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ABSTRACT
A new kind of deicing coating is developed to provide aircraft with efficient and durable protection from
icing-induced dangers. The icing wind tunnel experiment is indispensable in confirming the usefulness of
a deicing coating. Due to the high cost of each batch relative to the available budget, an efficient design of
the icing wind tunnel experiment is crucial. The challenges in designing this experiment are multi-fold. It
involves between-block factors and within-block factors, incomplete blocking with random effects, related
factors, hard-to-change factors, and nuisance factors. Traditional designs and theories cannot be directly
applied. To overcome these challenges, we propose using a step-by-step design strategy that includes
applying a cross array structure for between-block factors andwithin-block factors, a groupof balanced con-
ditions for optimizing incomplete blocking, a run order method to achieve the minimum number of level
changes for hard-to-change factors, and a zero aliased matrix for the nuisance factors. New (theoretical)
results for D-optimal design of incomplete blocking experiments with random block effects and minimum
number of level changes are obtained. Results of the experiments show that this novel deicing coating is
promising in offering both high efficiency of ice reduction and a long service lifetime. The methodology
proposed here is generalizable to other applications that involve nonstandard design problems. Supple-
mentary materials for this article are available online.

1. Introduction

Aircraft icing occurs when water droplets in the atmosphere
freeze on the airframe. It may increase drag, decrease lift, and
cause control problems. As a result, ice protection systems
are of great importance to ensure safe flights. Among many
kinds of deicing methods, deicing coatings prove to be con-
venient and effective in preventing ice accumulation. Existing
deicing coatings such as electro-thermal coatings (Huneault,
Langheit, and Caron 2005; Liao et al. 2007), opto-thermal coat-
ings (Miles 2000), super-hydrophobic coatings (Saito, Takai,
and Yamauchi 1997; Menini and Farzaneh 2009; Kulinich and
Farzaneh 2009; Mishchenko et al. 2010), and coatings contain-
ing slowly released freezing point depressants or lubricating oils
(Simendinger 2004; Ayres, Simendinger, and Balik 2007) suffer
fromproblems such as low icephobicity (the ability of a solid sur-
face to repel ice or prevent ice formation), flashover (abnormal
electrical discharge) of the polymer matrices, and severe aging.

1.1. IcingWind Tunnel: Experiment andMaterials

A new kind of coating has been developed to apply to the
aircraft surface in providing efficient and durable solution to the
aircraft icing problem. The deicing coating is made of silicone
elastomer and alkanes (Guan et al. 2010). It takes advantage
of the phase transition of alkanes in silicone elastomer with
changing temperature to achieve the deicing property. When
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the temperature drops below the freezing point of the alkane,
the alkane molecules migrate to the surface of the coating and
form a thin layer on the surface. On the other hand, when the
temperature is raised above the melting point of the alkane, the
alkane is redissolved into the coating. Since the alkane layer on
the surface reduces ice accumulation on the coating, it is pos-
tulated to be icephobic. In addition, lab centrifuge experiments
have shown that the adhesive force between the accumulated
ice and the coating is largely reduced when compared to the
force between ice and pure aircraft surfaces such as aluminum.
Therefore, accumulated ice tends to break and fall off under
natural vibrations during flight, which further enhances the
deicing property of the coating.

After repeated use, it is likely that some alkanes that have dif-
fused to the coating surface have been removed with ice that
fell off of the coating. Therefore, it is desirable to incorporate
a mechanism that ensures slow release of alkanes to maintain
the coating’s long-term capabilities. Lab experimental data from
repetitive scrape tests show that an addition ofmontmorillonoid
nanoparticles into the coating may slow the speed of migration
for alkane molecules and therefore may have the potential to
extend the service lifetime of the coating.

However, aircraft icing is a very complex process that
depends on atmospheric conditions such as temperature,
amount, and droplet size of water in the air as well as the mov-
ing speed of aircraft. As a result, in addition to lab experiments,
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Figure . Experiment unit used in the icing wind tunnel. In the icing wind tunnel, the unit is installed in an upright position. To save space, the figure shows the unit
horizontally.

icing wind tunnel experiments are required to confirm the use-
fulness of the coating under real atmospheric conditions. In an
icing wind tunnel, supercooled water (i.e., liquid water below 0
degree centigrade, the cause for aircraft icing) is sprayed with
certain speed and temperature and travel through the tunnel.
An experimental unit (hereafter referred to as a “unit”) is placed
in the center of the tunnel with two cylinder-shaped fixtures
attached to the top and bottom of the tunnel. Figure 1 shows
such a unit in a horizontal position. The unit has a concentric
rectangular shape on the windward face, with the left and/or
right side applied with coatings. On the leeward face, one vibra-
tor is attached to each side and the two vibrators may be simul-
taneously turned on or off. Each time supercooled water travels
through the tunnel for a specified time period to allow ice forma-
tion on the unit, and the weight of the accumulated ice on each
side of the unit ismeasured,which is treated as the response vari-
able in this study. Measurements are thus obtained in pairs, one
from each side of the unit. A pair of measurements is referred to
as a “batch” hereafter, and the individual measurements on each
side of the unit are referred to as “trials.” As a result, each batch
consists of two trials.

1.2. Objectives

The primary goal is to evaluate the usefulness of the coating
in reducing ice accumulation and to investigate whether the
addition of nanoparticles affects (either increases or decreases)
ice accumulation. The secondary goal is to assess the effects of
temperature, wind speed, vibration, repeated usage of the coat-
ing, and their interactions if possible. The cost for each batch
of the icing wind tunnel experiment is high (≈1600 USD per
batch). Four preliminary screening batches have been collected
to explore the possible composition for the coating. The current
study has a budget of no more than 20 batches and, as a result,
an efficient design is indispensable.

