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Definitive screening designs (DSDs) constitute a well-known class of screening designs for three-level fac-
tors. DSDs are comprised of orthogonal main effects plans for which main effects estimates are statistically
independent of estimates of two-factor interactions. Jones and Nachtsheim (2013) proposed two methods
for augmenting DSDs with two-level categorical factors, namely the DSD-augment and the ORTH-augment
approaches. However, these two versions produce distinct features that are not sufficiently flexible to accom-
modate versatile performance preferences in practice. In this paper, we provide a comprehensive overview
of the augmented designs with DSD structures and show how to construct compromise designs that share
the desirable traits of both DSD-augment and ORTH-augment designs. In addition to the DSD-augment
and ORTH-augment designs, we suggest routine consideration of nondominated compromise designs as de-

scribed in the paper. Additionally, we provide some theoretical properties of randomly assigned augmented
DSDs.
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1. Introduction

ONES AND NACHTSHEIM (2011) introduced a class
q]] of screening designs called definitive screening
designs (DSDs). Originally presented as three-level
screening designs, DSDs require 2m 4+ 1 runs for a
design with m factors. The structure of a DSD con-
sists of m fold-over pairs. Each factor is set to zero in
one fold-over pair, which leads to two center values in
cach column. Finally, at least one overall center run is
included to ensure that all linear and quadratic main
offects are estimable. The addition of the row of zeros
allows for all quadratic effects to be estimated, while
the presence of the fold-over pairs ensures that esti-
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mates of main effects are statistically independent. of
the estimates of two-factor interactions. The designs
were originally constructed using an algorithm that
maximized the determinant of the information ma-
trix subject to the structural constraints described
(one center value per run and i fold-over runs). As
Jones and Nachtsheim (2011) note, the structure of
these designs provides several advantages over other
screening designs. These benefits include the small
number of runs required (only one more than twice
the number of factors); the independence of main
effects and two-factor interactions, which provides
the ability to estimate main effects separately from
two-factor interactions: the absence of complete con-
founding among two-factor interactions; the ability
to estimate all quadratic effects; and the orthogonal-
ity of main effects for 4. 6, 8, and 10 factors.

Xiao et al. (2012) noted that the design matrix
could be determined using conference matrices rather
than relying on the algorithmic approach outlined
in Jones and Nachtsheim (2011). For most values of
even m, the design matrix may be constructed using
a conference matrix. its fold-over, and one row of
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zeros. For odd m, the same method can be used but
the design matrix is constructed for m’ = m + 1
factors rather than for m factors and one column
can be dropped from the design, giving an m-factor
DSD in 2m+3 runs. This conference matrix approach
maintains all of the positive traits of DSDs and has
the added advantage of always producing orthogonal
designs. Conference matrix type designs with odd m
are investigated in Phoa and Lin (2015).

Jones and Nachtsheim (2013) presented a modi-
fication of DSDs that accommodates two-level cat-
egorical factors as well as three-level factors. These
mixed-level designs preserve the original structure of
a DSD but replace the zeros in the columns corre-
sponding to categorical factors with +1’s. Jones and
Nachtsheim (2013) provide two methods for adding
two-level categorical factors to their designs, each
method taking a different approach to the assignment
of the £1’s in place of the zeros, and each resulting in
a different set of advantages and disadvantages. The
first method, referred to as DSD-augment, assigns
+1 and —1 in place of the two zeros in the columns
corresponding to the categorical factors, where the
order is determined by optimization. DSD-augment
is highly D-efficient and, by preserving the fold-over
structure of DSDs, it retains independence between
the main effects and the second-order effects. How-
ever, it is not orthogonal for main effects and it re-
sults in partial aliasing between the intercept and the
two-factor interactions. The second approach, called
ORTH-augment, substitutes two +1’s (or two —1's)
and then augments the design with additional runs to
balance the design in a way that leads to orthogonal-
ity of the main effects. The disadvantage of ORTH-
augment is that main effects and two-factor interac-
tions are correlated.

These two approaches currently represent the only
methods for including two-level categorical factors in
DSDs. In this paper, however, we comprehensively
examine more general classes of augmented DSDs
that accommodate the presence of two-level cate-
gorical factors. Instead of the alternating £1 pairs
(DSD-augment) or identical +1 or —1 pairs (ORTH-
augment) by which Jones and Nachtsheim (2013)
replace the zeros in the columns corresponding to
the categorical factors, we assign +1 in a probabilis-
tic fashion to the zero entries. As we will show, the
scheme leads to a series of alternative designs that
possess a mixture of the traits of both the DSD-
angment and the ORTH-augment designs. Key traits
include (1) the Dy efficiency of the design for esti-
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mating the augmented categorical main effects, (2)
the average absolute correlation among main effects
columns, (3) the average absolute correlation be-
tween main effects columns and two-factor interac-
tion columns, and (4) the average absolute correla-
tion among two-factor interaction columns.

