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ABSTRACT
Design and analysis techniques for computer experiments have been largely developed. However,
empirical emulators generated based on experimental data usually fail to incorporate physical princi-
ples anddimensional constraints the computermodel follows. In this article, wepropose a newdesign
and analysis framework based on dimensional analysis (DA), a widely used reduction technique in
physics and engineering. We show that implementing DA in computer experiments is efficient, scal-
able, interpretable, robust and costless. We demonstrate the benefits and improvement in details by
theoretical derivations and numerical examples of the borehole model and the damped harmonic
oscillation.

Introduction

The significance of computer experiments in scientific
and technological development has been recognized
and well studied in recent years. The advancement of
computing power has made simulations of compli-
cated systems feasible. Due to the substantial savings
and other practical concerns, it is common to perform
studies using computer simulations before physical
experiments in modern research. Because computer
simulations can be time-consuming, computer exper-
iments are conducted to produce surrogate models.
The problem of how to design and analyze computer
experiments efficiently has thus been put forward and
studied in great detail: see, for example, Santner et al.
(2003). Space-filling designs such as Latin hypercube
designs (LHDs) are chosen instead of factorial designs
because the redundancy of design points in projective
subspaces provides little information in computer
experiments. Gaussian process models (such as Krig-
ing) are often implemented as surrogate because of the
deterministic feature of computer experiments and the
need for interpolation.

However, the empirical emulators generated
through experimental data usually do not follow
the fundamental physical principles the computer
experiment follows. For example, in the computer
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simulated aerodynamic tests of plane wings, the emu-
lated lifting force by empirical emulators may not be a
monotone function of the wind speed as it is in com-
puter experiments. Even though the derived emulator
fits the data well, it may generate predictions that do
not satisfy the physical constraints when interpolating
and extrapolating. This is a problematic issue in the
following ways. First, such predictions may not be
interpretable for the scientific purpose. Second, such
lack-of-fit becomes unnecessarily severe when the
response surface is complex and not smooth, while the
complexity can be explained by physical knowledge.
Third, even assuming very dense design points, an
emulator that fits the data perfectly and a relatively
smooth response surface, the emulator will possibly
generate poor predictions when extrapolating into dif-
ferent scales (especially for Kriging), while the scaling
is governed by the physical laws as in the accelerated
life testing. Finally, the efficiency of the modeling dete-
riorates without utilizing the physical information that
helps guide and restrict the directions of modeling.
In this article, we consider utilizing the dimensional
information through dimensional analysis.

In physics and engineering applications, it has been
a common practice to conduct dimensional analysis
(DA), which was first introduced by Buckingham
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(1914) and Rayleigh (1915). For example, Reynolds
number has been used a lot in fluid mechanics to
predict flow patterns, laminar or turbulent, in different
flow situations. Buckingham (1914) formulates the
theoretical justification of dimensional analysis pro-
cedure by introducing the dimensional homogeneity
principle of any physical equation and the Bucking-
ham’s �-theorem. The methodology covered the most
general forms of physical equations, leading to its great
utility and efficacy in scientific problems. DA received
more attentions in statistics in recent researches.
Albrecht et al. (2013) discussed the general features
of applying dimensional analysis in designs of exper-
iments. Shen et al. (2014) proposed the procedure to
incorporate dimensional analysis in statistical analysis
and discussed the resulting benefits. The aforemen-
tioned works demonstrated both the power and the
ease of the adjustment by DA in statistical problems.
See also Albrecht et al. (2013), Davis (2013), Lin and
Shen (2013), Frey (2013), Jones (2013), Piepel (2013),
Plumlee et al. (2013), and the rejoinder Albrecht et al.
(2013) for a comprehensive discussion.

Variables inmany computer experiments have phys-
ical meanings according to the background scenario
and obey the dimensional constraints. However, few
published works have taken it as a critical component
in the statistical meta-modeling. Methodologies are
developed either from pure physical derivations, or
from pure statistical concerns of uncertainty. Dimen-
sional validation is often ad hoc. In this article, DA is
used to determine the factor space on which statistical
meta-models should be built. The fact that the gener-
ated models satisfy the dimensional constraints greatly
increases their performance in extrapolation. Due to
the reduction of number of variables, more consistent
and efficient models can be produced. Fewer runs are
needed for a predetermined tolerance of errors, which
relieves the computational burden especially when the
computer simulations are expensive. Our contribution
is to propose and validate a systematic paradigm to
incorporate DA into computer experiments, and to
show the advantages of DA factor space using both
theoretical and numerical studies. Compared with
previous works on physical experiments and optimal
designs, this article focuses more on space-filling
designs and prediction performance. With compar-
isons to procedures without using DA, we demonstrate
that DA produces great improvement for extrapola-
tion on complex response surfaces. We conclude that
incorporating the DA factor space is a general and

promising framework for building statistical emula-
tors of computer experiments that obey dimensional
constraints.

The remaining paper is organized as follows. In the
Methodology section, themethodology ofDA for com-
puter experiments is proposed, including introduction
of dimensional analysis based factor space (DA factor
space) and a Conditional LHD strategy to accommo-
date irregular design spaces. Furthermore, some the-
oretical properties are derived in general. In the Case
Studies section, we illustrate the procedure and study
the impact of DA via two popular examples of com-
puter experiment: the borehole model and damped
harmonic oscillation. In the Conclusion section, we
draw conclusions about the significant advantages and
improvements of incorporating DA, with a discussion
of limitations.

Methodology

We first introduce the general setting of the prediction
problem in computer experiments. Then we propose a
systematic framework of how to apply DA in computer
experiments. After formulating DA factor space and
theConditional LHD, some theoretical properties from
both physical and statistical perspectives are discussed.

Settings of computer experiment

The problem concerned here is the prediction of a
function y(t ) on a domainT , whereT ⊆ Rk and y(t ) ∈
R1, ∀t ∈ T . Our main goal is to estimate function
y(t ) based on the dataset � = {(ti, y(ti)) : ti ∈ T, i =
1, . . . , n} of size n. In the context of computer exper-
iments, t is the k-dimensional input vector to a com-
puter model of an unknown physical or behavioral sys-
tem and y(t ) is a scalar response. In the design phase,
we assign values of ti’s to optimize the designDT = {ti :
ti ∈ T, i = 1, . . . , n} in some sense. After the design of
DT , ti ∈ DT is fixed and y(ti) are obtained from the
computermodel. In the analysis phase, the correspond-
ing responses yi = y(ti) are used to estimate the func-
tion and to predict y(t ) at any given t ∈ T . Several fea-
tures are commonly shared by computer models (see
also Santner et al., 2003).

1. Function y(t ) is mostly deterministic: if the
computer experiment is run with the same val-
ues of t , the same values of y will be generated.
Exceptions are usually due to practical reasons
such as follows. In some cases, factors with
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small and/or high-order effects are excluded
from the model. Also, some factors may imitate
random variation due to noise in the environ-
ment.When considering the subset of modeling
variables of interest, such excluded factors are
considered as random effects and contribute
to the unreproducible random errors upon the
lack of fit of the model. In this sense, y(t ) is
considered random.

2. Computer models are numerical (not ana-
lytical) approaches, thus they are typically
computationally intense and time consuming.
The feasible number of runs n is limited.