1.3. Relevant Literature

Two trials are conducted simultaneously within one batch of the
icing wind tunnel experiment. A random block effect may exist,
and as such, an efficient design is needed to address this con-
cern. Throughout the article, “block” and “batch” are used inter-
changeably to denote the group of two trials conducted during
one icing wind tunnel experiment.

Optimal block designs have been extensively studied
for treatment comparison, for example, in Shah and Sinha
(1989), Cheng (1995), and Atkins and Cheng (1999). However,
such designs are not applicable to cases with both between-
block factors (e.g., temperature, wind speed, and vibration) and
multiple within-block factors (e.g., whether and which coating
is applied, whether nanoparticle is added), as in the icing wind
tunnel experiment.

Balanced incomplete block designs (BIBD) and partially
balanced incomplete block designs (PBIBD; Bose 1939; Bose
and Nair 1939; Cochran and Cox 1957) have been adopted
for incomplete blocking. However, the conditions required by
BIBDs cannot be satisfied in the icing wind tunnel experiment,
and the treatments of this experiment do not have multiple
classes of associates as the treatments in PBIBD. Alternatively,
D-optimal designs for split plot experiments can dealwith corre-
lated estimates. Iterative algorithms can be used to obtain these
designs. See, for example, Goos and Vandebroek (2003), Goos
(2006), Johns and Goos (2009), Macharia and Goos (2010), and
Johns and Goos (2012). However, these algorithms cannot be
directly applied to the icing wind tunnel experiment due to the
complicated restrictions. As a result, newmethods for construct-
ing an efficient block design are required.

Moreover, a few other features add to the complexity of the
icing wind tunnel experiment. As will be further explained in
Section 2, we need to imbed preliminary screening batches
(prior to the whole design) into the whole design, take care of
related factors, adjust the run order to facilitate a minimum
number of level changes for hard-to-change factors (Ju and
Lucas 2002), and retain a parsimonious model under the pres-
ence of nuisance factors. To the best of our knowledge, there is
no standard design that is able to address all of these aspects.

1.4. The Proposed Design

In this article, we propose a framework for constructing an effi-
cient design for the icing wind tunnel experiment. The frame-
work can be generalized to other experiments that have similar
challenges.

The design involves three between-block factors, two within-
block factors, and incomplete blocks. We adopt a cross array,
where the outer array is used for the between-block factors,
and the inner array is used for the within-block factors. To
deal with the incomplete blocks, we introduce the notion of
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“group balance,” which is weaker than the condition from
BIBD. Together with the cross array structure, it guarantees
uncorrelated estimates of the fixed effects with the presence of
random effects. This, in turn, facilitates a high D-efficiency of
our design. Additionally, the run order of our design facilitates
the minimum number of level changes for two hard-to-change
factors; and the nuisance factors are designed to be orthogonal
to the factors of interest.

The rest of the article is as follows. Section 2 introduces the
proposed design. The details to construct this design are pro-
vided in Section 3. In Section 4, an analysis of the experimen-
tal results is provided. The results show that the deicing coating
offers both high efficiency in ice reduction and a long service
lifetime. In Section 5, theoretical properties of the design and
general applications are discussed. In Section 6, we conclude
the article with some final remarks and discussions. The gen-
eral methodology proposed here provides a standard approach
to nonstandard design problem.

2. The Design of Experiments

In this section, we provide our design for the icing wind tun-
nel experiment. Factors of the icing wind tunnel experiment are
shown in Table 1.

F1–F3 are environmental factors of our secondary considera-
tion. F1 is the average temperature we try to hold; F2 is the wind
speed in the icing wind tunnel; F3 is whether the vibrators are
turned off or turned on. For two trials in the same batch, the
vibrators are either both on or off. Each unit is tested in two
batches, which differ with respect to at least one between-block
factor (e.g., wind speed, temperature, vibration). F4 denotes
whether it is the initial batch or the repeated batch and is
used to evaluate the degradation of the coating under repeated
usage.

The three levels for F5 are: B0 (Aluminum only), B1 (Elas-
tomer silicone coatingwith 10%methylsilicone oil, 10%hexade-
cane, and 10% octadecane), and B2 (Elastomer silicone coating
with 10% methylsilicone oil and 20% hexadecane). When
compared to B0, both B1 and B2 showed superior properties in
lab centrifuge test. For F6, the montmorillonoid nanoparticles

Table . The factors in the study.

Factor Level Classification

F1 (Temperature) −11◦C (−),−7◦C
(+)

Between-block, hard to change

F2 (Wind speed)  m/s (−),  m/s
(+)

Between-block, hard to change

F3 (Vibration) off (−), on (+) Between-block, easy to change
F4 (Repetition) initial (−), repeated

(+)
Between block, easy to change

F5 (Icing surface) B0*, B1**, B2*** Within-block, easy to change
F6 (Nanoparticles) not added (−),

added (+)
Within-block, easy to change

F7 (Side of the unit) right (−), left (+) Nuisance factor, easy to change
F8 (Measuring
weight)

first (−), second (+) Nuisance factor, easy to change

F9 (Measuring
shape)

first (−), second (+) Nuisance factor, easy to change

Batch {1, 2, . . . , 24} Random effect

*B0 : Aluminum only.
**B1 : Elastomer silicone coating with %methylsilicone oil, % hexadecane, and
% octadecane.

