
CIE48 Proceedings, 2-5 December 2018, The University of Auckland 

[PaperNr]-1 

MONITORING NETWORK DATA BY CONSIDERING THE CORRELATION OF NETWORK FEATURE 
STATISTICS 

Panpan Zhou1*, Dennis Lin2, Xiaoyue Niu2, and Zhen He1† 
1College of Management and Economics, 

Tianjin University, Tianjin, China 
zhoupanpan@tju.edu.cn  

zhhe@tju.edu.cn 
 

2Department of Statistics, 
The Penn State University, USA 

 

ABSTRACT 

Network monitoring has wide applications in computer and social network surveillance， 
pathological diagnosis in neuroscience and bioscience among others. Motivated by a real 
example of brain networks, we focus our interests on monitoring networks by considering 
correlations of feature statistics. Structural statistics of numbers of edges, stars and triangles, 
are adopted to summarize the main features of a network - density, degree variability, and 
transitivity. A multivariate chart is proposed to monitor the multiple statistics simultaneously, 
which has not been paid much attention to in previous studies. A simulation study is conducted 
to compare the performances of the multivariate chart and individual charts for the structural 
statistics as well as a model-based approach as a benchmark. The results show that the 
multivariate chart for the structural statistics perform well in most scenarios. In particular, it 
is more advantageous in timely detecting large shifts of connection propensity and degree 
variability locally and globally. A real case of monitoring Enron email networks is analyzed as 
an illustration. 
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1 INTRODUCTION 

Networks are a type of data describing a set of connected entities. Many complex systems are 
modeled as networks. Typical examples include energy flows through food chains, synthesis 
and decomposition among cells, communications among friends, and data transmission 
through the Internet to name a few. Interest is rapidly growing in network monitoring for its 
wide applications in fraud detection, disease spreading control, detection of cells pathological 
changes, and computer network surveillance among others. 

Network data are typically represented as adjacency matrices. Given a random network G 
with n nodes and its adjacency matrix Y, the element Yij is a binary variable indicating whether 
a link exists, or a variable quantifying the frequency or weights of the link between node i and 
node j. In graph theory, a link is also called an edge. The procedure of monitoring network 
data can be summarized into three steps based on Woodall et al. [1] and Savage et al. [2]. As 
shown in Figure 1, the first step is to aggregate raw data into network data by time or space 
intervals. While it is sometimes overlooked, the preprocessing step of data aggregation may 
significantly affect the monitoring performance for not only networks but also any type of 
data (Zwetsloot and Woodall [3] and Zhao et al.[4]). Especially, networks and matrices are 
usually not directly available. When measuring a network process or collecting observational 
network data, the raw data are often the links among different pairs of nodes, which might 
happen sequentially at different time points (e.g. email communication networks). With 
network data obtained through suitable aggregation, the next step is to decide the unit of 
interest and determine the network features. With respect to specific problems and targets, 
anomalies of node level, subgraph level and graph level can be of interest. Then the features 
of networks in corresponding levels should be determined and quantified. Two popular ways 
of representing the network features are (1) to directly subtract summary statistics of 
networks, and (2) to fit a model to networks and estimate the model parameters to summarize 
network features. The third step is to develop statistical methods for monitoring the network 
features. Various approaches including control chart and hypothesis testing methods, Bayesian 
methods, scan methods, time series model methods and others can be applied to retrospective 
analysis of historical data and monitoring online data (see Woodall et al. [1] for a thorough 
review). 

