think
of a classified Twitter feed on conditions and operational updates from the bottom
of the organization up); vibration and other mechanical measurements; dashboard
indicators such as speedometer, gearshift, engine temperature, and tachometer;
text-heavy maintenance logs, possibly including handwriting recognition; and
surveillance data (such as satellite imagery).

Moving across domains introduces multiple scales, some quantitative (tempera-
ture) and others not (maintenance records using terms such as “rough,” “bumpy,”
and “intermittent” that could be synonymous or distinct). How is an X change in
a driveshaft harmonic resonance to correlate with sandy conditions across 10,000
different vehicles driven by 50,000 different drivers? What constitutes a control or
null variable? The nature of noise in such a complex body of data requires new
methods of extraction, compression, smoothing, and error correction.

1.2.2 Privacy

Because the Internet of Things can follow real people in physical space (whether
through drones, cameras, cell phone GPS, or other means), privacy and physical
safety become more than theoretical concerns. Hacking into one’s bank account
is serious but rarely physically dangerous; having stop lights or engine throttles
compromised is another matter entirely, as the world saw in the summer of 2015
when an unmodified Jeep was remotely controlled and run off the road.9 Given
the large number of related, cross-domain variables, what are the unintended
consequences of optimization?

De-anonymization has been shown to grow easier with large, sparse data sets.10

Given the increase in the scale and diversity of readings or measurements attached
to an individual, it is theoretically logical that the more sparse data points attach to
an individual, the simpler the task of personal identification becomes (something
as basic as taxi fare data, which intuitively feels anonymous, can create a pri-
vacy breach at scale: http://research.neustar.biz/2014/09/15/riding-with-the-stars-
passenger-privacy-in-the-nyc-taxicab-dataset/).11 In addition, the nature of IoT
measurements might not feel as personally risky at the time of data creation: logging
into a financial institution heightens one’s sense of awareness, whereas walking
down the street, being logged by cameras and GPS, might feel more carefree than it

9Andy Greenberg, “Hackers Remotely Kill a Jeep on the Highway - With Me in It,” Wired,
21 July 2015, http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/, accessed 29
March 2018.
10Arvind Narayanan and Vitaly Shmatikov, “Robust De-anonymization of Large Sparse Datasets,”
no date, https://www.cs.utexas.edu/�shmat/shmat_oak08netflix.pdf, accessed 29 March 2018.
11Anthony Tockar, “Riding with the Stars: Passenger Privacy in the NYC Taxicab Dataset,” neustar
Research, 15 September 2014, accessed 29 March 2018 [Note: “neustar” is lower-case in the
corporate branding].

http://research.neustar.biz/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
http://research.neustar.biz/2014/09/15/riding-with-the-stars-passenger-privacy-in-the-nyc-taxicab-dataset/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway
https://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf
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perhaps should. The cheapness of computer data storage (as measured by something
called Kreider’s law) combines with the ubiquity of daily digital life to create
massive data stores recording people’s preferences, medications, travels, and social
contacts. The statistician who analyzes and combines such data involving flesh-
and-blood people in real space bears a degree of responsibility for their privacy
and security. (Researchers at Carnegie Melon University successfully connected
facial recognition software to algorithms predicting the subjects’ social security
numbers.12) Might the profession need a new code of ethics akin to the Hippocratic
oath? Can the statistician be value-neutral? Is there danger of data “malpractice”?

1.2.3 Traditional Statistics Versus the IoT

Traditional statistical thinking holds that large samples are better than small ones,
while some machine learning advocates assert that very large samples render
hypotheses unnecessary.13 At this intersection, the so-called the death of p-value is
claimed.14 However, fundamental statistical thinking with regard to significance, for
example, still applies (although the theories may not be straightforwardly applied
in very large data sets). Big data on its own cannot replace scientific/statistical
thinking. Thus, a wishlist for needed statistical methodologies should have the
following properties:

• High-impact problems
Refining existing methodologies is fine, but more efforts should focus on

working high-impact problems, especially those problems from other disciplines.
Statisticians seem to keepmissing opportunities: examples range from genetics to
data mining. We believe that statisticians should seek out high-impact problems,
instead of waiting for other disciplines to formulate the problems into statistical
frames. Collaboration across many disciplines will be necessary, if unfamiliar,
behavior. This leads to the next item.