***B2 : Elastomer silicone coatingwith %methylsilicone oil and %hexadecane.

are either added or not added into the coating. Addition of the
montmorillonoid nanoparticles can lengthen the lifetime for
the coating and enhance its mechanical properties. However,
it is also possible that nanoparticles slow the speed of alkane
migration such that they affect the icephobic property of the
coating. It is hoped that addition of nanoparticles does not
significantly increase ice accumulation. Note that F6 is only
applicable when F5 is B1 or B2. We call F5 and F6 related factors
because they take value dependently. There are five possible
combinations for F5 and F6, namely, {B0, B−

1 , B
+
1 , B

−
2 , B

+
2 }, in

which the subscript denotes the level of F5 and the superscript
denotes the level of F6 when applicable.

The factors labeled F7 to F9 take into consideration the direc-
tion when installing the unit (which side is facing the wind, left
or right) and information on the process ofmeasurement (which
side of the unit is measured first). While the weight of the ice is
of primary interest, the experimenters also recorded the shape
of the accumulated ice for each trial; although this information
is not analyzed below, the process of recording the shape may
affect the final recorded ice weight, and therefore this should be
accounted for in the design. Factors F7 to F9 are nuisance factors
ancillary to our interest.

Due to constraints of the experiment, it is apparent that the
levels of F1 to F4 must be exactly the same and the levels of F7 to
F9 must be the opposite for the two trials under the same batch.
Other challenges and considerations for the design of this study
are listed below.

� Four preliminary batches as shown in the upper part of
Table 2 should be imbedded into the whole design for cost
saving purposes.

� For the two trials within the same batch, within-block fac-
tors F5 and F6 can be varied. Each trial can be installed
with one of the five possible combinations of F5 and F6:
{B0,B−

1 ,B+
1 ,B−

2 ,B+
2 }. Hence, it is an incomplete block

design problem of block size of two and treatment level of
five.

� The ease with changing the levels of different factors is
not the same. In particular, temperature is the hardest to
change, wind speed comes second, and other factors are
relatively easy to change. Thus, it makes sense to design an
experiment such that the level changes for temperature and
speed are as infrequent as possible.

� There are three nuisance factors F7 to F9. The inference
about factors F1 to F6 should be robust to the impact of F7
to F9.

With all of the above challenges in mind, it is apparent
that the design should not be constructed with currently avail-
able software. Particularly, we handle the related factors F5 and
F6 by introducing four orthogonal contrasts in Section 4 and
Table 6. We design the icing wind tunnel experiment by apply-
ing the following steps. Details of our design will be discussed
in Section 3.

Step 1. Plan a cross array for factors F1–F3 and F5–F6, where
a 2 × 2 × 2 array is the design for F1–F3, called the
outer array. The inner array for F5 and F6, which
is combined with each row of the outer array, is
explained in Section 3.1.

Step 2. Group trials into blocks (batches in this case). The
grouping scheme for the batches should also coincide
with the design of the preliminary batches.
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Table . The  batches of the proposed design.

Unit Batch F1 F2 F3 F4 F5 & F6 F7(+) F8(+) F9(+)

U P + − − − B0 , B
−
1 B0 B0 B−

1

U P + + − − B0 , B
−
1 B0 B−

1 B0
U P − − − + B0 , B

−
1 B0 B0 B0

U P − + − + B0 , B
−
1 B−

1 B−
1 B0

  + + − − B0 , B
+
1 B+

1 B0 B+
1

  + + + − B0 , B
−
2 B−

2 B0 B−
2

  + + + − B0 , B
+
2 B0 B+

2 B0
  + − + − B−

1 , B
−
2 B−

2 B−
2 B−

2

  + − − − B+
1 , B

+
2 B+

1 B+
1 B+

2

  + − + + B0 , B
+
1 B+

1 B+
1 B+

1

  + − − + B0 , B
−
2 B−

2 B−
2 B0

  + − + + B0 , B
+
2 B0 B0 B0

  − − + − B0 , B
+
1 B0 B+

1 B+
1

  − − − − B0 , B
−
2 B−

2 B−
2 B−

2

  − − + − B0 , B
+
2 B+

2 B0 B0
  − − + + B−

1 , B
−
2 B−

1 B−
2 B−

2

  − − − + B+
1 , B

+
2 B+

1 B+
1 B+

1

  − + + − B−
1 , B

+
1 B+

1 B−
1 B−

1

  − + − − B−
2 , B

+
2 B+

2 B+
2 B−

2

  − + − + B0 , B
+
1 B0 B0 B+

1

  − + + + B0 , B
−
2 B−

2 B0 B0
  − + + + B0 , B

+
2 B0 B+

2 B+
2

  + + + + B−
1 , B

+
1 B+

1 B−
1 B+

1

  + + − + B−
2 , B

+
2 B−

2 B+
2 B−

2

NOTE: Each row shows a unique batch. The four preliminary batches labeled as “P,”
“P,” “P,” and “P”are shown in the upper part. The  newly conducted batches
are shown in the lower part with the sequential run order. The F5 & F6 column
shows the settings of {B0, B

−
1 , B+

1 , B−
2 , B+

2 } for both trials within each batch. The
F7(+) column shows which of these settings was selected for allocation of the+
level for factor F7 , with a similar convention for the F8(+) and F9(+) columns.

Step 3. Assign levels for F4 in the current design and decide
the run order of the batches.