Because there are multiple measures of goodness
of a given design, we will identify “compromise” de-
signs that do well along multiple criteria. In par-
ticular, we will identify sets of “nondominated” de-
signs. A solution design is called nondominated, or
Pareto optimal, if none of its characteristics of inter-
est can be improved without degrading some other
characteristic of interest. For example, consider Fig-
ure 1. The two design characteristics of interest are
the average absolute correlation among main effects
columns and the average absolute correlation be-
tween main effects columns and two-factor inter-
action columns. For these two criteria, for which
smaller is better, there are six nondominated designs,
and the plot symbols for these designs are connected
by a solid line. This solid line is often referred to as
the Pareto front. The Pareto front always contains
the designs that minimize each of the individual cri-
teria. These fall at the two ends of the Pareto front
as shown in Figure 1. Figure 1 also identifies the min-
imax design, another compromise design that will be
of interest in the sequel. To see that any of the de-
signs not on the Pareto front are dominated, consider
the design denoted by “A” in the figure. This design
is clearly dominated by the minimax design. Simi-
larly, the design denoted “B” is dominated by the
two right-most designs along the Pareto front. If any
design is dominated by some other design, there is
no reason to give it further consideration. As a re-
sult, the sets of nondominated designs can provide
experimenters a richer library of designs and an en-
hanced ability to augment a DSD with two-level fac-
tors in ways that meet the practical needs of the ex-
perimenter. In short, the proposed approach provides
a series of compromise designs that more flexibly ac-
commodate practical use.

The remainder of this article is organized as fol-
lows. In Section 2, we present our design structure
and scheme to study a more general class of two-
level augmented DSDs. In Section 3, we explore po-
tential performance measures of compromise designs
and propose the nondominated compromise designs.
In Section 4, we investigate empirically the key pop-
ulation properties of the produced design class and
compromise designs. In Section 5, we discuss the the-
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FIGURE 1. A Simple Example Showing the Nonndominated and Minimax Designs in a Set of 30 Designs.

oretical properties inherent to our method. In Sec-
tion 6, a discussion of benefits and limitations of our
method is provided.

2. Proposed Design Structure

In this section, we introduce our design structure
for angmenting a DSD with two-level categorical fac-
tors. Following Jones and Nachtsheim (2013), it is
useful to add an even number of & > 2 center value
runs (in the continuous factors) when angmenting a
DSD with two-level categorical factors. Given m con-
tinuous factors, ¢ categorical factors, and k center
value runs, we propose the following steps to ran-
domly generate a DSD with added two-level factors:

1. Create a DSD for m’ = m + ¢ factors if m + ¢
is even or for m’ = m + ¢+ Lif m + ¢ is odd.

2. Eliminate the center-point run so that the de-
sign matrix consists of 2m’ rows.

3. Replace the two zeros in the column corre-
sponding to the jth categorical factor with the
variables z j and zy 5 for j =1,...,c.

4. For even k, add k rows, rows 2(m + ¢) +
1,...,2(m + ¢) + k, to the design matrix. For
these rows, assign zeros to cach column that
corresponds to the m continuous factors. For
rows 2(m+c)+ 1,...,2(m+ )+ k, assign vari-
ables zyj,..., 224k, j, Tespectively, to the col-
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umn corresponding to the jth categorical fac-
tor, for j =1,....c.

5. Independently assign each 2y, ; to +1 or —1 at
random (i.e., P(zp; = 1) = Plzp; = 1) =
0.5)forh=1,....2+kand j=1,...,c

Based on the partitioning of the design matrix in
Table 1, we extract the set of {2 ;} variables from
the table to form the following matrix:

21,1 21,2 Zl.(‘

224+k,1  22+4k,2 224-k,c

where row h of Z is denoted by Zj , for h=1,...,2+k.

We note that, given m, ¢, and k, the method
samples with replacement from a population class
of designs. We will use “DSD(m, ¢, k)" to denote
the class of designs. This class covers DSD-augment
and ORTH-augment designs as special cases. For in-
stance, the DSD-augment. design can be thought of
as a member of the DSD(m, ¢, k) class of designs,
where (1) k& = 2 (so that the Z matrix has four rows
and ¢ columns), (2) the first two entries and the last
two entries in cach column of Z are comprised of a +1
and a —1, (3) the order of the £1's within cach of the
two pairs in each column are chosen to maximize the
determinant. of the resulting design (for the linear
main cffects model). Likewise, the ORTH-augment
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TABLE 1. Design Matrix Structure for Augmented Design with m 4+ 1 Through m + ¢ Factors

Continuous factors

Categorical factors

Run

(l) 1 dl d2 d3 dm aj as e ac

1 1 0 +1 +1 +1 +1 +1 o ol |

1 +1 0 +1 +1 +1 +1 4],

3 1 +1 +1 0 +1 +1 +1 +1

m 1 +1 +1 +1 0 +1 +1 +1

m+1 1 +1 +1 +1 +1 211 +1 +1

m+ 2 1 el | +1 e | +1 +1 21,2 +1

m+c 1 +1 +1 +1 +1 +1 +1 21,c

m+c+1 1 0 Fl1 F1 Fl1 Fl1 F1 Fl1

m+c+2 1 Fl1 0 Fl1 Fl1 Fl1 Fl1 Fl1

m+c+3 1 Fl1 F1 0 Fl1 Fl1 Fl1 Fl1

2m + ¢ 1 F1 F1 Fl1 0 F1 Fl1 F1

2m+c+1 1 F1 F1 F1 F1 22,1 F1 F1

2m+c+2 1 Fl Fl = | = i | 222 =1

2(m+c) 1 = | Fl1 F1 F1 Fl1 F1 29.¢

2(‘"1 + (?) +1 1 0 0 0 0 23,1 232 e 8 23,c
2(m+c¢) +k 1 0 0 0 0 224k,1 204k,2 224k,