 

Figure 1: Procedures of network monitoring and methods summarized based on 

Woodall et al. [1] and Savage et al. [2] 

From the perspective of the ways of representing network features, existing methods can be 
roughly categorized into summary-statistic-based approaches and model-based approaches. 
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Examples of summary-statistic-based approaches include the work of McCulloh and Carley [5, 
6, 7], McCulloh et al. [8]. CUSUM or EWMA charts for centrality statistics including average 
betweenness and closeness are employed to detect global changes of networks. In Priebe et 
al. [9], scan method is used to detect outliers of kth order neighborhood statistics by a two-
step standardization moving window approach. Model-based approaches are to monitor the 
parameters of network models. An example is the work of Wilson et al. [10]. Shewhart charts 
are employed to monitor the estimates of parameters of degree corrected stochastic block 
models fitted to the network data (denoting this approach as the DCSBM-based approach). It 
is usually difficult to represent network features by only one summary statistic or one model 
parameter. As such, multiple features were adopted in previous studies as aforementioned. 
In existing literature, the network features were monitored by univariate charts separately. 
However, it is possible that these statistics are correlated. Strong correlations between the 
centrality statistics has already been proven empirically by Valente et al. [11] and 
mathematically by Li et al. [12]. As shown in Montgomery [13], monitoring correlated quality 
characteristics individually by univariate charts can be very misleading. The correlation 
between the network features has been much neglected and is addressed in this paper. 

Various statistical methods can be adapted for monitoring network feature statistics. Here we 
mainly focus on statistical process monitoring methods. To fill up the research gap, we study 
statistical process monitoring for network data by considering the correlation among the 
statistics representing network features. The contributions of this paper are (1) emphasizing 
the correlation test before applying any statistical methods for network monitoring, (2) 
proposing multivariate charts for monitoring both undirected and directed networks through 
the summary statistics, and (3) providing a comparison between the multivariate chart method 
and the DCSBM-based approach and giving some advice for practical use of the charts. 

The organization of this paper is as follows. In section 2, a motivating example is analysed. In 
section 3, a multivariate chart for the network statistics is proposed by considering the 
correlations of the structural statistics. The proposed approach is compared with individual 
Shewhart charts method and the DCSBM-based approach by a simulation experiment. The 
results show that overall, the Hotelling T2 chart performs better than the individual Shewhart 
charts and the DCSBM-based charts; the DCSBM-based charts perform better in detecting 
change of variance in particular. In section 5, a real example is provided to illustrate the 
proposed method. 

2 A MOTIVATING EXAMPLE: BRAIN NETWORKS 

Pathology detection in bioscience plays an important role in facilitating early treatment to 
prevent pathological area growing. It has been found that many brain disorders are associated 
with the abnormal topological structures of brain networks (Liu et al. [14]). For example, high 
degree nodes in functional MRI graphs are shown to have greater local deposition of amyloid 
protein than less topologically central brain regions for patients with Alzheimers disease 
(Buckner et al. [15]); node degree and other measures of topological centrality in functional 
connectivity networks are positively correlated with local grey matter atrophy across a range 
of neurodegenerative disorders (Zhou et al. [16]). Thus, monitoring brain networks through its 
feature statistics is of great use in pathology diagnosis. In this section, correlation of various 
feature measures and correlation of model parameters are explored based on a real dataset 
of brain networks of healthy subjects. The results show that strong correlation exists among 
different categories of summary statistics, motivating us to further study monitoring network 
features considering their correlations. 

We use the data of brain connectivity structures in the dataset KKI-42 (Landman et al.[17]), 
which is further processed and analysed by Durante et al. [18]. Data are collected for 21 
healthy subjects with no history of neurological disease under a scan-rescan imaging session. 
Each subject has been observed twice. Brain regions are constructed according to the Desikan 
et al. [19] atlas, for a total of 68 nodes equally divided in left and right hemispheres. The 
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matrices of the total number of white matter fibers connecting two brain regions are 
processed as undirected binary network data. 

Compared with many social networks which tend to be time-varying, brain networks of 
different subjects are independent of each other. For such independent networks, we are 
interested in (1) what features of networks to monitor, (2) whether the features are correlated, 
and (3) how to monitor the correlated or uncorrelated features. 

Selecting feature from a variety of measures of networks is not standardized and may vary 
from case to case. As commented by Savage et al. [2], 

"…the lack of papers clearly describing the reasons for examining a particular set 
of features suggests to us that selection of a suitable feature space may be 
extremely difficult in practice".  