3. The functional dependence of y on t is usually
complex, and thus simple interpolation is not
sufficient.

Resulting from the above features, a space filling
design DT on the original space T seems appropriate.
Adjusting the factor space to cope with the domain
knowledge should also be part of statistical modeling.
Naively using original factor space T is possibly unjus-
tifiable and inefficient. Here, we propose to use the DA
factor space Q.

Formulation of dimensional analysis-based factor
space

The dimensional knowledge behind computer exper-
iments often implies clues of functional depen-
dence between yi and ti. Dimensional analysis sug-
gests that the better way to associate yi with ti is
through dimensionless variables. The details are as
follows.

Suppose the input t = (x1, . . . , xk), where x j are
the observed physical quantities with unit Uj, j =
1, . . . , k. The physical response we intend to model
is y with unit U0. Among x j’s, select b basis quanti-
ties, and denote them as x1, . . . , xb with correspond-
ing units U1, . . . ,Ub, such that they have the fol-
lowing two properties: (a) representativity: they can
express all other units U0,Ub+1, . . . ,Uk, i.e., Uj =
f j(U1, . . . ,Ub), j = 0, b+ 1, . . . , k; (b) independence:
they cannot represent each other, � f j such that Uj =
f j(U1, . . . ,Ui �= j, . . . ,Ub), j = 1, . . . , b. For example,
suppose y has dimension length and unit meter, x1
has dimension length and unit meter, x2 has dimen-
sion time and unit second, x3 has dimension speed
and unit meter/second. Then we can choose x1 and
x2 to be basis quantities because their units (meter
and second) have (a) representativity: can express y’s

unit meter and x3’s unit meter/second; (b) indepen-
dence: meter and second cannot represent each other,
� f such thatmeter = f (second). Notice the set of basis
quantities cannot include x3 in addition to {x1, x2}
because that violates independence. It cannot be just
{x1} because that violates representativity. But it can be
{x1, x3} or {x2, x3}. The set is not unique but the size
b is.

Due to representativity, non-basis quantities can
be transformed into dimensionless forms using
basis quantities. To accomplish this transformation,
let q0 = y/ f0(x1, . . . , xb); q j = x j/ f j(x1, . . . , xb),
j = b+ 1, . . . , k, where f j’s are shown in property
(a). Then q j’s are dimensionless and all have unit 1.
Note that f j’s are known by physics. Due to property
(b) independence, the representations f j’s are unique.
Buckingham’s � theorem shows that, rather than orig-
inal functional dependence y = y(t ) = g(x1, . . . , xk),
or equivalently

q0 = h(x1, . . . , xb, qb+1, . . . , qk), [1]

it should be

q0 = h(qb+1, . . . , qk), [2]

to satisfy the dimensional homogeneity, mainly
because x1, . . . , xb are basis quantities and can-
not represent the dimensionless unit. The DA
factor space is denoted as Q = {(qb+1, . . . , qk) : q j =
x j/ f j(x1, . . . , xb), j = b+ 1, . . . , k; (x1, . . . , xk) ∈
T} which is a subset of Rk−b. The response y can then
be recovered by

y = f0(x1, . . . , xb)h(xb+1/ fb+1(x1, . . . , xb), . . . , xk/ fk
× (x1, . . . , xb)). [3]

We call a space filling design on Q, a dimensional
analysis based design (DA design), and denote it by DQ.
Due to the reduced dimension, points in DQ map to
multiple correspondences in T . h is the only unknown
function. Amodel is called a dimensional analysis based
model (DA model), if it is able to estimate h in [2] and
to recover y through [3].

Here, we briefly illustrate the DA technique using
the example of computer simulated aerodynamic tests
of plane wingsmentioned in the introduction. Suppose
the input variables are wind attributes, speed v , density
ρ, temperature T and plane wings geometries (of
length), L1, . . . , Ls. The output variable is the lifting
force F . According to SI unit system, v has m/s, ρ has
kg/m3, T has K, L1, . . . , Ls havem and F has kg · m/s2

as their units, respectively. Without DA, the model is
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F = g(v, ρ,T, L1, . . . , Ls). With DA, basis quantities
are selected to be v, ρ,T, L1. Other quantities are trans-
formed into dimensionless forms: qF = F/(ρv2L21) the
dimensionless force which describes how F is related
to the environment of the wind and qLj = Lj/L1 for
j = 2, . . . , s which characterizes the geometry of
wings. Following the same notation as above, the
model is given by qF = h(v, ρ,T, L1, qL2, . . . , qLs ).
By dimensional homogeneity requirement,
h(v, ρ,T, L1, qL2, . . . , qLs ) should be dimensionless.
However, v, ρ,T, L1 are basis quantities that cannot
represent dimensionless quantities, and thus should be
removed. qF = h(qL2, . . . , qLs ), that is F/(ρv2L21) =
h(L2/L1, . . . , Ls/L1), and T is dropped because no
other quantities have temperature dimension. The
DA model is thus F = ρv2L21h(L2/L1, . . . , Ls/L1).
Therefore, it turns out that F ∝ v2 the lifting force
should be a monotone (actually quadratic) function
of the wind speed, just as required. In fact, the actual
approximate force of lift equation is F = ρv2SCL/2,
where S = L1 × L2 is the wing area and CL is the lift
coefficient (Anderson, 2004). The lift coefficient CL

that is universal to various conditions is essentially
2qF/qL2 . The function h we want to estimate is simply
h(x2, . . . , xs) = x2/2.As a result, theDAmodel utilizes
physical information to reveal the relationship between
F and ρ, v , and focuses on estimating the effects from
wings geometries, which is the benefit that the model
without DA, i.e., F = g(v, ρ,T, L1, . . . , Ls), cannot
achieve.

From DA procedure, it can be seen that the choice
of basis quantities is not unique, just as the basis of
a linear space. As long as the functional relationship
is dimensionally homogeneous, DA is valid and such
choice should not affect the results. However, differ-
ent choice of basis quantities yields different functional
forms to be estimated that are not equally attractive in
statistical perspective. Intuitively, the basis quantities
that yield a simpler functional relationship are more
desirable, such as a linear one. The statistical implica-
tions of different choice of basis quantities is out of the
scope of this article.

Framework of design and analysis for computer
experiment via dimensional analysis

By incorporating the DA technique, a design and anal-
ysis framework tailored to the dimensional constraints

of computer experiment is proposed, which proceeds
as follows.

Step 1. Examine the physical dimensions of the vari-
ables in the system.

Step 2. Apply dimensional analysis procedures to both
input variables and response. The variables are
hence transformed into dimensionless. The DA
factor space is achieved, as a result.

Step 3. Based on the transformed variables, reformulate
the prediction problems. Construct the design,
such as Latin Hypercube Design, on the trans-
formed variables. The DA design is achieved, as
a result.

Step 4. Generate the responses of the design points via
computer experiments.

Step 5. Implement statistical models such as regression
and Kriging to emulate the predictions. The DA
model is achieved, as a result.

Step 6. Compare the resulting estimates and/or vari-
ances to the computer model through confir-
mation runs and evaluate the prediction per-
formance. Return the estimated function as the
final meta-model to the computer model.

Step 1 usually requires domain knowledge of the
physical aspect of the system. Details on Step 2 can
be found in the previous section. Standard design
approaches can be used in Step 3. However, here we
propose a new class of designs (in the next section)
to comply with features of DA. Computer experiments
generate response values in Step 4. Analyses can be
carried out according to the context in Step 5. Step 6
evaluate its validation, and finally the prediction prob-
lem is resolved. Two case studies will be discussed in
detail (in the Case Studies section) to demonstrate the
procedure.