• Provide structure for poorly defined problems
A skilled statistician is typically most comfortable and capable when dealing

with well-defined problems. Instead, statisticians should develop some method-
ologies for poorly defined problems and help devise a strategy of attack. There
are many opportunities for statistical applications, but most of them are not
in the “standard” statistics frame—it will take some intelligent persons to

12Deborah Braconnier, “Facial recognition software could reveal your social security num-
ber,” Phys.org, 2 August 2011, https://phys.org/news/2011-08-facial-recognition-software-reveal-
social.html, accessed 29 March 2018.
13Chris Anderson, “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete,”
Wired, 23 June 2008, https://www.wired.com/2008/06/pb-theory/, accessed 29 March 2018.
14Tom Siegfried, “P value ban: small step for a journal, giant leap for science,” ScienceNews,
17 March 2015, https://www.sciencenews.org/blog/context/p-value-ban-small-step-journal-giant-
leap-science, accessed 29 March 2018.

https://phys.org/news/2011-08-facial-recognition-software-reveal-social.html
https://phys.org/news/2011-08-facial-recognition-software-reveal-social.html
https://www.wired.com/2008/06/pb-theory
https://www.sciencenews.org/blog/context/p-value-ban-small-step-journal-giant-leap-science
https://www.sciencenews.org/blog/context/p-value-ban-small-step-journal-giant-leap-science
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formulate these problems into statistics-friendly problems (then to be solved by
statisticians). Statisticians can devote more efforts to be such intelligent persons.

• Develop new theories
Most fundamental statistical theories based upon iid (independently identi-

cally distributed) for one fixed population (such ascentral limit theorem, or law
of large number) may need to be modified to be appropriately applied to big data
world. Many (non-statisticians) believe that big data leads to “the death of p-
value.” The logic behind this is that when the sample size n becomes really large,
all p-values will be significant—regardless how little the practical significance
is. This is indeed a good example of misunderstanding the fundamentals. One
good example is about “small n and large p” where the sparsity property
is assumed. First, when there are many exploratory variables, some will be
classified as active variables (whether or not this is true!). Even worse, after the
model is built (mainly based on the sparsity property), the residuals may highly
correlate with some remaining variables—this contradicts the assumption for all
fundamental theorems that “error is independent with all exploratory variables.”
New measurement is needed for independence in this case.

1.2.4 A View of the Future of Statistics in an IoT World

Having those wishlist items in mind, what kinds of statistics are needed for big
data? For an initial approximation, here are some very initial thoughts under
consideration.

• Statistics and plots for (many) descriptive statistics. If conventional statistics are
to be used for big data, and it is very likely there will be too many of them
because of the heterogeneity of the data, what is the best way to extract important
information from these statistics? For example, how to summarize thousands of
correlations? How about thousands of p-values? ANOVAs? Regression models?
Histograms? etc. Advanced methods to obtain “sufficient statistics” (whatever it
means in a particular context: astrophysics and biochemistry will have different
needs, for example) from those many conventional statistics are needed.

• Coping with heterogeneity. Numbers related to such sensor outputs as check-
engine lights, motion detectors, and flow meters can be extremely large, of
unknown quality, and difficult to align with more conventional measurement
systems.

• Low-dimension behavior. Whatever method is feasible for big data (the main
concern being the computational costs), the reduction in resolution as it is con-
verted to low-dimension resolution (especially 2D graphs) is always important to
keep in mind.

• As we have mentioned, analyzing real-time measurements that are derived
from actual ground truth demands stream-based techniques that exceed standard
practice in most statistical disciplines.
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• Norm or Extreme. Depending on the problem, we could be interested in either
norm or extreme, or both. Basic methods for both feature extraction (mainly for
extremes) and pattern recognition (mainly for norm) are needed.

• Methods for new types/structures of data. A simple example would be “How
to build up a regression model, when both inputs and outputs are network
variables?” Most existing statistical methodologies are limited to numbers
(univariate or multivariate), but there is some recent work for functional data
or text data. How to extract the basic information (descriptive statistics) or even
analysis (inferential statistics) of these new types of data are highly demanding.
This includes network data, symbolic data, fingerprints data, 2D or 3D image
data, just to name a few. There is more that can be done, if we are willing to open
our minds.

• Prediction vs estimation. One difference between computer science and statistics
methods has to do with the general goal—while CS people focus more on
prediction, statisticians focus more on estimation (or statistical inference). Take
Artificial Neural Networks (ANN) as an example: the method can fit almost
anything, but what does it mean? ANN is thus popularly used in data mining,
but has received relatively low attention from statisticians. For big data, it is
clear that prediction is probably more feasible in most cases. Note: in some
very fundamental cases, we believe that statistical inference remains important,
always bearing in mind the essential research question at hand.

1.3 Big Data in the Real World

Moving statistical and analytical techniques from academic and laboratory settings
into the physical world sensed and measured by the IoT introduces new challenges.
Not surprisingly, organizational and technical matters are emerging, and even the
limits of human cognition must be appreciated and accounted for.