Here, both summary-statistic-based and model-based features are considered for a more 
complete understanding. We studied the popular centrality measures, the size of 1st and 2nd 
neighborhood as well as the transitivity measures from the Exponential Random Graph Model 
(ERGM) family. Those measures are either used for network monitoring in previous studies or 
well interpretable for network structures (e.g. McCulloh et al.[8]; Priebe et al.[9]; Snijders et 
al. [20]; and Fornito et al. [21]). Since global changes are more generalized and representative, 
we study the network measures from a graph level perspective and omit the node-level and 
subgraph-level characteristics. The total number of edges describes the overall density of a 
network and thus is included here. We studied the typical centrality measures such as 
betweenness and closeness. These two measures together with the sizes of 1st and 2nd order 
neighborhood are node-wise metrics. Therefore, their averages were taken over all nodes 
within networks as graph-level measures. The numbers of 2-stars and triangles, which will be 
further explained in a later section, are global summary statistics and were calculated. The 
adjacency matrices of the subjects show a pattern of nodes clustering into 2 blocks, 
corresponding to brain regions in the left and right hemispheres. Examples of the adjacency 
matrix plots are shown in Figure 2. As such, a block model with two communities is suitable 
for fitting the brain networks. To explore correlations among the model parameters for the 
brain networks, we adopted the degree-corrected stochastic block model, which is proposed 
by Karrer and Newman [22] and adapted to a dynamic version by Wilson et al. [10]. 

Figure 2: Adjacency matrices of brain networks of subject 16 for the first scan (left) and 
subject 3 for the second scan (right) with black representing an edge (adapted from 

Durante et al. [18]) 

We calculated the Pearson correlations to study the simplest linear relationship among the 
network features (Pearson [23]). Figure 3 is the plot of pairwise correlation among the network 
summary statistics. The correlation coefficients are shown in upper triangular part and the 
scatter plots are shown in the lower triangular part. The high correlation coefficient values 
(close to 1) and the linear shapes indicate strong pairwise linear correlations among the 
statistics, and the correlations are statistically significant with all p-values below 0.01. For 
the degree-corrected stochastic block models, index the two blocks of left and right 
hemispheres with L and R. We estimated four parameters PLL, PLR, PRR, and δ for each network 
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because they are considered as the charting statistics for network monitoring in Wilson et al. 
[10]. The four parameters express the propensity of connection between nodes in left 
hemisphere, across left and right hemisphere, in right hemisphere, and the variability of the 
propensity of connection of the nodes, respectively. We calculated the average of the 
estimated parameters for the replicate networks from one subject. The correlations and 
scatter plots among PLL, PLR, PRR, and δ are shown in Figure 4. The upper and lower triangular 
parts are the pairwise Pearson correlation coefficients, and the scatter plot, respectively. The 
diagonal part are the histograms of the parameter estimates. The p-values for the significance 
test of the correlations are shown in Table 1. At a 95% confidence level, only PRR, and δ are 
negatively correlated. There is no evidence to reject the hypothesis that all other pairs of the 
parameters are not linear correlated. 

Figure 3: Correlation plot for the network summary statistics (from top to bottom: total 
number of edges, average betweenness, average closeness, average size of 1st order 
neighborhoods, average size of 2nd order neighborhoods, total number of 2-stars, and 

total number of triangles) 

Figure 4: Correlation plot for the parameter estimates of fitted block models (from top 

to bottom: PLL, PLR, PRR, and δ) 

In this specific brain network case, we found strong correlations among the commonly used 
summary statistics representing network features. The correlations within centrality measures 
coincide with the conclusion drawn from empirical and theoretical studies by Valente et al. 
[11] and Li et al. [12]. Moreover, strong correlations exist within neighborhood size measures, 
within transitivity measures, and between the three classes of measures. It implies that 
monitoring multiple summary statistics without considering their correlations could be 
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misleading in this case. Although a general conclusion of network summary statistics being 
correlated cannot be drawn from one individual dataset, we conjecture correlations among 
the summary statistics exist in many real-world networks. More empirical studies and 
mathematical proofs can be explored on the relationships among the network summary 
statistics. We found significant correlation only between PRR, and δ parameters of degree-
corrected stochastic block models fitted to the brain networks. Individual charts are 
reasonable for monitoring the model parameters for this case.  