Conditional Latin Hypercube Design

Suppose that the relationship between inputs and out-
put is completely unknown. A space filling design on
those input variables is recommended. Themost popu-
lar one is perhaps the Latin Hypercube Design (LHD),
which enjoys many desirable properties (McKay et al.,
1979; Park, 1994). Generally, the design points for
original variables on T can be created straightfor-
wardly by scaling LHD to fit the ranges when T is
a hypercube. However, even if T is hypercube, the
domain of the DA factor space Q is often irregular
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(see Figure 3a in Lin and Shen, 2013, for an example
with detailed discussion there). One way is to use the
rejection method (RLHD): LHD points are sampled
from a hybercube [0, 1]k−b containing the transformed
domainQ and the LHD points are kept only if they fall
in the domain Q. However, Q is sometimes so irreg-
ular that the efficiency for retraining design points is
low. There are a few methods for generating a space
filling design for an arbitrary irregular space such
as Fast Flexible Space-Filling designs (Lekivetz and
Jones, 2015) and optimal U-type designs (Lin et al.,
2010). Such approaches require an explicit domain
specification of Q (cumbersome to derive from T ) and
often need the convexity assumption to yield good
results (usually not applicable for Q). They also need
more computation and more expensive to streamline
for computer experiments. Furthermore, given the
design on Q, the corresponding working inputs t in T
are not unique. Take the lifting force example in the
Methodology section. Given a design of qL2 = L2/L1,
multiple values of L1 and L2 are valid. Plus, eventually
the design need to be carried out in terms of the work-
ing density ρ and velocity v , which are not defined
in Q. Finding the specific values of working inputs t ’s
that both induce the given design on Q and satisfy the
domain constraints in T is an additional effort. Finally,
although in theory, choice of basis quantities and their
values given design Q should not affect the result, but
in reality y(t ) is seldom invariant to the particular
decomposition of q onto t . We need a design that helps
us justify this invariance property before we blindly
trust DA and think all decompositions work the same.

To generate DA designs on irregular domains in
an efficient manner, we propose a “Conditional Latin
Hypercube Design” (CLHD). It is essentially a design
for T but has good coverage over Q. This design is
called “conditional” because the basic idea is to gen-
erate a few smaller LHD’s conditioning on the values
of basis quantities. This can be achieved because the
domains are regular (hybercube) after conditioning
on basis quantities. This method could be modified
straightforwardly to generate other types of space
filling designs (in addition to LHD) for irregular DA
space in general. There are three major advantages
for using CLHD to generate DA designs on irregu-
lar domains: (a) efficiency: acceptance rate is 100%;
(b) good coverage for dimensionless quantities to
model the nonlinear trend; (c) high power for test-
ing linear effect in basis quantities and justifying the
validity of DA.

Consider Model (1): Q = {(qb+1, . . . , qk) : q j =
x j/ f j(x1, . . . , xb), j = b+ 1, . . . , k; (x1, . . . , xk) ∈
T}. Suppose T = R1

⊕ · · ·⊕Rk is a k-dimensional
hybercube, where Ri is the range of xi. Thus,
given the value of x1, . . . , xb, the range of q j is
actually just a rescaled version of range of x j

by a factor of 1/ f j(x1, . . . , xb). Denote condi-
tional domain as Qx1,...,xb = {(qb+1, . . . , qk) : q j =
x j/ f j(x1, . . . , xb), j = b+ 1, . . . , k; (xb+1, . . . , xk) ∈
Rb+1

⊕ · · ·⊕Rk}. Then Qx1,...,xb is a (k − b)-
dimensional rescaled hybercube. The overall design
space is the union of all conditional domains
Q = ⋃

x1∈R1,...,xb∈Rb
Qx1,...,xb . CLHD is composed of

the following four steps.
1. Generate a d level (fractional) factorial design P

of size db on basis quantities x1, . . . , xb. Denote
as P = {Pr; r = 1, . . . , db} where each Pr is a
design point (x1r, . . . , xbr).

2. For each point Pr, we assign a weight such that
wr ≥ 0,

∑db
r=1 wr = 1.

3. For each design point Pr, conditioning on design
values (x1r, . . . , xbr), generate a space filling
design Qr of size nwr on qb+1, . . . , qk in space
Qx1r,...,xbr .

4. Combine all db designs
⋃db

r=1(Pr,Qr), a design
on x1, . . . , xb, qb+1, . . . , qk of size n can be
obtained.

Notice that all design points lie within the work-
able domain in original scales. The acceptance rate
is guaranteed to be 100%, regardless of how irregu-
lar the DA domain is. Also, the space filling design Qr

does not have to be a LHD, in which case it is more
appropriate to be called as a “Conditional Space Filling
Design”.

Parameters d and wr need to be determined for
CLHD. In DA, b is usually small (3∼4). From Buck-
ingham’s � theorem, we know that x1, . . . , xb do not
have effects on the model. Thus, level d is taken to be
small, say 2. The weights wr serve as a tuning param-
eter providing some freedom in choosing the most
appropriate design according to the context. The naive
choice will be the equal weights wr = 1/db. A better
choice will be weights proportional to the volume of
conditional domains wr ∝ Vol(Qr). For larger domain
areas, more design points are assigned. A third alter-
native would be to take the weights that optimize the
discrepancy criterion of the resulting design. It reduces
clusters due to overlaps in the conditional domains.
The resulting weights depend on the shape of Q and
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function f j, j = b+ 1, . . . , k to yield a “conditional”
optimal design. The third approach is the best in terms
of the uniformity, but requires extensive computations.
We implement the equal weights in the later examples
because this simple version is sufficient to show the
unique performance of CLHD.

Note that this approach designs the experiments
based upon both qb+1, . . . , qk and x1, . . . , xb. Thus,
besides modeling dimensionless qb+1, . . . , qk, it is
possible and effective to test the effect of basis quan-
tities x1, . . . , xb empirically. Considering Eq. [1] as
the model under the null hypothesis and Eq. [2] as
the one under the alternative, we can test statisti-
cally whether Buckingham’s � theorem is reasonable
for a specific data set. Violation of Buckingham’s
� theorem can be viewed as a sign of missing
key physical quantities. Such a test is a model val-
idation step. It justifies whether DA modeling is
appropriate.

Table 1 displays an illustrative example of the
Conditional LHD. Suppose the original variables
x1, . . . , x4 have hypercube domains. x1 is the basis
quantity and q2, q3, q4 are DA transformed variables
correspondingly. We first have a two-level design
on x1. Conditioning on x1 = 1, runs 1–3 form an
LHD on q2, q3, q4; conditioning on x1 = 2, runs 4–
6 form another LHD. To facilitate comprehension,
the structures of two LHDs (runs 1–3 and runs 4–6,
respectively) are kept the same: only the scaling is
different which is determined by values and forms of
x1 in respective qi’s. However, it is not necessary to
keep the same design structure: one can use different
LHDs or even different types of space filling designs
for each conditional design. Primarily for modeling
purpose, we focus on the design of dimensionless
q2, q3, q4. As shown from Table 1, the three right most
columns contain few repetitions but good coverage
of the domain, providing adequate information for
modeling. On the other hand, one may be interested in

Table . An illustrative example of the Conditional LHD. x1, . . . , x4
have ranges [,]. q2 = x2 × x1, q3 = x3 × x1, q4 = x4/x1.