design is a member of the DSD(m, ¢, k) class of de-
signs in which (1) k = 4 (so that the Z matrix has six
rows and ¢ columns), (2) the first two entrics in each
colummn are +1’s, (3) the order of the £1’s in the re-
maining rows of Z leads to orthogonality of the main
cffects.

As noted above, our purpose here is to explore
these classes of designs and search for possible al-
ternatives to the DSD-augment and ORTH-augment
designs. When the number of designs in a class is
small, it is easy to enumerate all of the possible al-
ternatives. We note that, because Z has ¢(2 + k) en-
trics, there are ng = 2°C+%) candidate designs for a
given (e, k) pair. Many of these designs will be iso-
morphic to other designs in the class. Two designs
arce isomorphic if one can be obtained from the other
by permutation of rows or columns, in which case
they will have the same statistical properties. The

Journal of Quality Technology

population of designs is easily constructed as long as
2¢(2+k) is not prohibitively large. In general, for given
¢ and k, we evaluate the entire collection of designs
as long as ng < 10,000. For ng > 10,000, we use the
simulation algorithm above (i.e., sampling with re-
placement) to generate a sample of 10,000 designs.
We next consider criteria used to identify particu-
larly advantageous designs from within this set of
compromise designs.

3. Assessing Compromise Designs

In this section, we explore the entire set of can-
didate designs that result from our method. This
set consists of the designs generated by considering
every possible combination of the values of zj ; in
Z. We refer to this set of designs as the population
of designs that constitute the DSD(m, ¢, k) class. As
noted, however, this set contains different values of Z
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FIGURE 2. Regions in a Correlation Cell Plot.

only and does not also encompass different settings
of the continuous factors. We have two objectives.
First, we wish to characterize the population of de-
signs that obtain from the method. Second. we seck
a method by which we might identify designs from
within this population that may be particularly ad-
vantageous in the compromise that they strike be-
tween the traits inherent to the DSD-augment and
those inherent to the ORTH-augment designs.

Depending on the design, nonzero correlation may
exist. (1) among the main effects, (2) between main of-
fects and two-factor interactions, and (3) among two-
factor interactions. The correlation cell plot serves as
a tool by which an experimenter may assess the pres-
ence of each in any particular design (Errore ot al.
(2017)). Let pmpi = m+ ¢ denote the number of main
effects, let popr = pmi(pmi — 1)/2 denote the number
of two-factor interactions, and let p = pmg + porr- A
correlation cell plot is a p x p symmetric matrix of
square cells shaded in gray-scale ranging from white
to black. Cell (4,7} of a correlation cell plot repre-
sents the magnitude of the correlation between col-
umm 4 and column j of the design settings matrix.
Cell (4. ) will be shaded black if the magnitude of

Vol. 49, No. 2, April 2017

the correlation between factors i and j equals oue; it
will be shaded white if the magnitude of the correla-
tion equals zero: and it will be shaded a gray tone for
magnitudes between zero and one, with darker grays
corresponding to magnitudes that are closer to one.
A correlation cell plot contains four key regions as
shown in Figure 2: (1) the pap X pme square in the
upper left corner corresponds to correlation among
the main effects and is referred to as the *“ME/ME
region”. (2) The upper right pymp X pap rectangle,
referred to as the *ME/2FI region”, corresponds to
the correlation between main effects and two-factor
interactions. (3) The transpose of the upper right
rectangle appears in the lower right rectangle, also
referred to as the “ME/2FI region”. (4) The lower
left pog X popr square corresponds to the correla-
tions between pairs of two-factor interactions and is
referred to as the “2FI1/2F1 region”. Therefore, by
considering depth of shading of the cells in cach re-
gion. an experimenter can use a correlation cell plot
to determine the level of pairwise correlation that is
present in a particular design.

While attaining zero correlation in each cell across
all three regions is ideal. a design of resolution V or
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higher is required, which is often impractical from
a budgetary view. Thus, experimenters must deter-
mine what type of correlation pattern will best sup-
port the goals of their experiment and choose a
design accordingly. For instance, when considering
DSDs with added two-level factors, an experimenter
may choose a DSD-augment design if avoiding cor-
relation between main effects and two-factor interac-
tions is of particular importance. On the other hand,
if correlation among main effects is of more concern,
then an experimenter may decide to use an ORTH-
augment design.