Table 1: P-values for Pearson correlation tests for parameter estimates of block models 
for the brain network data 

p-value PLL PLR PRR δ 

PLL  0.08 0.08 0.24 

PLR 0.08  0.86 0.50 

PRR 0.08 0.86  0.00 

δ 0.24 0.50 0.00  

Motivated by this real example, we suggest a correlation test should be done for network 
feature statistics prior to network monitoring. Multiple network quality characteristics should 
be monitored simultaneously when they are not independent. 

3 MONITORING NETWORKS CONSIDERING CORRELATION BETWEEN FEATURE STATISTICS 

Monitoring feature statistics by individual charts could be misleading when they are shown 
correlated in statistical tests. In this section, we follow the procedures of network monitoring 
shown in Figure 1, discuss the selection of network features and propose a method of 
monitoring them considering their correlations.  

3.1 Selection of network features 

We focus on global changes of networks due to their generality. Counts of triadic structures 
are commonly used statistics for well characterizing global properties of networks (Frank and 
Strauss [24]; Holland and Leinhardt [25]). The numbers of edges, stars, and triangles are basic 
triadic structures. More complicated network statistics, which were extended from those star 
and triangle counts, were proposed for ERGM modeling (Snijders et al. [20]), which became a 
popular tool afterwards. The number of edges reflects the overall density of a network. The 
number of k-stars reflects the propensities for individual node to have connections with 
multiple network partners. Since introducing too many variables might decrease the power of 
the multivariate charts, the number of 2-stars is considered here and higher order star counts 
will not be included. The number of triangles reflects the transitive relationship. 

Here we propose to monitor the statistics in a multivariate chart if their correlation is tested 
to be significant. The adjacency matrix for a random binary network G is Y. Its elements Yij 
equals 1 when a tie exists between node i and node j; and it equals 0 otherwise. According to 
Frank and Strauss [24], the statistics are  

𝑆ଵሺ𝑌ሻ ൌ ∑ 𝑌௜௝ଵஸ௜ழ௝ஸ௡ , number of edges  

𝑆ଶሺ𝑌ሻ ൌ ∑ ቀ𝑌௜ା
2

ቁଵஸ௜ழ௝ஸ௡ , number of 2-stars (1) 

𝑇ሺ𝑌ሻ ൌ ∑ 𝑌௜௝𝑌௝௛ଵஸ௜ழ௝ழ௛ஸ௡ 𝑌௜௛, number of triangles  
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where the + sign denotes summation over the index, and Yi+ is the degree of node i. For 
directed networks, Yij equals 1 when there is a tie from node i to node j. The number of edges 
equals the number of ingoing edges and equals the number of outgoing edges.  

The counterparts of the 2-star statistics are the numbers of 2-in-stars and 2-out-stars. The 
number of the triangles contains the number of transitive triples and cyclic triples, 
corresponding to the sets of three edges (i→j), and (j →k) , and either (i →k) or (k → i). Thus, 
the statistics for directed networks are (Frank and Strauss [24]; Holland and Leinhardt [25]) 

𝑆ଵሺ𝑌ሻ ൌ ∑ ሺ𝑌௜௝ െ 𝑌௜௝𝑌௝௜ሻଵஸ௜ழ௝ஸ௡ , number of edges  

𝑆ଶ
௜௡ሺ𝑌ሻ ൌ

ଵ

ଶ
∑ 𝑌௜௝𝑌௛௜௜,௝,௛;௝ஷ௛ , number of 2-in-stars (2) 

𝑆ଶ
௢௨௧ሺ𝑌ሻ ൌ

ଵ

ଶ
∑ 𝑌௜௝𝑌௜௛௜,௝,௛;௝ஷ௛ , number of 2-out-stars  

𝑇ሺ𝑌ሻ ൌ ∑ 𝑌௜௝𝑌௝௛ଵஸ௜ழ௝ழ௛ஸ௡ ሺ𝑌௜௛ ൅
ଵ

ଷ
𝑌௛௝ሻ. number of triangles  

3.2 Multivariate chart for global statistics 

When the statistics are correlated to each other, two ways of monitoring them are (1) 
extracting principal components and applying individual charts to monitor the orthogonal 
principal components and the residuals, and (2) monitoring the statistics simultaneously by a 
multivariate chart. The number of edges, stars and triangles are very interpretable regarding 
the network structures, while principal components might be difficult to interpret in practice. 
Thus, we apply multivariate charts for network monitoring. 