Dimensionless quantities
Basis quantities

Runs x1 q2 q3 q4

   / 
  /  
    /
    
    /
    /

testing the effect of x1 to check whether Buckingham’s
� theorem holds and whether the key variables are
missing. Then a linear effect seems adequate. End
points are repeated to yield a high power of detection.

BecauseQ = ⋃
x1∈R1,...,xb∈Rb

Qx1,...,xb , all regions inQ
are represented if basis quantities x1, . . . , xb are enu-
merated. When x1, . . . , xb take discrete values, unions
of Qx1,...,xb may not cover the entire Q, especially when
the ranges R1, . . . ,Rb of the basis quantities are rela-
tively large. Denote Ri = [ui, vi] with vi > ui > 0 and
vi/ui as its range ratio. When vi/ui 	 v j/uj for i ∈
{1, . . . , b} j ∈ {b+ 1, . . . , k}, Qx1,...,xb will be far apart.
There are two solutions: (a) choose basis quantities
with smallest ranges ratios vi/ui, which is always pos-
sible; and (b) choose a multi-level design (or space fill-
ing design) for basis quantities, such as LHDs. On the
other hand, when vi/ui 
 v j/uj for i ∈ {1, . . . , b} and
j ∈ {b+ 1, . . . , k}, Qx1,...,xb are not disjoint. The over-
lapping regions are overrepresented. They are mainly
in the center of the domain where same values of
dimensionless qb+1, . . . , qk can be obtained by multi-
ple settings of basis quantities x1, ...xb. Such a repeti-
tion is useful in averaging out effects of x1, . . . , xbwhen
Buckingham’s � theorem does not hold exactly due to
numerical errors and random seed variations in com-
puter simulations. Overall, we propose the range ratios
vi/ui as the guidance for balancing between designs on
basis quantities and dimensionless quantities to yield
a full uniform coverage of Q. If uniformity is a strong
concern, one can choose an appropriate uniform crite-
rion such as MaxPro (Joseph et al., 2015) and optimize
with respect to wr and Qr.

The Conditional LHD provides a more uniform
space filling of domainQ, compared to designs on orig-
inal space T . Figure 1 shows the comparison between
the coverage performance of the CLHD in Table 1
and a transformed Maximin LHD. The transformed
Maximin LHD is constructed by generating a Max-
imin LHD (using package “lhs” in R) on x1, . . . , x4
and transform it to x1, q2, q3, q4. Figure 1 shows that
the points of CLHD are well separated without many
repetitions under each projection. However, the trans-
formedMaximin LHD generates clusters of points and
its projection to individual dimensions creates many
repetitions that are not desirable for modeling com-
puter experiments. Therefore, a space filling design on
Q, such as CLHD and RLHD, is necessary. CLHD is
more efficient than RLHD in irregular DA domains, in
terms of the acceptance rate.
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Figure . Coverage comparison between Conditional LHD (circle) and transformed Maximin LHD (plus) for the illustrative example.
(a) Displays design points projected to q2, q3; (b) displays design points projected to q2, q4; (c) displays design points projected to q3, q4.

There are cases when T is far from hybercube (regu-
lar) butQ is close. In fact, our experiences indicate that
this is more likely in practice. Under such situations,
it is most appropriate to choose DA factor space and
implement a space-filling design on Q.

It is worthwhile to mention that the Conditional
LHD has a similar feature as those in the Sliced Space-
fillingDesign (Qian, 2012).However, themain purpose
of sliced space-filling design is to incorporate categori-
cal variables, while Conditional LHD is for quick gen-
eration of DA designs. The different objectives lead to
different designs.

Theoretical properties

Some theoretical discussions are given below to ensure
the physical and statistical properties for the proposed
method. The models described below are used because
of their simplicity and interpretation. However, similar
results can also be derived for other models. To facil-
itate comparisons, assume the non-DA model is q0 =
h(x1, . . . , xb, qb+1, . . . , qk, ε), while the DA model is
q0 = h(qb+1, . . . , qk, ε). ε is the error/lack-of-fit.

From a physical perspective, a DA model is bet-
ter than a non-DA model in the following aspects.
First, since the variables are dimensionless, the func-
tional dependence is free from units. Dimensionless
quantities are conventionally preferred in describing
the characteristics of a system. Second, the power
law form of the transformed variables, described in
Buckingham (1914), enables scalability in the original
variables. Extrapolations in original variables may
lead to interpolations in their dimensionless form.
This is particularly favorable to scaling problems and
acceleration experiments. Third, running experiments

with b less variables could reduce sources of vari-
ations and provide consistency. The variations and
measurement errors of x1, . . . , xb will not propagate
to the response. Finally, according to Buckingham’s
�-theorem, there will be no information loss if the
function is physically legitimate (Buckingham, 1914).

From a statistical perspective, the main advantage
of DA model is a reduced factor space without los-
ing empirical information. It generates the following
benefits. First, the uncertainty in the data may result
in significant x1, . . . , xb, but by the Buckingham’s
�-theorem they should not be in the model. Without
considering x1, . . . , xb, we minimize the risk of falsely
concluding the trivial significance because of random-
ness. Second, the problem of collinearity is now less
severe. Less correlated structures in variables allevi-
ate confounding issues, and facilitate extrapolations.
Third, the extra degrees of freedom of data (based on
a model with less parameters) provide more consistent
estimation of random errors, and thus a more reliable
inference.

The efficiency of estimating parameters correspond-
ing to qb+1, . . . , qk increases, as shown in the following
three scenarios.

1. Linear case.
Rewrite q0 = β1x1 + · · · + βbxb + βb+1qb+1 +
· · · + βkqk + ε in a vector form q = Xβ + ε

with ε ∼ N(0, �). Suppose X = (B,Q)

is of full rank, B = (x1, . . . , xb) and Q =
(qb+1, . . . , qk). Also, βT = (βT

B , βT
Q ), where

βB = (β1, . . . , βb)
T and βQ = (βb+1, . . . , βk)

T .
This representation covers both regression and
Kriging models, by treating rows of ε as from
repeated observations or from a realization of
Gaussian process respectively. For simplicity, we
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can use ordinary least square estimates β̂ and
proceed with regression settings with � = σ 2I.
Notice that Kriging estimates are merely
generalized least squares and can be trans-
formed to the above regression case. Then for
model (1),

Var(β̂ ) = σ̂ 2(XTX )−1 = σ̂ 2
(
BTB BTQ
QTB QTQ

)−1

, and

Var(β̂Q) = σ̂ 2 (QTQ − QTB(BTB)−1BTQ
)−1 .

For the same design on Q with model (2),

Var(β̂ ′
Q) = σ̂ 2 (QTQ

)−1
.