However, other correlation patterns could instead
be of particular consequence. For instance, an ex-
perimenter may wish to obtain minimum correla-
tion among two-factor interactions. Similarly, achiev-
ing minimum average overall correlation could be
of particular importance. Finally, an experimenter
may prefer obtaining low correlation among main ef-
fects and low correlation between two-factor interac-
tions and main effects to achicving zero correlation
cither among main effects or between main effects
and two-factor interactions. In such cases, when the
primary concern involves correlation patterns other
than those solely among main effects or those solely
between main effects and two-factor interactions, an
experimenter may wish to consider using a compro-
mise design from the DSD(m, ¢, k) class of designs as
an alternative to either an ORTH-augment or a DSD-
augment design. Therefore, examining the properties
of the proposed design class provides a comprehen-
sive overview of the design structure and is important
to experimenters who have different practical needs.

In the following, we will explore some of these al-
ternatives. We plot design characteristics for designs
in a given class in order to observe the corresponding
range of performances. As mentioned, the preferences
of the experimenter will determine which design from
within this set is most useful. As noted in the in-
troduction, in the presence of multiple performance
measures for evaluating designs, we suggest consider-
ation of nondominated designs-- those designs that
are not inferior in all performance measures of in-
terest to any other design within the class and that
{(equivalently) fall on the Pareto front. More precise
definitions of dominated and nondominated designs
can be given as follows.

Definition

Suppose there are @ design performance mea-
sures, for which smaller is better. For a given de-
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sign d®, these performance measures are denoted
dgi), . .,dg). Let D denote the set (or class) of de-
signs of interest. A design d!) € D dominates a de-
sign d® € D if dV is “better” than d® with respect
to at least one performance measure and at least as

good with respect to all other performance measures.
That 1is,

1. dgl) < d§2), fori=1,...,0Q, and
2. There exists at least one value of ¢, 1 < i <
for which d{" < d{?.

Finally, a design d is a nondominated design if it is
not dominated by any other design d’ € D. The set
of nondominated designs comprises the Pareto front.

One design on the Pareto front that will have
particular interest to us is the minimaz compro-
mise design. For each design d) € D, let dBy =
max{d(ll),...,dg)}. Let i* = argmin,{d{%}. Then
d;- is a minimax compromise design.

4. Exploring the Class of Designs
DSD(m, c, k)

In this section, we explore empirically the popula-
tion of potential designs that result from our method.
A useful measure of the efficacy with which we have
augmented the design is the Dj efficiency of the re-
sulting design. Dy efficiency is relevant when precise
prediction of a subset of the factor effects is of pri-
mary interest. Aside from adding center-value runs
to the continuous factors, the augmentation proce-
dure modifies entries only in the columns of the de-
sign matrix that correspond to categorical factors.
Therefore, the accuracy with which we estimate the
subset of parameters corresponding to the categorical
factor effects is of considerable interest. Partition the
columns of X as X = [X;, X3], where the columns of
X correspond to the intercept column and the con-
tinuous factor columns only. X5 is made up of the
columns for the categorical factors. The information
matrix and its inverse can be written

~ [ X1X; XX,
el <X’2X1 X’QXQ)
V(X)1; V(X)m)
V(X)a1 V(X)22 )’

where the partitioning of the normalized variance-
covariance matrix of the parameters (V(X)) is con-
sistent with the partitioning of the information ma-
trix. V(X)o2 is the normalized variance-covariance
matrix of the effects of interest. Then the relative
Dy efficiency of any design having design matrix X 4,

X'X)!'=V(X) = (
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relative to a design having design matrix Xp, is

|V(X3)22|} ok

DR ane) = [Wﬁ

For plotting purposes, we define the D, inefficiency
of any design to be one minus the design’s Dy of-
ficiency relative to a D-optimal design, so that we
have a smaller-is-better measure.

We will use both & = 2 to examine alterna-
tive designs that are similar in structure to DSD-
augment designs and k = 4 to consider designs that
can serve as alternatives to ORTH-augment designs.
Finally, we will compare the performances of the
DSD-augment, the ORTH-augment, and other de-
signs along various Pareto fronts.

4.1. Class DSD(6, 2, 2)

First, we consider the case with m = 6, ¢ = 2,
and k = 2. There are ng = 22(2+2) = 256 candidate
designs. Therefore, we evaluate the entire collection
of designs.

Figure 3 provides a plot of the relative Dy ineffi-
ciencies of the designs against both the average abso-
lute correlation among main effects, denoted rvmis.
and the average absolute correlation between main
effects and two-factor interactions, denoted Faypapr,
for cach resulting design. Because we focus on Dy in-
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efficiencies, smaller is better for all of our criteria.
Hence, best designs tend to be nearest to the ori-
gin. From Figure 3(a) we see that the Dy-optimal
design (solid circle) has zero average absolute cor-
relation among main effects and, from Figure 3(b),
we observe that the design indicated by the solid
squarc the DSD-augment design s one of several
that have zero average absolute correlation between
main cffects and two-factor interactions. Therefore,
our method has produced both the DSD-augment
and another design that can be thought of as an al-
ternative to the ORTH-augment design. Jones and
Nachtsheim (2013) noted that k& = 4 is required
to produce ORTH-augment designs (unless ¢ = 1,
in which case only k& = 2 center-value runs are re-
quired). Here we find that, with k& = 2, it is possible
to produce a design that is orthogonal for main ef-
fects; however, the estimated intercept term for this
design has a nonzero covariance with one or more of
the estimated main effects. In this sense, our method
has produced an alternative to ORTH-augment for
k = 2, saving two runs. We will refer to designs
that provide zero correlations among main effects as
ORTH-augment(ME) designs. In some cases, neither
an ORTH-augment nor an ORTH-augment(ME) de-
sign will exist. In these cases, we will identify the
design that minimizes the average absolute correla-
tion of all pairs of main cffects columns. We call this
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FIGURE 3. One Minus Ds Efficiency Versus rmeme and rvezr for DSD(6, 2, 2). The solid circle identifies the ORTH-
augment(ME) design; the solid square identifies the DSD-augment design; the solid diamond identifies the minimax design.
In panel (a) the ORTH-augment(ME) design is the minimax design.
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augment(ME) design; the solid square identifies the DSD-augment design; the solid diamond indicates the minimax compro-
mise design. In panels (b) and (c), the ORTH-augment(ME) design is the minimax design.