Step 4. Assign F7–F9 levels to trials.
In Step 1, we imbed the preliminary batches into the whole

design. In Step 2, we group the trials with the same combina-
tion of F1–F3 into blocks of size two under the constraint that the
blocking scheme for the preliminary batches are retained. More
details on Step 2 can be found in Section 3.2. F4 is left aside tem-
porarily in Step 1 and Step 2. By definition, the batch with F4
level “−” must be conducted prior to the batch of the same unit
with F4 level “+.” Thus, the level of F4 has to be considered along
with the run order of the batches. In Step 3, we assign values
of F4 such that it is balanced and orthogonal to most factors. In
the meantime, we decide the run order of the 20 new batches
so that temperature and wind speed are changed as infrequently
as possible. More details can be found in Section 3.3. Note that
each batch of the experiment uses one unit and consists of two
trials. The 24 batches designed in Table 2 make up a total of 48
trials. Instead of using 24 units, 12 units are tested in the icing
wind tunnel, with each unit undergoing two batches to evalu-
ate the repeated usage of the coating. As a result, a total of four
observations are made from one unit. The 20 new batches of the

proposed design are shown in the lower part of Table 2 following
the run order of the design.

In Step 4, we assign values of F7–F9 such that they are bal-
anced and orthogonal to other factors. Though the effects of
F7–F9 are not of interest by the engineers, random assignment
may cause effect confounding. That is, the estimated effects
of F7–F9 may be aliased to the effects of F1 to F6. The detailed
assignment is discussed in Section 3.4. It is notable that we
design the experiment with orthogonality as an important
property. Later (in Section 5), we will provide theoretical basis
for such an arrangement.

3. Details of the Design

In this section, we discuss in detail our considerations for
designing the icing wind tunnel experiment.

The factors of interest (F1–F6) constitute the fixed effects we
intend to evaluate. Although these factors can be controlled
within each batch, it is possible that there exist some other fac-
tors that are unidentified and thus uncontrolled. These unob-
servable factors may vary from batch to batch, contributing to
the variability of the outcome. This can be appropriately mod-
eled using a mixed model framework and a block-wise random
effect below:

Yi j = xTi jβ + ai + εi j. (1)

As in usual mixed model specifications, i = 1, . . . , n repre-
sents the batches (blockes), j = 1, 2 represents the trials within
the same batch, xTi j represents the p-dimensional row vec-
tor in the model matrix for the jth trial in the ith batch,
and β represents the corresponding coefficient vector for the
fixed effects, which may include both main effects and inter-
actions. The block-specific random effects {ai : i = 1, . . . , n}
are independently distributed and have a normal distribu-
tion with mean 0 and common variance τ 2. The error terms
{εi j : i = 1, . . . , n, j = 1, 2} are also independently distributed
and have a normal distribution with mean 0 and com-
mon variance σ 2. In addition, {ai : i = 1, . . . , n} and {εi, j :
i = 1, . . . , n, j = 1, 2} are mutually independent. Let the tri-
als be ordered such that the response vector is defined as Y =
(Y11,Y12, . . . ,Yn1,Yn2)T and the corresponding model matrix
is defined as X = (x11, x12, . . . , xn1, xn2)T . Then the best linear
unbiased estimation of the coefficients for linear models with
both fixed effect(s) and random effect(s) can be obtained using
generalized least-square equations (Henderson 1975) when σ

and τ are known:

β̂ = (XTWX )−1XTWY , (2)

where W = {In ⊗ (σ 2I2 + τ 2J2)}−1 = In ⊗ { 1
σ 2 I2 −

τ 2

σ 2(σ 2+2τ 2)
J2},

Ia is the a × a identity matrix, and J2 is the 2 × 2 matrix
with all elements being one. The covariance matrix of β̂ is

cov(β̂) = (XTWX )−1. (3)

In reality, σ and τ are unknown. We obtain the empiri-
cal best linear unbiased estimator for β in two stages (Das,
Jiang, and Rao 2004). First, the estimator of β is obtained
through unknown σ and τ . Then in the second stage, σ and
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τ are replaced with their estimates. Kackar and Harville (1981)
showed that the two-stage estimator is unbiased for β.

It is desirable to construct a design to achieve, for example,
D-optimality, that is, to minimize the determinant of the covari-
ance matrix of β̂. Following the ideas from Cheng (1995), we
start with choosing the design points from a good design with
the absence of block-wise random effects and then group the tri-
als according to some balance criterion. In the subsequent sub-
sections, we discuss in detail the four steps of our design.

3.1. The Factorial and ImbeddedDesign

The first task is to deal with the related factors F5 and F6. In the
following we use F56 to refer to the five-level factor whose levels
are B0, B−

1 , B
+
1 , B

−
2 , and B

+
2 . A naive approach is to assign equally

many trials for these five combinations. However, this may not
be the most efficient methodology for making conclusions from
the data. Four major questions to be addressed after the experi-
ments are:

1. How does the coating perform compared to the absence
of coating? (B1 & B2 vs. B0)?

2. Which of the two coatings is better (B2 or B1)?
3. Would the addition of nanoparticles affect ice accumula-

tion (B+
1 & B+

2 vs. B−
1 & B−

2 )?
4. Would the addition of nanoparticles affect ice accumu-

lation differently in the two coatings (B+
1 − B−

1 vs. B+
2 −

B−
2 )?

From the balance viewpoint, it is ideal to assign equal num-
ber of trials for both sides of the above comparisons. To address
questions 2–4, the number of trials for B−

1 , B
+
1 , B

−
2 , and B

+
2 shall

be the same. However, there is no uniformly best assignment on
the number of trials for B0. Using fewer trials is preferred for
questions 2–4. Moreover, question 1 is the most important, and
allocating more trials for B0 will give more informative results
for this question. As a compromise, we set the number of trials
for B0, B1, and B2 to be equal. Consequently, B0 occurs twice as
often as each of the other levels: B−

1 ,B+
1 ,B−

2 , and B+
2 . This plan

aims to place more emphasis on estimating the effect of contrast
1 (β5 in the model of Section 4 and Table 7). Special techniques,
as shall be discussed in Section 4 when the model is introduced,
are needed to analyze effects of F56.