Write the statistics into a vector S(Y). Although S(Y) are counts, we can approximately assume 
S(Y) is normally distributed. Conventionally, statistical monitoring is classified into Phase I and 
Phase II monitoring. In Phase II, online monitoring is implemented for each individual network. 
Given m observations of networks {𝑦ሺ௚ሻ}g=1:m, S(𝑦ሺ௚ሻ) can be obtained by Equation (1) or (2) 
depending on the type of networks under study. Write S(𝑦ሺ௚ሻ) as 𝑆௚for simplicity. In Phase I, 
historical data are available to identify an in-control process and estimate process parameters. 
Given m observations of the networks, we can estimate μ and Σ as �̂� ൌ

ଵ

௠
∑ 𝑆௚௠

௚ୀଵ , and Σ෠ ൌ
ଵ

௠ିଵ
∑ ሺ𝑆௚ െ �̂�ሻሺ𝑆௚ െ �̂�ሻᇱ௠

௚ୀଵ .The Hotelling T2 statistic for 𝑆௚ is 

𝑇௚
ଶ ൌ ሺ𝑆௚ െ �̂�ሻ′𝛴෠ିଵሺ𝑆௚ െ �̂�ሻ. (3) 

When the process is in-control, 𝑇௚
ଶ follows a beta distribution and the control limits are 

𝑈𝐶𝐿 ൌ
ሺ௠ିଵሻమ

௠
𝛽ఈ，ௗ/ଶ,ሺ௠ିௗିଵሻ/ଶ, (4) 

𝐿𝐶𝐿 ൌ 0,  

Where d is the degree of freedom, equal to 3 for undirected networks and 4 for directed; α is 
the false alarm probability; 𝛽ఈ，ௗ/ଶ,ሺ௠ିௗିଵሻ/ଶ is the upper α percentage point of the central 

beta distribution with parameters 𝑑/2 and ሺ𝑚 െ 𝑑 െ 1ሻ/2 (Tracy et al.[25]). Remove network 
g from the samples if T୥

ଶ> UCL. Repeat the estimation and outlier detection procedures until 
only m*α networks are shown out-of-control. 

4 PERFORMANCE COMPARISON 

We simulate network data based on degree corrected stochastic block models following the 
same settings as in Wilson et al. [10]. Since they directly monitor parameters of the stochastic 
block models, DCSBM-based charts serve well as a benchmark. The aim here is to evaluate and 
compare the performances of Hotelling T2 charts and Shewhart charts of the statistics, as well 
as Wilson et al. [10]’s DCSBM-based charts. 
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We generate m = 1000 undirected networks as Phase I samples. Each network has n = 100 

nodes, and k = 2 equally sized communities. We set the connectivity matrix 𝑃 ൌ ቀ0.2 0.1
0.1 0.2

ቁ , 

and the standard deviation of the degree parameters δj = 0.5 for j= 1,2. For Phase II data, 
changes are implemented at time t* = 25 and thereafter networks are generated as many as 
it took to observe the first signal on each control chart. A total of 7 scenarios are implemented 
as shown in Table 2. For each control chart in each scenario, we run simulations 1000 times 
and obtain 1000 run length values. 