design the MINCORR-augment design. If the num-
ber of designs in the class under consideration is less
than 10,000, we identify the MINCORR-augment de-
sign by exhaustive search; otherwise, we use the co-
ordinate exchange algorithm (Meyer and Nachtsheim
(1995)). with the determinant criterion replaced by
the absolute average correlation.

From Figure 3. we can also see that each plot
contains three clusters of designs. One cluster con-
tains designs that are relatively similar to the ORTH-
augment(ME) design, one cluster contains those de-
signs that are relatively similar to the DSD-augment
design, and the final cluster is located hetween the
first two. The center cluster is comprised of de-
signs that provide compromises between the ORTH-
augment(ME) design and the DSD-augment de-
sign. The minimax compromise design of Figure
3(b) (black diamond) provides one possible com-
promise between the DSD-augment and ORTH-
angment(ME) designs.

In Figure 4, we have displayed three comparisons
of average absolute correlations for the various por-
tions of the correlation matrix for the DSD(6,2,2)
design class. Figure 4(a) provides a plot of TmeMmE
versuts v peprp. This plot clearly identifies the ORTH-
angment(ME) design, the DSD-augment design, and
the cluster of compromise designs in the middle.
Figure 4(b) compares the average absolute corre-
lations among main effects to those among two-
factor interactions. From the plot, we sec that
the ORTH-augment(ME) design minimizes the cor-
relations among two-factor interactions—one rea-

Journal of Quality Technology

son an experimenter might favor this design. Simi-
larly, Figure 4(c) plots the average absolute corre-
lation between main effects and two-factor interac-
tions against the overall average correlation among
model effects. This plot seems to favor the DSD-
augment design. Although the overall average cor-
relation is nearly identical for the DSD-augment and
the ORTH-augment(ME) designs (0.1429 vs. 0.1407),
the DSD-augment fares substantially better in terms
of the average absolute correlation between main ef-
fects and two-factor interactions. In a related point,
note that, in Figures 4(b) and 4(c) (and in analo-
gous plots to follow for other examples), the origin
has not been included in the plot. Although includ-
ing the origin is generally good statistical practice,
we have omitted it so that the differences among the
clusters can be easily seen.

Table 2 provides a statistical summary of the Dy
inefficiencies (when the subset of interest is made up
of the categorical factor effects) and the average ab-
solute correlations in the various areas of the corre-
lation cell plot for designs in DSD(6, 2, 2). We note
that, within DSD(6, 2, 2), the worst-case design is
about 16% Dy inefficient. Also, the range of aver-
age absolute correlations, which varies from 0.0090
(for all correlations) to 0.0767 (for the correlation
between main effects and two-factor interactions), is
not particularly large. We note that D, inefficiencies
less than a few percent matter little. However, inef-
ficiencies in excess of about 5% or 10% are material.
Recall that, if a design d; is 90% efficient relative
to another design ds, then d) needs to be replicated
1/0.90 2 1.11 times to achieve the same precision as
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TABLE 2. Statistical Summary of Performance of Designs in DSD(6, 2, 2)
Dy inefficiency TMEME TME2FT TaFI2F] TALL
Minimum 0.0000 0.0000 0.0000 0.1901 0.1407
Average 0.0644 0.0310 0.0407 0.2165 0.1457
Maximum 0.1621 0.0659 0.0767 0.2433 0.1497
Range 0.1621 0.0659 0.0767 0.0532 0.0090

dy. In other words, the design must be 1% larger to
achieve the same level of precision. Iu terms of abso-
lute correlations, our view is that differences in excess
of about 0.05 can matter. For example. our ability
to identify a few active two-factor interactions cor-
rectly degrades with the level of columm correlation
between main effects and two-factor interactions and
among two-factor interactions (Errore et al. (2016)).
Here and in the examples that follow. we have found
that the impact of design differences on the overall
correlation is generally quite small and not of con-
cern. For this reason, we give greater focus in what
follows to the correlations (1) among main cffects.
(2) between main effects and two-factor interactions.
and (3) among two-factor interactions.