The preliminary batches consist of a factorial design for fac-
tors F1, F2, and F56. We imbed it into the whole design, which is a
factorial in (F1, F2, F3, F56). The cross array after Step 1 is shown
in the columns “F1–F3” and “Step 1” of Table 3, with the prelim-
inary batches shown in boldface. Under each level combination
of (F1, F2, F3) in the outer array, the inner array consists of six
trials {B0,B0,B−

1 ,B+
1 ,B−

2 ,B+
2 }, which will be grouped into three

batches by Step 2. Note that the grouping of the preliminary tri-
als is fixed, which is shown with the “B0B−

1 ” symbol highlighted
in boldface in the column “Step 2” of Table 3.

Regular factorial designs have long been recognized as
D-optimal designs for two-level factors under models with
uncorrelated errors. Although a D-optimal design can be
constructed by designing fixed factors and random factors
simultaneously, an orthogonal design for {F1, F2, F3, F56}. We
temporarily put aside {F4, F7–F9} and the random effect in Step
1 for several reasons. First, determining a D-optimal design

Table . The proposed design after Steps  and .

F56

F1 F2 F3 Step  Step 

− − − B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

−
1 , B0B

−
2 , B

+
1 B

+
2

+ − − B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

−
1 , B0B

−
2 , B

+
1 B

+
2

− + − B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

−
1 , B0B

+
1 , B

−
2 B

+
2

+ + − B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

−
1 , B0B

+
1 , B

−
2 B

+
2

− − + B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

+
1 , B0B

+
2 , B

−
1 B

−
2

+ − + B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

+
1 , B0B

+
2 , B

−
1 B

−
2

− + + B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

−
2 , B0B

+
2 , B

−
1 B

+
1

+ + + B0 , B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 B0B

−
2 , B0B

+
2 , B

−
1 B

+
1

NOTE: Each of the symbols {B0 , B
−
1 , B

+
1 , B

−
2 , B

+
2 } represents a single trial. Whenever

two symbols are concatenated in the “Step ” column, the corresponding trials
are grouped into one batch. For the preliminary batches, the symbols are bold.

requires knowledge of the intrablock correlation, which we
do not have. Second, D-optimal design is usually obtained by
solving an optimization problem with iterations, which is hard
in our case because there are restrictions on the incomplete
blocking scheme for the inner array and the value of F4 is subject
to the assignment of blocks. Third, as will be shown in Section 5,
this orthogonal design can ensure uncorrelated parameter esti-
mates for the effects of F1, F2, F3, and F56, regardless of the
intrablock correlation.

3.2. Grouping Trials Into Batches

The design after Step 1 mandates that the six trials under each
combination of F1, F2, and F3 must consist of exactly {B0, B0,
B−
1 , B

+
1 , B

−
2 , B

+
2 } for the combination of the within-block factors

F5 and F6. The next step is to group the six trials into blocks of
size two. For example, the symbol “B0B−

1 ” represents a batch in
which B0 pairs with B−

1 . There are in total 15 possible grouping
schemes, five of which have the same combination of F5 and F6
levels (B0B0, B−

1 B
−
1 , B

+
1 B

+
1 , B

−
2 B

−
2 , B

+
2 B

+
2 ) and the other 10 have

different combinations of F5 and F6 levels (B0B−
1 , B0B+

1 , B0B−
2 ,

B0B+
2 , B

−
1 B

+
1 , B

−
2 B

+
2 , B

−
1 B

−
2 , B

+
1 B

+
2 , B

−
1 B

+
2 , B

+
1 B

−
2 ). Let nxy denote

the number of batches in which x and y are paired. Note that nxy
must always be an even integer because each unit is tested twice.
According to the levels of F5 and F6, we can further classify the
15 possible groupings into six categories:

1. n00 = nB0B0 , when B0 is paired with B0;
2. nSS = nB−

1 B
−
1

+ nB+
1 B

+
1

+ nB−
2 B

−
2

+ nB+
2 B

+
2
, when the pair

x, y ∈ {B−
1 ,B+

1 ,B−
2 ,B+

2 } have the same level of F5 and the
same level of F6;

3. n0. = nB0B−
1

+ nB0B+
1

+ nB0B−
2

+ nB0B+
2
, when B0 is paired

with x ∈ {B−
1 ,B+

1 ,B−
2 ,B+

2 };
4. nSD = nB−

1 B
+
1

+ nB−
2 B

+
2
, when x, y ∈ {B−

1 ,B+
1 ,B−

2 ,B+
2 }

have the same level of F5 but different levels of F6;
5. nDS = nB−

1 B
−
2

+ nB+
1 B

+
2
, when x, y ∈ {B−

1 ,B+
1 ,B−

2 ,B+
2 }

have different levels of F5 but the same level of F6;
6. nDD = nB−

1 B
+
2

+ nB+
1 B

−
2
, when x, y ∈ {B−

1 ,B+
1 ,B−

2 ,B+
2 }

have different levels of F5 and different levels of F6.
It is apparent that the allocation of the 24 batches into the

above six categories affects the covariance matrix of β̂ and
thus is closely related with the optimality of the design. BIBDs
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have been employed to construct D-optimal block minimum-
support designs (Cheng 1995) and have been shown to be robust
to the ratio of the random effect variance to the random error
variance (Atkins and Cheng 1999). However, these designs con-
sist of only within-block treatment factor(s) but not between-
block factor(s). Thus, directly applying BIBDs lacks theoretical
support in our problem.We therefore propose a criterion named
“grouping balance” to replace the balance condition of BIBD. For
our problem, the design is said to be balanced in grouping if the
following conditions meet:

1. nB−
1 B

−
1

= nB+
1 B

+
1

= nB−
2 B

−
2

= nB+
2 B

+
2

= nSS/4;
2. nB0B−

1
= nB0B+

1
= nB0B−

2
= nB0B+

2
= n0./4.