Table 2: Simulation settings by the dynamic DCSBMs method in Wilson et al. [10] 

Scenario Change Description 

0 No change no structural change has occurred 

1 P*1,1= P1,1 + ϵ, ϵ = 0.01, 0.05, 0.10 local outbreak in community 1 

2 P*= P + ϵ, ϵ = 0.01, 0.05, 0.10 global outbreak 

3 δ1*= δ1 + λ, λ = 0.05, 0.10, 0.25 increase of local variability in community 1

4 δ*= δ + λ, λ = 0.05, 0.10, 0.25 increase of global variability 

5 merge communities merge communities 

6 split communities split community 1 into 2 communities 

The average run lengths (ARLs) are obtained for individual charts for the four parameters δ, 
P1,1, P1,2 , and P2,2, respectively in Wilson et al. [10] as shown in Table 3. In statistical process 
monitoring practice, any one of the four individual charts signalling indicates an anomaly. As 
such, we calculate the ARLs for the combined use of the four charts based on the equation 
1 െ

ଵ

஺ோ௅೎೚೘್೔೙೐೏
ൌ ሺ1 െ

ଵ

஺ோ௅ುభ,భ
ሻሺ1 െ

ଵ

஺ோ௅ುభ,మ
ሻሺ1 െ

ଵ

஺ோ௅ುమ,మ
ሻሺ1 െ

ଵ

஺ோ௅ഃ
ሻ. The result is shown in the last 

column in Table 3. In this simulation study, we obtain ARL values for individual charts for the 
number of edges S1(Y), the number of 2-stars S2(Y) and the number of triangles T(Y) separately, 
corresponding control limits were set as �̂� േ 3𝜎ො. For the T2 chart, we obtain the UCL based on 
Phase I samples with type I error α = 0.9973. The ARL results are shown in Table 3 named as 
T2. The best performance among the individual charts are marked in bold. The best 
performance among all charts in each scenario is italicized and underlined.  

From Table 3, we see the ARLs of the charts of number of edges, T2 and P1,2 have lower false 
alarm probability when the process has no change. While each of the DCSBM-based charts show 
a reasonable ARL value for the in-control case when evaluated separately, the combined use 
of the four charts has an ARL of 94.49, substantially increasing the false alarm probability. 
Regardless of its over-sensitivity in the in-control case, the combined use of the four 
parameter charts largely improves the performance for anomaly detection when the process 
has a small shift. By contrast, it doesn’t make much contribution when the shifts are large. 
Among the individual charts of numbers of edges, 2-stars and triangles, the edge count chart 
performs better when the process is in-control while the triangle count chart over-alarms. It 
partially accounts for the overall best detection power of the triangle count chart for process 
shifts. From the underlined values of the chart of number of triangles, we found that overall, 
the Shewhart charts of the count statistics can more timely detect the change of connection 
propensity locally and globally. All four types of charts perform almost equally well when the 
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shift of propensity parameter is large. The combined use of DCSBM parameter charts provides 
a better performance in detecting small shifts. For changes of degree variability, T2 chart and 
the combined DCSBM parameter charts show a better performance. Especially, T2 chart 
performs better in detecting large shifts, and the combined DCSBM parameter charts performs 
better in detecting small shifts. For the merging of communities, the DCSBM-based charts and 
their combined use is obviously more advantageous. For the splitting of communities, the 
Shewhart chart of edge count, the T2 chart, the P1,1 chart and the combined use of DCSBM 
parameter charts show comparable performances. 

In summary, the Shewhart charts performs well in detecting changes of propensity of 
connections in local and global communities. The P1,1, P1,2, and δ charts performs well in 
detecting local outbreak, global outbreak, and the changes of degree variability, respectively. 
The combined use of the DCSBM parameter charts can boost the detection power when the 
process has a small shift with a cost of much higher false alarm probability. The T2 chart of 
numbers of edges, 2-stars and triangles has an overall reasonably good performance. In 
particular, it performs very well in detecting anomalies when connection propensity or degree 
variability has large shifts. 