In Figure 5, we compare the correlation cell
plots for the DSD-angment design, the ORTH-
augment(ME) design, and the minimax design iden-
titied in Figure 4(a). From Figure 5(a). we see that
the correlation cell plot corresponding to the DSD-
angment design has all white cells in the ME/2FI
region, while the ME/ME region has mostly white

Db 4443344 49 11  {d At S35 43114 445 <mOOWLOTEOOWL STOPULDERULDENLOELOEDEE

(a) DSD-Augment Design

i 3
S
T Bl
! 54 '::' ..'-:
o

(b) Minimax Compromise Design

cells but it also includes some light gray cells. This
is expected because the characteristies of DSD-
augment designs include independence between main
effects and two-factor interactions and the absence
of orthogonality among main effeets. Likewise, Fig-
ure 5(c¢) shows all white cells corresponding to the
ME/ME region of the correlation cell plot for the
ORTH-augment(ME) design. but some light gray
in addition to white in the ME/2FL region. Again,
this is not surprising because ORTH-augment and
ORTH-augment (ME) designs are orthogonal among
main cffects but do not guarantee independence be-
tween main effects and two-factor interactions. Fig-
ure H(b) shows mostly white cells with some light
gray cells in both the ME/ME region and the ME/
2F1 region of the correlation cell plot. From Fig-
ure 5. we note that the compromise design contains
fewer gray cells in the NE/ME region than the DSD-
augment. design but more gray cells than the ORTH-
augment(ME) design. In the ME/2FI region. the
comprouiise design shows more gray cells than the
ME/2FI region of the DSD-augiment design but fewer
gray cells than the ME/2FT region of the ORTH-

e O R Rk K XL RE L L BEEERELRERTE

D0H0 Wy wi b

(¢) ORTH-Augment(ME) Design

FIGURE 5. Correlation Cell Plots for DSD-Augment, Minimax Compromise, and ORTH-Augment(ME) Designs from Class

DSD(6, 2, 2).
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FIGURE 6. Average Absolute Correlation Plots for Designs in DSD(6, 2, 4). The solid circle identifies the ORTH-augment
design; the solid square identifies the DSD-augment design; the solid diamond indicates the minimax compromise design. In
panels (b) and (c), the ORTH-augment design is the minimax design.

augment(ME) design. The 2F1/2FI region of the cor-
relation cell plots of all three designs include cells
that vary in shading from white to dark gray. Here
the shading of the ORTH-augment(ME) is noticeably
lighter than the shading of the DSD-augment, while
the shading of the compromise design again falls be-
tween DSD-augment and ORTH-augment(ME). We
note in particular that the correlation cell plot for the
DSD-augment design reveals some absolute correla-
tions as high as 0.887, where the shading is nearly
black. When pairs of interactions are this highly
correlated, standard model-selection procedures will
have dithiculty in distinguishing their effects. Such
pairs are nearly fully confounded. In contrast, the
largest absolute correlation between interaction pairs
for the ORTH-augment(ME) design is 0.667, as re-
flected by the medium-dark cells. Here the level of
confounding is not so extreme and we have some hope
for distinguishing the two-factor interaction effects.
The average absolute correlations among two-factor
interactions are 0.2338, .2182, and 0.1901 for the
DSD-augment design, the compromise design, and
the ORTH-augment(ME) design, respectively. This
example suggests that the DSD-augment design pays
a price in higher correlation among both 2FIs and
MEs in order to obtain zero correlations between
MEs and 2FIs.

4.2. Class DSD(6, 2, 4)

Next we consider the DSD(6, 2, 4) class. There are
ng = 221142 — 4 096 candidate designs, so we again

Journal of Quality Technology

evaluate the entire population of designs. Because
k = 4, the class contains the ORTH-augment design
but not the DSD-augment design as recommended
by Jones and Nachtsheim (2013). However, for even
k, there always exists a fold-over design, and there-
fore a design with average absolute correlation equal
to zero in the ME/2FI region of the correlation cell
plot. We will refer to any design that has Fygap; = 0
and that maximizes the determinant (of X’X) among
all designs having Fyger; = 0 as the DSD-augment
design.

Plots of average absolute correlations for the vari-
ous regions of the correlation matrix for designs in
the DSD(6,2,4) class are shown in Figure 6 in a
form analogous to Figure 4 for the DSD(6, 2, 2) class.
This plot again identifies the ORTH-augment design,
the DSD-augment design, and the minimax compro-
mise design. These plots are remarkably similar to
those for the DSD(6,2,2) case, as are the correla-
tion cell plots shown in Figure 7. Again the ORTH-
augment design minimizes the average absolute cor-
relation among 2FIs, while there is very little dif-
ference between the ORTH-augment design and the
DSD-augment design in terms of overall correlation
among the model effects. Table 3 provides a summary
of the performance measures for the population of
designs in DSD(6,2,4). We note the very small dif-
ference (0.0101) between the smallest overall average
absolute correlation and the largest. This provides
support to the idea that the overall level of corre-
lation does not change appreciably from design to
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FIGURE 7. Correlation Cell Plots for DSD-Augment, Minimax Compromise, and ORTH-Augment Designs from DSD(6,

2, 4).

design. Rather, a relatively fixed level of correlation
gets reapportioned from one area of the correlation
matrix to another as the designs change.