3. nB−
1 B

+
1

= nB−
2 B

+
2

= nSD/2;
4. nB−

1 B
−
2

= nB+
1 B

+
2

= nDS/2;
5. nB−

1 B
+
2

= nB+
1 B

−
2

= nDD/2.

The “grouping balance” conditions for F5 and F6 make sure
that the inverse of the sub-matrix in cov(β̂) representing F56
is diagonal. It will be shown that under conditions specified in
Section 5, a D-optimal design for the icing wind tunnel experi-
ment can be obtained by setting

n00 = nSS = nDD = 0, and nSD = nDS = 4. (4)

The grouping balance condition is weaker than the condi-
tions for a BIBD in that not all pairs of levels need to appear
in the same blocks for the same number of times. For example,
nB−

1 B
+
1
is not required to be equal to nB−

1 B
+
2
. However, as we shall

show in Section 5, the grouping balance condition, together with
the orthogonality among all factors, guarantee a diagonal covari-
ance matrix for the parameter estimates with the presence of the
block-specific random effect. The proposed design after Step 2 is
shown in Table 3. The four preliminary batches involving B0B−

1
are in boldface to emphasize that they have been fixed before
grouping.

3.3. The RunOrder of the Batches

After Step 2 of the design, all factors of interest except for F4 have
been considered. From the definition of the factor “repetition”
(F4), for any unit, the batch with F4 level (−) must be carried out
before the batch with F4 level (+). As a result, the assignment of
F4 is closely related to the run order of the batches.

In the design of experiment field, it is common to determine
the run order by randomization. However, randomized run

order may lead to unfavorable sequences when there are hard-
to-change factors (Ju and Lucas 2002). In the icing wind tunnel
experiment, the changes of temperature (F1) and wind speed
(F2) involve adjustments in many system parameters and are
therefore hard to control. Thus, we adopt a specific run order
that minimizes the number of level changes for temperature and
wind speed. The usual one-at-a-time run order (Daniel 1973;
Lin and Lam 1997) ensures the most economical arrangement
of an experiment. Specifically, for two two-level factors, the run
order can be (++), (+−), (−−), and (−+), which results
in a total of three level changes across the design. This run
order scheme is simple but cannot be directly applied to the
icing wind tunnel experiment because the constraint from the
factor F4. To reduce confounding, it is desirable that the two
batches on the same unit are not conducted under exactly the
same combinations of F1 and F2. In addition, it is preferred
that under the same combination of F1 and F2, there is at least
one batch of experiment with each level of F4. The minimum
number of level changes under one-at-a-time run order can-
not be attained under the above requirements. Therefore, the
minimum number of level changes in our study is at least four.

We now propose an approach that ensures the minimum
number of level changes for F1 and F2. In Section 5, we will show
that this method guarantees that F4 is orthogonal to all other
factors, which is important for the theoretical properties of our
design. We call our method “alternate shifting.” Our run order
and the corresponding levels of F4 is shown in Table 4.

Based on the design in Table 3, for the 20 new experiments,
we first group them according to the combinations of F1 and
F2, say in order R1 = (+,+),R2 = (+,−),R3 = (−,−), and
R4 = (−,+). Since the units in the group R4 and F4 level “−”
must have their repeated batch with F4 level “+” under some
combination of (F1, F2) other than in R4, one of the R1, R2, and
R3 should be repeated at least once. As a result, we add R5 =
(+,+) in which all batches are with F4 level “+.” This makes
four times of level changes in total. Not considering the prelimi-
nary batches, there are five batches under each combination of F1
and F2. For R1, we arrange three batches, all under F4 = −. Then
these three batches (same units as above) are shifted down to
R2 with F4 = +. In addition, two batches (new units) are added
underR2 with F4 = −. In the next step, the two batches underR2
with F4 = − are shifted down toR3 with F4 = +. This procedure
goes on until R5, in which the two batches under R4 with F4 = −
are shifted down and no new units can be added. Details about
the arrangement, together with the unit number, can be found
in Table 4.

Table . Run order determination and assignment of F4 .

Run order (F1, F2) F3 F4 : − F4 : +

– R1 = (+,+) − B0B
+
1 (Unit )+ B0B
−
2 (Unit ), B0B

+
2 (Unit )

– R2 = (+, −) − B+
1 B

+
2 (Unit ) B0B

−
2 (Unit )+ B−

1 B
−
2 (Unit ) B0B

+
1 (Unit ), B0B

+
2 (Unit )

– R3 = (−, −) − B0B
−
2 (Unit ) B+

1 B
+
2 (Unit )+ B0B

+
1 (Unit ), B0B

+
2 (Unit ) B−

1 B
−
2 (Unit )

– R4 = (−, +) − B−
2 B

+
2 (Unit ) B0B

+
1 (Unit )+ B−

1 B
+
1 (Unit ) B0B

−
2 (Unit ), B0B

+
2 (Unit )

,  R5 = (+,+) − B−
2 B

+
2 (Unit )+ B−

1 B
+
1 (Unit )
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Table . Example for the assignment of factors F7 to F9 .