Now, B(BTB)−1BT , as well as I − B(BTB)−1BT ,
is idempotent and thus semi-positive defi-
nite. Therefore, QTQ ≥ QTQ − QTB(BTB)−1

BTQ ≥ 0 and (QTQ)−1 ≤ (QTQ − QTB
(BTB)−1BTQ)−1 if invertible, with equal sign
if and only if Q, B are mutually orthogonal.
Thus, Var(cT β̂ ′

Q) ≤ Var(cT β̂Q), ∀c ∈ Rk−b.
In other words, estimates of coefficients have
smaller variances by DA procedure. In par-
ticular, the estimated responses are q̂0 = Qβ̂Q

for model (1), q̂′
0 = Qβ̂ ′

Q for model (2), and
Var(q̂′

0) ≤ Var(q̂0).
2. Fisher information and maximum likelihood

estimator.
As a generalization to the above case, suppose
χ = (q0, x1, . . . , xb, qb+1, . . . , qk) follows some
distribution with density f and parameter θ .
Then the Fisher information matrix is

I(θ ) = E

[(
∂

∂θ
log f (χ; θ )

)(
∂

∂θ
log f (χ; θ )

)T
∣∣∣∣∣ θ
]

.

Suppose θ = (θT
B , θT

Q )T , where θB and
θQ characterize effects of basis quantities
B̃ = (x1, . . . , xb)T and transformed variables
Q̃ = (q0, qb+1, . . . , qk)T , respectively. Under
the true DA model, assume θB is fixed at values
indicating the zero effects of basis quantities.
Therefore, I(θ ) can be expressed as a block
matrix:

I(θ ) =
( IB(θ ) IBQ(θ )

IQB(θ ) IQ(θ )

)
.

Only IQ (the information to Q) is of main

interest:

IQ(θ ) = E
[(

∂

∂θQ
log f (χ; θ )

)
×
(

∂

∂θQ
log f (χ; θ )

)T
∣∣∣∣∣ θ
]

.

Followingmodel (1), suppose θ̂ is themaximum
likelihood estimator. Under mild regularity
conditions, E(θ̂ ) → θ and Var(θ̂ ) ≈ I−1(θ ).
Therefore, its sub-vector E(θ̂Q) → θQ and
Var(θ̂Q) ≈ (IQ(θ ) − IQB(θ )I−1

B (θ )IBQ(θ ))−1.
Following model (2), θB is known to

take values indicating zero effects and θ̂ ′
Q is

the maximum likelihood estimator. Under
mild regularity conditions, E(θ̂ ′

Q) → θQ and
Var(θ̂ ′

Q) ≈ I−1
Q (θ ). Var(θ̂ ′

Q) ≤ Var(θ̂Q) with
equal sign if and only if IQB(θ ) = 0.

3. Dimension reduction.
Suppose Y,X1, . . . ,Xk are random variables,
and so are q0, qb+1, . . . , qk. We want to deter-
mine the relationship betweenY andX1, . . . ,Xk

and equivalently between q0 and X1, . . . ,Xk.
The model (2) and DA principle indicate that

q0 ⊥⊥ X1, . . . ,Xk|qb+1, . . . , qk,

which means that q0 and X1, . . . ,Xk are inde-
pendent given qb+1, . . . , qk. qb+1, . . . , qk is a
sufficient dimension reduction of X1, . . . ,Xk

with regard to the response q0. q j’s actually
take the power law form: q j = XjX

aj1
1 · · ·Xajb

b .
By taking a logarithm, log(q j) = log(Xj) +∑b

i=1 a ji log(Xi) = ∑k
i=1 a ji log(Xi). Denote

log(Xi) as X̃i and X̃ = (X̃1, . . . , X̃k). Then

q0 ⊥⊥ X̃1, . . . , X̃k|AX̃,

where A = (a ji) is a (k − b) × k matrix. As
a result, DA can be viewed as a predeter-
mined physics-originated procedure to identify
the linear sufficient dimension reduction space.
Design and analysis via DA study the relation-
ship of interest in a confined linear space, and
donot lose information. Similar theoretical ben-
efits can be derived as an analogy to statisti-
cal dimension reduction. Conversely, statistical
dimension reduction approaches can be viewed
as the data-driven versions of DA. The natu-
ral connection shown above proposes a gen-
eral perspective on unifying DA as a scientific
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approach and statistical dimension reduction as
an empirical one, under the framework of suffi-
cient dimension reduction.

The reduction in dimensions of variables also yields
benefits under the Bayesian framework, which will
not be discussed here. The theoretical properties from
physical and statistical views can be further illustrated
by the numerical examples in the following section.

Case studies

In this section, comparisons between designs and anal-
yses with and without DA are performed on two exam-
ples, the borehole model and the damped harmonic
oscillator. The case on borehole model serves as a
detail illustration on how to perform DA in computer
experiments. The case on damped harmonic oscillator
emphasizes on showing how DA greatly improves pre-
dictions and why it is more powerful.

For both case studies, the responses can be explicitly
expressed as known equations of the inputs, which are
typically unavailable for computer models of interest.
However, the simplicity leads to a quick assessment of
the accuracy of predictions by comparing to the ground
truth. The true theoretical solution is unknown during
the design/analysis phase and only used for generating
response in data collection and model assessment.
Designs and analyses are conducted to estimate the
functional relationship between the response and the
input variables. Our objective is to compare the pre-
diction performances of procedures with and without
dimensional analysis.

To be specific, we apply random LHDs as non-
DA designs. Then their rejected versions are taken
as RLHDs and their conditional versions with equal
weights as CLHDs. The reason of choosing random
designs, rather than optimal designs, as kernels for
all design strategies is to eliminate effects of optimal
criterion and domain regularity on the performance,
and to induce a fair comparison between the DA factor
space and the original space. If an optimal design
criterion is used, different domain shapes possibly lead
to incomparable designs. The purpose here is to pro-
vide a comprehensive view on the “pure” effect of DA
procedure, regardless of the specific type of LHD used
in practice. Furthermore, random LHDs also provide
us information about the robustness of DA modeling
to the random variation of initial design. After assign-
ing the design strategies for the input variables, the

theoretical model is used to generate responses given
the design of input variables, emulating certain compli-
cate computer models. Two kinds of statistical analysis
techniques, regression and Kriging, are used as exam-
ples. These two models are well-accepted and widely
implemented. We use the regression as a benchmark
for its parsimonious representation. Kriging is adopted
due to its ability to capture complex nonlinearity. See
Cook and Weisberg (1982), Santner et al. (2003), and
Williams (1998) for details on the model assumptions
and procedures.

After fitting the models, their respective response
predictions are obtained on a set of validation points,
which consists of 104 LHD points for the original vari-
ables. This stands for the evaluation of their respective
performances on new random inputs. The criteria on
which we base our evaluations are Mean Square Error
(MSE = ∑n

i=1(yi − ŷi)2/n) and Maximum Absolute
Deviation (MAD = maxi=1...n{|yi − ŷi|}), where yi’s are
the theoretical values and ŷi’s are the predicted values
from the estimated model. Finally, to assess DA over a
wide range of designs, we generate the empirical distri-
butions of MSE and MAD over a Monte Carlo sample
of the initial training LHD. From that, we remove the
randomness and assess the reliability and robustness of
the DA procedure to the choice of designs.

Case Study - I: Boreholemodel

Boreholemodel
Illustrated in Figure 2 is a model widely used to
describe the flow of water through a borehole from
the ground surface through two aquifers. Previous

Figure . Illustration of borehole and water flow. Picture from
http://www.waterseekers.co.uk/borehole-drilling-faq.php#
&panel-.

http://www.waterseekers.co.uk/borehole-drilling-faq.php'134#
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Table . Table of physical meanings, ranges and dimensional sym-
bols of variables in borehole model.