4.3. Classes DSD(6, 4, 2) and DSD(6, 4, 4)

In this section, we consider the case having six
continuous factors, four categorical factors, and ei-
ther k = 2 or k = 4 center runs. As was the case for
two categorical factors, the results for two and four
center rins are very similar.
provide graphical results only for the four-center-run
Case.

“or that reason, we will

For the DSD(6,4,4) class, there are ng = 21042 =
16,777,216 designs. For this reason, we generate a
random sample of 10,000 designs (with replacement)
and consider the characteristics of the sample. Aver-
age absolute correlation plots are provided in Figure
8. The first thing we notice (besides the large number
of points plotted), in Figure 8(a), is that the number
of clusters of points has inereased to five and we now
identify 22 nondominated designs. As previously, the
ORTH-augment design and the DSD-augment de-
sign arc clearly indicated. We note that, for k = 2,

the form of the plot is similar and we again found
the ORTH-augment(ME) design. The design having
rmeme =~ 0.04 and v =~ .03 has been identi-
fied via the solid diamond as the minimax compro-
mise design. From Figure 8(b), we observe that the
ORTH-augment design, the only nondominated de-
sign in Figure 8(b), has again minimized the average
absolute correlation among two-factor interactions,
while from Figure 8(c), we see that the DSD-augment
design has minimized the overall average absolute
correlation among all model effects, and is one of only
two nondominated designs. These observations also
held true for the DSD(6, 4. 2) class (not shown). The
statistical summary for class DSD({6, 4, 4) is provided
in Table 4.

The correlation cell plots for the DSD-augment.,
the ORTH-augment, and the compromise design are
displayed in Figure 9. The patterns that we observed
in the previous cases hold up. The DSD-augment de-
sign clearly pays a price in terms of the average ab-
solute correlation among two-factor interactions and
among main effects, in order to keep main effects in-
dependent. of two-factor interactions.

TABLE 3. Statistical Summary of Performance of Designs in DSD(6, 2, 4)

Dy inefficiency TMEME TME2FI ToFI2F1 TALL
Minimum 0.0000 0.0000 0.0000 0.1897 0.1397
Average 0.0688 0.0297 0.0402 0.2156 0.1450
Maximum 0.2033 0.0657 0.0763 0.2426 0.1498
Range 0.2033 0.0657 0.0763 0.0529 0.0101
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FIGURE 8. Average Absolute Correlation Plots for Designs in DSD(6, 4, 4). The solid circle identifies the ORTH-augment
design; the solid square identifies the DSD-augment design; the solid diamond indicates the minimax compromise design. In
panels (b) and (c), the ORTH-augment design is the minimax design.

4.4. Observations on Other DSD(m, c, k) ery case that we examined except six, we were
Classes able to produce an ORTH-augment or ORTH-

augment(ME) design. The six cases in which
ORTH-augment and ORTH-augment(ME) de-
signs do not exist correspond to k = 2 and ei-
ther ¢ = 3 or ¢ = 4. In these cases, rMpME =
0.001, rMeme = 0.002, or rMeme = 0.004.
Clearly these designs are nearly orthogonal.

We examined many different combinations of m,
¢, and k and found that the patterns observed here
generally held up, but we also gained some new in-
sights into these classes. In particular, we examined
the 24 DSD(n, ¢, k) that arose from (1) varying m
from 6 to 10 in steps of size two, (2) varying ¢ from

one to four, and (3) varying k from two to four in 4. These results show, quite convincingly, that it
a step of size two. Table 5 provides key performance is almost never necessary to use k = 4 (as sug-
measures for the DSD-augment design, the ORTH- gested by Jones and Nachtsheim (2013)) to ob-
or MINCORR-augment design, and the design that tain designs for which main effects columns are
minimizes the maximum of Fyeme and Fuezrr. We orthogonal. Of course, full orthogonality for the
summarize our findings as follows: main effects columns and the intercept column

does require k = 4.
1. The ORTH-augment or MINCORR-augment 0es requure

designs always minimized the average correla-
tion among two-factor interactions. make all interactions as independent as possi-
ble, then the minimax design may reflect this
goal better than either the DSD- or the ORTH-
augment designs.

If the experimenter is interested in trying to

(91

2. The minimax(FmMeme,"MEzrr) design for 8 and
10 factors with ¢ =1 and £k =2 or k = 4 is the
DSD-augment design.

3. Jones and Nachtsheim (2013) only provided The Z matrices for all designs in Table 5 will be made
an ORTH-augment scheme for k = 4. In ev- available at http://www.asq.org/pub/jqt.

TABLE 4. Statistical Summary of Performance of Designs in DSD(6, 4, 4)

Dy inefficiency TMEME TME2FI ToFI2FI TALL
Minimum 0 0 0.0000 0.2079 0.1484
Average 0.0596 0.0379 0.0474 0.2151 0.1589
Maximum 0.1785 0.0896 0.0843 0.2272 0.1655
Range 0.1785 0.0896 0.0843 0.0193 0.0171
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FIGURE 9. Correlation Cell Plots for DSD-Augment, Minimax Compromise, and ORTH-Augment Designs from DSD(6,

4,4).