Table 3: ARL results for Shewhart charts and T2 chart of numbers of edges, 2-stars 
and triangles, DCSBM-based parameter charts as well as the combined use of the DCSBM-

based parameter charts 

Scenario edges 2-stars triangles T2 δ P1,1 P1,2 P2,2 Combined

none 375.43 340.04 283.64 445.32 317.18 439.25 446.50 338.25 94.49 

P1,1 + 0.01 251.15 177.54 126.94 226.05 294.80 134.00 413.70 332.40 61.77 

P1,1 + 0.05 27.01 19.07 11.57 17.46 284.90 9.87 257.27 207.70 8.91 

P1,1 + 0.10 4.71 3.20 2.12 2.42 524.40 2.23 289.9 325.90 2.21 

P + 0.01 34.85 26.22 21.41 40.51 498.80 140.9 64.65 142.30 31.98 

P + 0.05 1.10 1.06 1.04 1.08 211.10 9.48 1.71 12.17 1.51 

P + 0.10 1.10 1.07 1.05 1.00 93.30 2.01 1.01 2.28 1.00 

δ1 + 0.05 277.33 233.67 175.33 156.39 106.51 221.40 260.10 202.70 44.44 

δ1 + 0.10 201.86 176.38 111.31 69.06 115.70 152.33 305.29 544.60 49.56 

δ1 + 0.25 89.94 67.67 30.77 6.51 18.81 63.35 107.20 431.00 12.67 

δ + 0.05 216.17 178.49 109.22 72.38 93.58 232.30 246.10 216.10 42.58 

δ + 0.10 120.37 99.97 55.22 16.35 36.33 142.00 185.94 218.50 22.75 

δ + 0.25 38.03 28.77 11.30 1.35 4.94 52.88 92.23 53.87 4.16 

Merge 249.19 181.37 205.06 121.55 247.00 39.79 1.66 27.61 1.59 

Split 36.31 99.04 582.35 36.35 127.50 33.90 313.39 426.20 23.57 

5 AN ILLUSTRATIVE EXAMPLE 

Enron email communication network data have been widely studied. The version adopted here 
is from Priebe et al. [9]. The dataset contains 184 unique email addresses of about 150 users 
(mostly executives and some assistants and traders). With the email addresses being nodes, a 
directed edge exists if there is no less than one email from the sender to the receiver in a 
week. A total of 189 directed binary networks are obtained by aggregating the data by weeks 
from November, 1998 to June, 2002.  
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The numbers of edges, 2-in-stars, 2-out-stars, and triangles are used to characterize the 
network structures. They represent the overall density of communications, the degree 
variability of senders, the degree variability of receivers and the amount of transitive 
communications among a local triad. A Hotelling T2 chart for the numbers of edges, 2-in-stars, 
2-out-stars, and triangles is shown in Figure 5. Outliers are detected in the weeks around dates 
of 2001-04-30, 2001-05-21, 2001-08-20, 2001-10-01, 2001-10-08, 2001-10-22, 2001-10-29, 
2001-11-12, 2002-01-28, and 2002-02-04. The first outlier signals before the critical point of 
its stock price on May 5, 2001. The second alarm corresponds to the reaction to the selling of 
1.1 million stock shares by the chief executive of Enron Xcelerator Lou Pai on May 18. Many 
outliers appear from October to November, 2001, consistent with the period when large 
amount of Enron shares was sold at the end of September and Enron reported a $618 million 
loss on October 16, 2001, until it was under a formal investigation from SEC on October 31, 
2001.  The suicide of the former Enron Executive J. Clifford Baxter on January 25, 2002 results 
in a suddenly increased connections among the executives after a period of stable 
communications. 

 

Figure 5: T2 chart of numbers of edges, 2-stars and triangles 

6 CONCLUSION 

Monitoring network feature statistics by individual charts without considering their 
correlations might be misleading. It should be checked whether correlations exist among the 
feature statistics before applying network control charts. Characterizing network global 
properties by the number of edges, 2-stars and triangles, a T2 chart of these feature statistics 
show a good balance of in-control performance and out-of-control performance. Compared 
with individual charts of the structural statistics and the DCSBM-based parameter charts, the 
T2 chart shows an overall competitive performance and significant advantages in detecting 
large shifts of connection propensity and degree variability globally.  
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