Variable Physical meaning Range Dimension

y0 Borehole flow rate [L3/T]
rw Radius of borehole . to . m [L]
r Radius of influence  to , m [L]
Tu Transmissivity , to , m2/yr [L2/T]

of upper aquifer
Hu Potentiometric head  to , m [L]

of upper aquifer
Tl Transmissivity . to  m2/yr [L2/T]

of lower aquifer
Hl Potentiometric head  to  m [L]

of lower aquifer
L Length of borehole , to , m [L]
Kw Hydraulic conductivity , to , m/yr [L/T]

of borehole (extended)

studies on this model include Harper and Gupta
(1983), Worley (1987), Morris et al. (1993), and Fang
and Lin (2003). The model is based on assumptions of
(i) no groundwater gradient; (ii) steady-state flow from
upper aquifer into the borehole and from the bore-
hole into the lower aquifer; and (iii) laminar, isother-
mal flow through the borehole. In this model, the flow
rate through borehole y0 as response is given by

y0 = 2πTu(Hu − Hl )

ln(r/rw)[1 + 2LTu
ln(r/rw )r2wKw

+ Tu
Tl
]
. [4]

Table 2 shows the physical meanings, ranges, units
and dimensional symbols of the eight inputs and the
response. The form of function seems highly non-
linear. Particularly, if the range of Kw is extended to
[1500, 15000] from [9855, 12045], Figure 3 shows a
nonadditive trend between the response y0 and the
inputs rw and Kw when the remaining inputs are at
their respective lowest values. Here, we focus on the
extended range case. The detail analyses for the orig-
inal range case is given in Appendix A.

Dimensional analysis on boreholemodel
The dimensional analysis is applied according to phys-
ical dimensions summarized in Table 2. Only two
dimensions are involved: length L and timeT. We need

two quantities to represent these two dimensions and
choose Hu and Tu as basis quantities based on small-
est range ratios. Of course, this choice is not unique.
Given that the borehole Eq. [4] is dimensionally homo-
geneous, the choice of basis quantities and their work-
ing values given dimensionless design Q should not
affect results.

Other quantities are transformed into dimensionless
forms as follows:

q0 = y0
HuTu

, q1 = rw
Hu

, q2 = r
Hu

, q5 = Tl
Tu

,

q6 = Hl

Hu
, q7 = L

Hu
, q8 = KwHu

Tu
. [5]

Designs and analyses on DA factor space
The next step is to reformulate the prediction function.
Without dimensional analysis, function g needs to be
estimated, where

y0 = g(rw, r,Tu,Hu,Tl,Hl, L,Kw). [6]

With dimensional analysis, our model is

y0
HuTu

= h
(
rw
Hu

,
r
Hu

,
Tl
Tu

,
Hl

Hu
,
L
Hu

,
KwHu

Tu

)
. [7]

And the recovery function will be ŷ0 = HuTu ·
ĥ(r/Hu, rw/Hu,Tl/Tu,Hl/Hu, L/Hu,KwHu/Tu). Note
that, by rewriting model (4), the true h is of the form:

y0
HuTu

= 2π
(
1 − Hl

Hu

)[(
ln
(

r
Hu

)
− ln

(
rw
Hu

))

×
(
1 + Tu

Tl

)
+ 2

L
Hu

(
Hu

rw

)2 Tu
KwHu

)]−1

. [8]

The simulation is done as follows: first, 80 design
points are generated onQ andT , respectively. The non-
DA design is (a) the random LHD; the DA designs are
(b) LHD with rejection method (RLHD); and (c) the
proposed conditional LHD (CLHD) as discussed in the
Methodology section. The responses are then obtained
by Eqs. [4]. Analyses including stepwise regression and

Figure . Contour plot of response y0 with different ranges of Kw .



QUALITY ENGINEERING 11

Kriging method are implemented to train the predic-
tion model for both non-DA model (6) and DA model
(7). The stepwise regression starts from a full quadratic
model with pairwise interactions and selects variables
forward and backward based on AIC. Kriging is done
by first fitting an exponential correlation function on
standardized covariates and response with no drift and
nugget terms. Separate scale parameters are estimated
by maximizing the likelihood. Then the MLEs of the
scale parameters are fed to the exponential correlation
function by “Krig” function in R package “fields.”
The model on standardized covariates with a linear
drift trend and no nugget terms is fitted to produce
predictions. Finally, the evaluation measures, MSE and
MAD, are achieved on 104 validation points generated
by maximin-LHD on original variables.

Results
Table 3 summarizes the performance measures of
each combination of procedures. 100 simulations of
designs are generated, evaluated with the same vali-
dation points. The average MSEs and MADs across
100 simulations are listed according to the designs

Table . Table of performance measures on LHD validation points
in borehole example with extended range of Kw .

MSE MAD

Regression Kriging Regression Kriging

Non-DA .(.) .(.) .(.) .(.)
DA-RLHD .(.) .(.) .(.) .(.)
DA-CLHD .(.) .(.) .(.) .(.)

and analyses. The corresponding standard errors are in
the parentheses. If a modeling procedure is robust, we
would expect a low MSE/MAD with little variance.

Note that the response is rather nonlinear. Table 3
shows that DA procedures generally perform better
than procedures without DA (except DA-RLHD for
Regression). DA with CLHD performs well for regres-
sion method. It reduces MSE of prediction errors from
non-DA model greatly. DA with RLHD performs well
for Krigingmethod. It reduces both theMSE andMAD
significantly. Compared with naive CLHD, RLHD is
more uniform and puts more weights on those extreme
edges. This is particularly good for Kriging to capture
the exotic values, but bad for regression. A polynomial
tends to fit these outliers, leading to an unstable pre-
dictive model. This is the reason why DA with RLHD
performs worse than stepwise regression without DA
variables. Overall, modeling on DA factor space has
a potential in reducing the MSE of the prediction
errors.

In additional to the means, Figure 4 shows the
empirical distributions of MSE and MAD. Distribu-
tions of errors for procedures with DA are sharper
in some cases. However, the difference is not that
large.

Note that regression has a better performance in
terms of predictions than Kriging in this case. The rea-
son for lack of fit for regression method may be due to
the overfitting and correlated interactions. The result-
ing models selected by stepwise regression often have
an R2 close to 1. Its better performance over Kriging

Figure . The empirical distribution of performancemeasures for differentmethodswith andwithoutDA in the case of extendedKw range.
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Table . Table of variances of coefficients in borehole example
with extended range ofKw . Values are in the scale of×10−2.

Component β3 β4 β5 β6 β7 β8

Var(β̂Q) .(.) .(.) .(.) .(.) .(.) .(.)
Var(β̂ ′

Q) .(.) .(.) .(.) .(.) .(.) .(.)

may be attributed to the small size of data set.We use 80
points for the original problemwith 8 variables for both
DA and non-DA methods. Kriging provides too many
degrees of freedom in modeling, leading to overfitting
and lack of stability. Regression methods, on the other
hand, restrain its predictive values to a hyperplane and
recover the general trend. However, it is well known
that Kriging is better in capturing the nonlinear com-
plex dependence than regressions. Thus, we expect the
performances will be comparable, or favorable to Krig-
ing, as sample size gets larger.