1.3.1 Skills

Here’s a quiz: ask someone in the IT shop how many of his of her colleagues
are qualified to work in Hive, Pig, Cassandra, MongoDb, or Hadoop. These are
some of the tools that are emerging from the front-runners in big data, web-scale
companies including Google (that needs to index the entire Internet), Facebook
(manage a billion users), Amazon (construct and run the world’s biggest online
merchant), or Yahoo (figure out what social media is conveying at the macro
scale). Outside this small industry, big data skills are rare; then consider how
few people understand both data skills and the intricacies of industrial and other
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behind-the-scenes processes, many of them life critical (e.g., the power grid or
hospital ICU sensor networks).

1.3.2 Politics

Control over information is frequently thought to bring power within an orga-
nization. Big data, however, is heterogeneous, is multifaceted, and can bring
performance metrics where they had not previously operated. If a large retailer,
hypothetically speaking, traced its customers’ purchase behavior first to social
media expressions and then to advertising channel, how will the various budget-
holders respond? Uncertainty as to ad spend efficacy is as old as advertising, but
tracing ad channels to purchase activity might bring light where perhaps it is not
wanted. Information sharing across organizational boundaries (“how are you going
to use this data?”) can also be unpopular. Once it becomes widely understood how
one’s data “bread crumbs” can be manipulated, will consumers/citizens demand
stricter regulation?

1.3.3 Technique

Given that relational databases have been around for about 35 years, a substantial
body of theory and practice makes these environments predictable. Big data, by
contrast, is just being invented, but already there are some important differences
between the two: Most enterprise data is generated by or about humans and
organizations: SKUs are bought by people, bills are paid by people, health care
is provided to people, and so on. At some level, many human activities can be
understood at human scale. Big data, particularly social media, can come from
people too, but in more and more cases, it comes from machines: server logs, point
of sale scanner data, security sensors, and GPS traces. Given that these new types
of IoT data don’t readily fit into relational structures and can get massively large
in terms of storage, it’s nontrivial to figure out what questions to ask of these data
types.

When data is loaded into relational systems, it must fit predefined categories that
ensure that what gets put into a system makes sense when it is pulled out. This
process implies that the system is defined at the outset for what the designers expect
to be queried: the questions are known, more or less, before the data is entered
in a highly structured manner. In big data practice, meanwhile, data is stored in
as complete a form as possible, close to its original state. As little as possible is
thrown out so queries can evolve and not be constrained by the preconceptions of the
system. Thus, these systems can look highly random to traditional database experts.
It’s important to stress that big data will not replace relational databases in most
scenarios; it’s a matter of now having more tools to choose from for a given task.
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1.3.4 Traditional Databases

Traditional databases are designed for a concrete scenario, then populated with
examples (customers, products, facilities, or whatever), usually one per row: the
questions and answers one can ask are to some degree predetermined. Big data can
be harvested in its original form and format, and then analyzed as the questions
emerge. This open-ended flexibility can of course be both a blessing and a curse.

Traditional databases measured the world in numbers and letters that had to be
predicted: zip codes were 5 or 10 digits, SKU formats were company specific,
or mortgage payments were of predictable amounts. Big data can accommodate
Facebook “likes,” instances of the “check engine” light illuminating, cellphone
location mapping, and many other types of information.

Traditional databases are limited by the computing horsepower available: to
ask harder questions often means buying more hardware. Big data tools can scale
up much more gracefully and cost-effectively, so decision-makers must become
accustomed to asking questions they could not contemplate previously. To judge
advertising effectiveness, one cable operator analyzed every channel-surfing click
of every remote across every household in its territory, for example: not long ago,
such an investigation would have been completely impractical.

1.3.5 Cognition

What does it mean to think at large scales? How do we learn to ask questions of
the transmission of every car on the road in a metropolitan area, of the smartphone
of every customer of a large retail chain, or of every overnight parcel in a massive
distribution center? How can more and more people learn to think probabilistically
rather than anecdotally?

The mantra that “correlation doesn’t imply causation” is widely chanted yet
frequently ignored; it takes logical reasoning beyond statistical relationships to test
what’s really going on. Unless the data team can grasp the basic relationships of
how a given business works, the potential for complex numerical processing to
generate false conclusions is ever present. Numbers do not speak for themselves;
it takes a human to tell stories, but as Daniel Kahneman and others have shown, our
stories often embed mental traps. Spreadsheets remain ubiquitous in the modern
enterprise, but numbers at the scale of Google, Facebook, or Amazon must be
conveyed in other ways. Sonification—turning numbers into a range of audible
tones—and visualization show a lot of promise as alternative pathways to the brain,
bypassing mere and non-intuitive numerals. In the meantime, the pioneers are both
seeing the trail ahead and taking some arrows in the back for their troubles. But
the faster people, and especially statisticians, begin to break the stereotype that “big
data is what we’ve always done, just with more records or fields,” the faster the
breakthrough questions, insights, and solutions will redefine practice.
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1.4 Conclusion