F1–F3 F56 F7 F8 F9

(+ + −) B0 + − +
(+ + −) B−

1 − + −
(+ + −) B0 − + −
(+ + −) B+

1 + − +
(+ + −) B−

2 + − +
(+ + −) B+

2 − + −

3.4. The Design for F7 to F9
We treat F7 to F9 as nuisance factors that may be present in the
full model. However, to save the degrees of freedom for estimat-
ing the factors of interest, we do not intend to include these fac-
tors into the final analysis. Thus, it is desirable to design F7–F9
such that our inference for the factors of interest is unaffected by
employing a reduced model.

In general, for a responseY , suppose the potential effects are
β and γ , in which only β is of interest. Assume the underlying
true model (unknown to us) to be

M1 : Y = Xβ + Zγ + ε1, (5)

but we only fit the reduced model

M2 : Y = Xβ + ε2, (6)

where ε1 and ε2 are the error vector with zero mean and covari-
ance matrix �. In the special case of the icing wind tunnel
experiment, (6) reduces to (1) if � = W−1. The generalized
least-square estimation of β using the reduced model is β̂ =
(XT�−1X )−1(XT�−1Y ), and its expectation is

E(β̂) = (XT�−1X )−1XT�−1(Xβ + Zγ )

= β + (XT�−1X )−1(XT�−1Z)γ . (7)

When the aliased matrix XT�−1Z = 0, β̂ is unbiased (Box
and Draper 1987). If the error terms are homoscedastic and
uncorrelated, the orthogonality between the columns of X
and the columns of Z leads to a zero alias matrix. In our
case, the error terms are correlated. As will be shown in
Section 5, the orthogonality of F7–F9 with the other factors still
guarantees the unbiasedness of β̂. So our goal is to make F7–F9
orthogonal to F1–F6. Note that within the same batch, the two
trials have the same level of F1–F4. By the definition of F7–F9, the
two trials within the same batch have exactly opposite levels of
F7–F9. Immediately, we have that F7–F9 are orthogonal to F1–F4.
So we only need to assign F7–F9 according to F56.

We proceed by looking at each combination of F1–F3 sepa-
rately. Take the six trials with F1 to F3 being (+,+,−) as an
example. For the two trials done in the preliminary batches,
levels of F7 to F9 have been assigned, as shown in boldface in
Table 5. Because Fi (i = 7, 8, 9) should be balanced to B0, the
third row of Table 5 is (−,+,−). Thenwe only need to consider
the assignments for F5 = B1 or B2. For these four rows, since the
F5 and F6 columns are orthogonal, assigning values for F7 to F9
is equivalent to finding a third column orthogonal to them. The
only two choices for the third column are (−,+,+,−)T and
(+,−,−,+)T . As the second row is assigned in the preliminary
batches, the choice for the third orthogonal column is nowdeter-
mined. Other combinations of F1–F3 can be dealt with similarly.

4. Data Analysis

In this section,we present the analysis of the data generated from
our proposed design for the icing wind tunnel experiment. The
original data is available from the authors by request.

We use a mixed effects model with block-specific random
effects as in (1). The responseY is the weight of ice accumulated
in each trial. The model matrix is made up of nine columns:
X = (X0, . . . ,X7,X67). Variable X0 corresponds to the inter-
cept parameter β0. Variable X1 corresponds to the main effect
(β1) of the average temperature recorded during the experiment.
Note that in the real analysis, actual average temperature instead
of the designed levels of−1 and 1 are used to make better use of
the data. Variables X2 – X4 correspond to the main effects (β2–
β4) of factors F2–F4 (a value of −1 for low level −, and a value
of 1 for high level +). Further, we use four variables X5–X7 and
X67 to represent the effects of F56 in the model matrix, with the
corresponding parameters β5–β7 and β67. The detailed coding
is provided in Table 6. Variable X5 corresponds to the contrast
between the deicing coating (B1 orB2) and aluminum (B0). Vari-
able X6 corresponds to the contrast between B2 and B1. Variable
X7 corresponds to the contrast between adding nanoparticles
and the absence of additional nanoparticles when a deicing coat-
ing (B1 or B2) is used. Variable X67 corresponds to the interac-
tion of X6 and X7, that is, whether addition of nanoparticles has
differential impact on B1 and B2. Variables X5–X7 and X67 rep-
resent the comparison between different icing surfaces (e.g., alu-
minum vs. coating or one coating vs. another coating) and their
corresponding effects provide answers to the questions raised
in Section 3.1. Therefore, their effects are of the greatest impor-
tance in our study. The between-block variables X1–X4 are our
secondary goal. So variablesX1–X7 andX67 all enter ourmodel.
In case of insignificance of these factors, it is of interest to learn
about the effect size of each potential factor to guide further
investigation of the coating.We apply a log transformation to the
response variable to stabilize variance and to improve normality.
Figure A.1 in Appendix A confirms the validity of the transfor-
mation.Wehave also added two-way interactions amongX1–X7
but none of these interactions appear significant at the 0.05 level.
Results of fitting the mixed model are shown in Table 7.

Themost important conclusionwe reach from the icingwind
tunnel experiment is that the deicing coating can effectively
reduce ice accumulation as compared with aluminum (p-value
of β5 <0.05). Furthermore, there is confidence that both com-
positions of the coating, B1 and B2, reduce ice accumulation.
Although B2 possesses a slightly better parameter estimate than
B1, the difference is not statistically significant. The addition of
nanoparticles does not tend to adversely affect ice accumulation
on the coating. This finding shows that with lifetime length-
ened and mechanical properties enhanced, the coating with
nanoparticles may have almost the same icephobic properties.