The variances Var(β̂Q) and Var(β̂ ′
Q) can be numeri-

cally calculated. In particular, we generate 100 CLHDs
and standardize the covariates. The diagonal of
Var(β̂Q) and Var(β̂ ′

Q) are displayed in Table 4. It can
be seen that the results are consistent to the theories
derived in the Theoretical Properties section. Var(β̂ ′

Q)

are smaller, especially for β5 and β6. Var(β̂ ′
Q) is close

to the theoretical variance (n − 1)−1 ≈ 0.01266 when
covariates are orthogonal, but Var(β̂Q) is not. This
occurs when Q has nearly orthogonal columns but is
not orthogonal to B. Therefore, CLHD generates rather

uncorrelated columns for dimensionless quantities but
they may be correlated with basis quantities. Great
reduction of variance can be achieved when applying
DA and only modeling dimensionless quantities.

Figure 5 shows the prediction errors against esti-
mated responses using differentmetamodels out of one
run. Figure 5a features a clear quadratic pattern of
residuals with non-DA procedures. Significant system-
atic bias is generated especially when using Kriging. By
incorporatingDA, we notice a sign of bias correction in
Figures 5b and 5c. Outliers for regression become less
severe. The residuals by Kriging seem to be more even
and the bias pattern that is extreme on larger estimated
responses for Kriging is drawn towards 0.

Case Study - II: Damped harmonic oscillator

Damped harmonic oscillator
In the classic mechanics, a damped harmonic oscillator
is a system that, when displaced from its equilibrium
position, experiences a restoring force F which is pro-
portional to the displacement x, and a frictional force
f , proportional to the velocity v . Harmonic oscillators
are very important in physics because any object in sta-
ble equilibrium acts like a harmonic oscillator for small
vibrations. Extensive researches have been done asso-
ciated with damped harmonic oscillator in mechanical
engineering, control engineering, structural engineer-
ing, electrical engineering, among others. Reference

Figure . Plot of prediction errors against true responses for various procedures.
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Figure . Behavior of damped harmonic oscillator with different
damping modes.

of computer-aided experiment on damped harmonic
oscillator could be found in McInerney (1985).

The Newton’s Law gives the second order ordinary
differential equation for characterizing this system:

m
d2x
dt2

+ c
dx
dt

− kx = 0, [9]

where x is the displacement, t is the time,m is themass,
k is the proportional constant of restoring force F to
the displacement x, called spring constant, and c is the
proportional constant of frictional force f to velocity
v , called viscous damping coefficient. Eq. [9] can also be
written as:

d2x
dt2

+ 2ζω0
dx
dt

+ ω2
0x = 0, [10]

whereω0 = √
k/m is the undamped angular frequency

and ζ = c/(2
√
mk) is the damping ratio. Given the ini-

tial condition of x(0) = x0; x′(0) = 0, we can solve this
differential equation analytically (see Appendix B). The
solution for the displacement is

x = x0Re[e−ω0t(ζ−
√

ζ 2−1)] [11]

From the above equation, we can characterize the oscil-
lation modes into the following four types by different
damping ratios. See Figure 6 for the illustration of the
system behaviors with different oscillation modes.

� Undamped (ζ = 0). There is no damping effect.
The motion is periodic, repeating itself in a sinu-
soidal fashion with constant amplitude.

� Underdamping (0 < ζ < 1). The damping effect
is small. The system oscillates with the ampli-
tude gradually decreasing to zerowith angular fre-
quency ω1 = ω0

√
1 − ζ 2.

� Critical damping (ζ = 1). The system returns
to steady state as quickly as possible without
oscillating.

� Overdamping (ζ > 1). The damping effect
is strong. The system decays exponentially
to steady state without oscillating with rate
ω0(ζ −√

ζ 2 − 1).
Here, we focus on the relativelymore complexmode:

underdamping oscillation. Further investigations on
overdamping oscillation mode are also provided in
Appendix C.

Dimensional analysis on damped harmonic oscillator
The main issue here is to predict the displacement x
at an arbitrary time and physical configuration. We
assume the initial velocity x′(0) = 0. To apply dimen-
sional analysis, we first examine the physical dimen-
sions of the variables in the system as the beginning
step. These variables are summarized in Table 5. There
are three dimensions involved: length L, mass M, and
time T. We choose 3 basis quantities and reduce the
number of variables from5 to 2. The oscillator equation
[11] is dimensionally homogeneous, therefore different
choices yield same results theoretically.

Next, we choosem, k, and x0 as basis quantities. The
other quantities x, t , and c are transformed into dimen-
sionless ones:

π0 = x
x0

, π1 =
√

k
m
t = ω0t, π2 = c

2
√
km

= ζ

[12]
As a result, π0, π1, π2 are three new variables to be

analyzed.

Designs and analyses on DA factor space
Without dimensional analysis, we would like to esti-
mate function g, where

x = g(m, k, x0, t, c). [13]

Table . Table of physicalmeanings, ranges, and dimensional sym-
bols of variables in underdamped harmonic oscillator system.

Variable Physical meaning Range Unit Dimension

x Displacement meter [L]
m Mass [,] kilo. [M]
t Time [,] sec. [T]
k Spring constant [,] kilo./sec.2 [M/T2]
c Damping coefficient [,] kilo./sec. [M/T]
x0 Initial displacement [,] meter [L]
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With dimensional analysis, we would estimate h,
where

x
x0

= h

(√
k
m
t,

c
2
√
km

)
. [14]

The ranges of input variables are specified in Table 5,
where 0 < ζ < 1 is satisfied and underdamping is
guaranteed. We generate around 80 design points in
the training step for each approach. The correspond-
ing responses are then generated via theoretical model
of Eq. [11]. (Note that this can also be done via numer-
ical solutions to the differential Eq. [9], which is more
realistic.)

We implement statistical models to estimate appro-
priate functions for representing our dataset. Stepwise
regression and Kriging are used for estimating models
(13) and (14). For non-DA model, the stepwise regres-
sion selects significant variables up to a full model of
quadratic polynomials with interactions by AIC. The
total number of predictors is 20. The predictors of the
stepwise regression for DA model consist of all fifth-
order polynomial terms with all lower order interac-
tions. The total number of predictors is also 20. (There
are only two independent variables in DA model.)
Kriging is fitted in two step. First, the MLEs of separate
scale parameters for exponential correlation function
are obtained for a simple Guassian process on stan-
dardized covariates and response. Then, we fit a predic-
tive model of Kriging with linear drift, no nugget terms
and the above MLEs of scale parameters in the expo-
nential correlation function, by implementing R pack-
age “fields”. Respective performances are assessed by
MSE and MAD criteria on 104 maximin-LHD points.
Empirical distribution of prediction errors are obtained
based on 100 simulations of the training LHDs.

Results
The values of performance measures are displayed in
Table 6. It is clear that the methods with dimensional
analysis are significantly better than those methods
without DA, especially for MSE comparisons. DA with

Table . Table of performance measures in underdamping case.
Standard errors are in parentheses.

MSE MAD

Regression Kriging Regression Kriging

Non-DA .(.) .(.) .(.) .(.)
DA-RLHD .(.) .(.) .(.) .(.)
DA-CLHD .(.) .(.) .(.) .(.)