5. Theoretical Properties
of Randomly Augmented DSDs

After designating performance measures. nondom-
inated compromise designs can be found numerically.
However, if £1 are assigned to 25 entries in an inde-
pendent. probabilistic manner. some statistical prop-
erties of DSD(m, . k) designs can be shown straight-
forwardly. Below we show that randomly angmented
DSDs with P(z;; = 1) = P(z;; = —1) = 0.5 have
orthogonal main cffects and are balanced in expecta-
tion. We also derive a bound on the expected loga-
rithm of the determinant of the information matrix.

Lemma 1

Denote Roas the design matrix shown in Table
Loz are independent and P(z; = 1) = Pz, =
—1) = 0.5. Then E(RTR) is diagonal and E(1"R) =
0. Furthermore, Eflogdet(RTR)] < mlog(2p — 1) +
clog(n). where i e are as in Section 2. p=m + ¢ is
the number of factors, n = 2(m+¢)+ & is the number
of runs.

Proof

In addition to matrix Z, we define the following
matrix based on the partitioning of the design matrix
in Table 1:

/

B=

224k,1  R24k2 224k,

A, = diag(Z,) and A, = diag(Z,) are diagonal ma-
trices with Z; and Z, for diagonal entries, respec-
tively. Then, without the intercept column, the de-

Vol. 49, No. 2, April 2017

sign matrix can be written as

C P,
R=[-c|+|[p,
0 P;

where

/(0 0 (0 0 B
Pi=(p 0)P=( 0) Pa=c0 B,

and C is the conference matrix. Partitioning the rows
of C and —C in conformance with P; and Psy, we
have

C. 0 0

C C, 0 A,

C= < C“) and R=]-C, |+]0 0
’ ~-C 0 A,

0 0 B

from which it follows that

T _ [ 2(m+c—1)Ty,
BB = ( 2(m + (')T,,)
0 0 0 _—

(0 -

(AQC[) (0 C[A2)'

Because when P(z;; = 1) = P(z;; = —1) = 0.5,
the entries are balanced in probability, E(A;) =
E(A;) = 0, and E(B"B) = diag(k,---,k). There-

fore,

E(RTR) _ <2(m +c—1)T,,

2(m+c) + k,]T,)
([ 2(p-1)T,,
o nT, )’
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A bound on the expected logarithm of the deter-
minant of the information matrix, from Jensen’s in-
equality, is then

Ellog det(R"R)] < log det(E[RTR))
=mlog(2p — 1) + clog(n).

Finally, on average, the design is column balanced,
i.e., EATR) = 0, because

1TR=(0 --- 0 s - s.),

where s; = Zj:f Ziis 0

The properties of randomly assigned augmented
DSDs provide us an overview on the performance
range of the entire candidate design set with DSD
structure, given the munber of runs and variables
(n.p,m.c). It helps locate and select good com-
promise designs with respect to other alternative
choices. The lemma indicates that, in terms of bal-
ance and orthogonality, the candidate designs cen-
ter around the ideal unbiased case. The variance can
also be derived by the decomposition of RTR but
generally depends on the form of the conference ma-
trix C that is used. Given the conference matrix C,
the variance suggests the spread of designs around
the orthogonal case. In addition, the derived upper
bound of the average log determinant of the informa-
tion matrix serves as a good benchmark for selecting
appropriate compromise designs.

6. Discussion

In this paper, we explored a class of DSDs aug-
mented  with additional two-level categorical fac-
tors. This class not only covers DSD-augment and
ORTH-augment designs as special cases, but also
offers a series of alternative designs with traits
that arc a combination of the traits of the DSD-
augment and the ORTH-augment designs. We identi-
fied nondominated compromise designs based on de-
sign performance measures of importance to practi-
tioners. Minimax compromise designs in particular
were given special consideration. Compared with the
DSD-augment design, the minimax designs result in
lower magnitudes of correlation among main effects
but higher levels of correlation between main effects
and two-factor interactions. They also provide lower

levels of correlation between main effects and two-
factor interactions than the ORTH-augment designs,

However, in every case that we considered, the
ORTH-augment (or ORTH-angment{ME)) design
provided the lowest level of correlations among two-
factor interactions. Therefore, an experimenter who
is concerned with correlations among two-factor in-
teractions may wish to employ the ORTH-augment
design.

In addition, we derived the theoretical properties
of randomly assigning 1 in place of the zeros in
the columns of the design matrix that correspond to
the categorical factors. This randomization approach
preserves the orthogonality and balance of the main
effects probabilistically. An upper bound of the ex-
pected logarithm of the determinant of the informa-
tion matrix was derived.

The cases presented here only involve instances
where the number of two-level categorical factors ¢
is less than m. Further investigation on properties of
the proposed design class with large ¢ shows that the
DSD structure does not have favorable performance
when a large proportion of the factors are two levels.
In such cases. we recommend the use of an orthogonal
array augmented with several three-level factors in
order for the design to mainly focus on the two-level
factors. When all factors have two levels, the new
designs advocated by Errore et al. (2017} should be
employed.
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