There’s an important point to be made up front: whether it originates in a financial
system, public health record-keeping, or sensors on electrical generators, big data
is not necessarily complete, or accurate, or true. Asking the right questions is in
some cases learned through experience, or made possible by better theory, or a
matter of luck. But in many instances, by the time investigators figure out what they
should be measuring in complex systems, it’s too late to instrument the “before”
state to compare to the “after.” Signal and noise can be problematic categories as
well: one person’s noise can be a goldmine for someone else. Context is everything.
Value is in the eye of the beholder, not the person crunching the numbers. However,
this is rarely the case. Big data is big, often because it is automatically collected.
Thus, in many cases, it may not contain much information relative to noise. This is
sometimes called a DRIP—Data Rich, Information Poor—environment. The IoT is
particularly prone to these issues, given both (a) notable failure and error rates of the
sensors (vs the machines they sense) and (b) the rarity of certain kinds of failures:
frequencies of 1 in 10,000,000 leave many readings of normal status as their own
type of noise. In any event, the point here is that bigger does not necessarily mean
better when it comes to data.

Accordingly, big data skills cannot be purely a matter of computer science,
statistics, or other processes. Instead, the backstory behind the creation of any given
data point, category, or artifact can be critically important and more complex given
the nature of the environments being sensed. While the same algorithm or statistical
transformation might be indicated in a bioscience, a water main, and a financial
scenario, knowing the math is rarely sufficient. Having the industry background
to know where variance is “normal,” for instance, comes only from a holistic
understanding of the process under the microscope. As we move into unprecedented
data volumes (outside the Large Hadron Collider perhaps), understanding the
ground truth of the data being collected and the methods of its collection, automated
and remote though they may be, will pose a significant challenge.

Beyond the level of the device, data processing is being faced with new
challenges—in both scope and kind—as agencies, companies, and NGOs (to name
but three interested parties) try to figure out how to handle billions of cellphone
chirps, remote-control clicks, or GPS traces. What information can and should be
collected? By what entity? With what safeguards? For how long? At what level of
aggregation, anonymization, and detail? With devices and people opting in or opting
out? Who is allowed to see what data at what stage in the analysis life cycle? For a
time, both Google (in its corporate lobby) and Dogpile (on the web) displayed real-
time searches, which were entertaining, revealing, and on the whole discouraging:
porn constituted a huge percentage of the volume.Will ski-lift webcams go the same
way in the name of privacy?

Once information is collected, the statistical and computer science disciplines
are challenged to find patterns that are not coincidence, predictions that can
be validated, and insights available in no other way. Numbers rarely speak for
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themselves, and the context for Internet of Things data is often difficult to obtain or
manage given the wide variety of data types in play. The more inclusive the model,
however, the more noise is introduced and must be managed. And the scale of this
information is nearly impossible to fathom: according to IBM Chief Scientist Jeff
Jonas, mobile devices in the United States alone generated 600 billion geo-tagged
transactions every day—as of 2010.15 Finally, the discipline of statistics is being
forced to analyze these vast bodies of data in near real time—and sometimes within
seconds—given how many sensors have implications for human safety and well-
being.

In addition to the basic design criteria, the privacy issues cannot be ignored. Here,
the history of Google Glass might be instructive: whatever the benefits that accrue to
the user, the rights of those being scanned, identified, recorded, or searched matter
in ways that Google has yet to acknowledge. Magnify Glass to the city or nation-
state level (recall that England has an estimated 6 million video cameras, but nobody
knows exactly how many16), as the NSA revelations appear to do, and it’s clear that
technological capability has far outrun the formal and informal rules that govern
social life in civil society.

In sum, data from the Internet of Things will challenge both the technical
capabilities and the cultural codes of practice of the data community: unlike
other categories of big data, people’s faces, physical movements, and public
infrastructures define much of their identity and well-being. The analytics of these
things becomes something akin to medicine in the gravity of its consequences:
perhaps the numbers attached to the IoT should be referred to a “serious data” rather
than merely being another category of “big.”

15Marshall Kirkpatrick, “Meet the Firehose Seven Thousand Times Bigger
than Twitter’s,” Readwrite 18 November 2010, http://readwrite.com/2010/11/18/
meet_the_firehose_seven_thousand_times_bigger_than#awesm =�oIpBFuWjKFAKf9, accessed
29 March 2018.
16David Barrett, “One surveillance camera for every 11 people in Britain, says CCTV survey,” The
Telegraph, 10 July 2013, https://www.telegraph.co.uk/technology/10172298/One-surveillance-
camera-for-every-11-people-in-Britain-says-CCTV-survey.html, accessed 29 March 2018.
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