CLHD reduces MSE to approximately a half (∼60%)
for regression and to 1/14 (∼7%) for Kriging. DA
with RLHD also performs well in reducing MSE of
Kriging, to 1/5 (∼20%) of the original method. The
MAD of DA procedures increases in regression case
but decreases in Kriging case. Such observations sug-
gest that DA notably improves predictions of periodic-
oscillating type of response. The number of variables is
reduced from 5 to 2, which is one of the reasons for an
improved performance. Krigingmethod is significantly
better than stepwise regression for this underdamping
case.

In additional to the means, Figure 7 shows the
empirical distributions ofMSE andMAD.DAmethods
yield significantly smaller MSE than non-DAmethods.
The reduction of MAD is not as large, but is observed
for Kriging approach. DA with CLHD seems to be par-
ticularly good. In additional to its overall smallerMSEs,
the performance is very robust and consistent, resulting
in sharp peaks in the empirical distributions of MSEs.

Figure 8 is the heat map of predictions from Krig-
ing in this case. The above four panels are from Krig-
ing without DA under four different initial designs
(different random seeds for LHDs). The middle four
panels are from Kriging with DA under four different
RLHDs. The result of DA method with CLHD is dis-
played in the bottom four panels. From the plots, Krig-
ing surface without DA seem to vary across different
designs. The predictive surfaces are not robust to the
designs. This inconsistency of estimated model associ-
ated with designs leads to somehow unreliable conclu-
sions. Furthermore, the oscillating pattern in the hori-
zontal axis and damping trend on the vertical axis can
not be discovered. On the other hand, the results with
DA are more consistent across random seeds. Different
design points affect the finalmodel onlymarginally, but
the overall patterns of damped oscillations are always
unveiled. In this case, Kriging with dimensional anal-
ysis is preferred and we can confidently conclude that
the oscillation structure is captured.

Figure 9 shows the trace plot of prediction MSEs
with respect to run sizes, achieved by Kriging with
and without DA. Solid line is the mean of 500 Monte
Carlo samples of MSE’s, each based on 400 validation
points. The dash lines characterize the approximate
prediction intervals of MSE. It is shown that proce-
dure with DA outperforms that without DA across all
run sizes. The margin of the difference is large and
statistically significant for moderate size n > 30. As
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Figure . The empirical distribution of performance measures for different methods with and without DA in underdamping case.

an example, if the MSE is to be kept below 5 (solid
horizontal line in Figure 9), the necessary number
of runs for DA procedure is at most n = 40; while
the number should be greater than 100 for non-DA
procedure. We notice that, when the training design
is nearly saturate (n ≈ p; i.e., 20), procedure with DA
is not stable. This is mostly because of the CLHD

incorporates a full factorial for the basis quantities,
leaving few degrees of freedom for the rest important
quantities. Therefore, we recommend a smaller design
(fractional factorial designs, Plackett-BurmanDesigns,
or LHD) for basis quantities in CLHD if the number
of runs is close to the number of variables in the
model.

Figure . The predictions from Kriging with various designs non-DA (top row), DA-RLHD (middle row) and DA-CLHD (bottom row) in
underdamping case. Four realizations are generated for each setting. The color stands for the value of the response. The horizontal axis
refers to the phase of motion. The vertical axis refers to the levels of damping effect.
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Figure . The trace plot of prediction MSE with respect to run size
in solid lines. The dash lines are prediction intervals for prediction
MSE. Kriging is adopted as metamodel and underdamping case is
used. Procedure with DA has lower MSE. A reference line is drawn
at MSE= . Note that there are p = 5 variables.

Across 100 CLHDs with standardized covari-
ates, the average variances of coefficients Var(β̂Q)

and Var(β̂ ′
Q) are (0.0248 and 0.0127) for β4 and

(0.0210 and 0.0127) for β5, respectively (with
standard errors <0.0001). Compared with the
theoretical variance (n − 1)−1 ≈ 0.01266 when
covariates are orthogonal, we can see that β4 and
β5 are nearly orthogonal. But they may be cor-
related with β1, β2, and β3, leading to inflated
Var(β̂Q). The reduction in variance of β4 (effect of
time t) is remarkable. This is the case when B andQ are
not orthogonal and great reductions can be achieved.

We observe the same phenomena for the predictions
in the overdamping case shown in Appendix C. The
prediction errors are even smaller. Indeed, the nonlin-
ear behavior of the underdamped oscillator shown here
is more complicated.

Summary

The above two examples demonstrate that, design and
analysis via DAmodels can be of great use to computer
experiments. In the case of borehole, the implemen-
tation of DA is demonstrated in detail, and the results
indicate that DA designs are potentially more effective
than non-DA designs for both regression and Kriging,
especially when the relationship between response
and predictors is nonlinear. In the case of damped
harmonic oscillator, where DA is performed for a

differential equation system, procedure without DA
could not correctly identify the oscillatingmodes while
procedure with DA still leads to good performance. In
terms of prediction capability, DA models are better
when specified properly. For a fixed design size, the
reductions in MSE are remarkable. If a certain level of
MSE is to be achieved, a smaller design size is required
for a properly specified DA model. The consistent
behavior across training designs further justifies its
robustness in addition to its effectiveness and efficiency.

As illustrated by the two examples, the analytical
nature of the DA model proves itself useful, feasible
and accessible in physical computer experiments.
The two case studies shed light on the advantages of
DA modeling procedure in terms of (a) efficiency,
(b) extrapolation, (c) interpretability, (d) robustness,
and (e) feasibility. Compared to the borehole example,
the impact of DA is more significant in damped har-
monic oscillator example. We notice that DA reduces
predictors from 8 to 6 in the previous one, while the
reduction in the latter one is from 5 to 2. This suggests
the intuition that if DA reduces more variables, it
yields better improvement. However, reductions in
dimensionality are of course not arbitrary, but rather
dictated by the underlying physical processes.

Conclusion

In this article, we propose a new type of design and
analysis strategy via DA to incorporate the physi-
cal knowledge in the computer experiments. The
derived model is guaranteed to satisfy the dimensional
constraints, which increases the accuracy when inter-
polating and extrapolating the empirical emulator.
The procedure is justified through both theories and
case studies. In theoretical aspects, the reduction of
factor space without losing information produces less
variance in estimations. From case studies, the impact
of DA on improving the prediction performance has
been quantified and demonstrated. The following
advantages for applying DA in computer experiment
can be concluded: (a) The number of experimental
factors is reduced. The efficiency is thus increased, and
fewer experimental runs are needed. With the same
number of runs, better estimation can be achieved.
(b) DA is effective in retrieving nonlinear dependence.
It is common in engineering problem to have complex
functional forms following physical laws. DA models
incorporate the dimensional information and increase
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accuracy when extrapolating. (c) The factor effects and
models become more interpretable. Dimensionless
variables are often used as indices to characterize and
determine features of a system. The dimensionally
homogeneous model complies with physical laws and
is easier to understand by engineers, providing more
physical insights. (d) Procedures with DA are often
more robust to the designs chosen. They provide
consistent performance under different designs. (e)
Incorporating DA is fairly straightforward and cost-
less. This methodology is practical and general to be
applied to most engineering problems.

We also notice that, although modeling via DA
yields good results for nonlinear problems, its effect
is limited if the reduction is small as in the borehole
case. Moreover, applying DA fully relies on the under-
lying physics. It is legitimate to question whether such
physics as Buckingham’s �-theorem is reasonable in
the context. Finally, the non-unique transformation
from DA factor space Q to original space T may lead
to possible predicament. However, incorporating DA
in computer experiment seems promising.
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