Table . The coding for the model matrix of factors F5 and F6 .

F56 X5 X6 X 7 X67

B0 −    
B−
1  −  −  

B+
1  −   − 

B−
2   −  − 

B+
2    
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Table . Results on the mixed effect model for the icing wind tunnel experiment.

Variable Effect Estimate Standard Error Test statistic p-Value

Intercept (X0) β0 . . . <.
Temperature (X 1) β1 − . . − . <.
Speed (X2) β2 . . . <.
Vibration (X3) β3 − . . − . .
Repetition (X4) β4 − . . − . .
Coating versus aluminum (X5) β5 − . . − . .
B2 versus B1 (X6) β6 − . . − . .
Nanoparticle addition (X 7) β7 − . . − . .
X67 β67 . . . .
Random effect variance τ 2 . . . .
Residual error variance σ 2 . . . .

Atmospheric conditions appear to affect ice accumulation. A
lower temperature or a higher wind speed significantly increases
ice accumulation. However, vibration does not show significant
impact. Finally, results support that the performance of the
coating is not degraded upon second usage.

Conventional deicing coatings such as electro-thermal coat-
ings, opto-thermal coatings, super-hydrophobic coatings, and
coatings containing slowly released freezing point depressants
or lubricating oils, suffer from problems such as low icepho-
bicity, flashover in the power system, and severe degradation
upon repeated usage. The novel deicing coating we investigate
is promising in effectively reducing ice accumulation. The coat-
ing is additionally less subject to problems associated with aging
due to the slow release mechanism induced by the addition of
nanoparticles. As a result, this deicing coating may offer a more
convenient, efficient, and durable alternative to existing deicing
methods.

5. Theoretical Results

5.1. Theoretical Conclusions of the Experiment

In this section, we provide some theoretical considerations for
our design. The propositions and the theorem are specific to our
study. The three lemmas, however, are very general.

Here, we use X = (X0, . . . ,X8) to represent the model
matrix of a design, with X0 being the intercept vector, X1–X4
being 1 (high level +) or −1 (low level −) and the coding for
X5–X7 defined as in Table 6. For ease of presentation, we use
X8 here to represent the interaction effect X67 as defined in
Table 6. As discussed in Section 4, the actual temperature is
used as the covariate representing F1 in the data analysis. How-
ever, at the design stage, since only temperature levels (high
or low) can be planned, only 1 or −1 values are allowed in
X1. Let β0 to β8 denote the corresponding parameters associ-
ated with X0 to X8 and β = (β0, . . . , β8)

T . Let Y denote the
response vector, a denote the vector containing all block-specific
random effects, and ε denote the vector containing random
errors. The model for analyzing the data takes the mixed model
form:

Y = Xβ + a + ε.

As in Section 3, the covariance matrix of Y is W−1 if two
trials within the same batch are one after another in Y . Then
our primary goal is to design the experiment to minimize the

determinant of the covariance matrix of β̂ (specified in (3)),
that is, to achieve D-optimality.

Before proceeding to the main conclusion about D-
optimality and D-efficiency of our design, we first present
a useful lemma and a few propositions. Each one addresses the
theoretical properties for one step of our design.

Lemma 1. Let x and z represent two column vectors andW−1

represent a covariance matrix. Then xTWz = 0, if the following
two properties hold:

P1. z is orthogonal to x;
P2. z is an eigenvector ofW .

Lemma 1 shows that a diagonal covariancematrix for param-
eter estimates of a mixed model may be obtained from a mutu-
ally orthogonal model matrix X if property P2 is satisfied for
the columns of X . Let W denote the inverse of the covariance
matrix of the outcome vector as in (2) with n = 24 batches and
letU = (Ui, j) denoteXTWX , thematrix whose determinant we
would like tomaximize to achieveD-optimality of the design. By
Lemma 1 we have the following Proposition.

Proposition 1. For any i = 0, . . . , 4, if X i is orthogonal to all
other columns in the model matrix X , then

Ui, j = 0,

for i = 0, . . . , 4, j = 0, . . . , 8 and j �= i.

All proofs are provided in Appendix B (available online). A
key condition to prove Proposition 1 is the validity of Property
P2. In the icing wind tunnel experiment, the values ofX0–X4 are
the same within the same batch. This special structure results in
Property P2 for X0–X4. Proposition 1 shows that orthogonality
is a sufficient condition to ensure that the off-diagonal entries
related withX0 toX4 are all zero inU . So in Step 1 of our design,
we employ a cross array for F1–F3 and F56. Proposition 1 does
not deal with Ui, j for i, j = 5, . . . , 8. We deal with this part in
Step 2 of our design, with the properties given in the following
proposition.

Proposition 2. If X5 to X8 satisfy the “grouping balance” condi-
tions in Section 3.2, thenUi, j = 0 for i, j = 5, . . . , 8 and i �= j.

The “grouping balance” conditions make sure that the corre-
sponding part ofU is diagonal. After Step 2, the only factor that
needs to be determined is F4. If F4 is orthogonal to other factors,
the whole matrix U is diagonal according to Propositions 1
and 2. In Section 3.3, we have explained that the minimum
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possible number of level changes is four. We assign levels for F4
and arrange the run order by Table 4 following the “alternate
shifting” run order method, which, according to Proposition 4
in Section 5.2, ensures that F4 is orthogonal to F1–F3.

The last step in our design process relies on the following
proposition, which shows that correct inference about F1–F6 can
be made under the reduced model (6) even if F7–F9 affects the
final outcome and should be included in the full model.

Proposition 3. If F7 to F9 are orthogonal to the columns in the
model matrix X , then β̂ = (XT�−1X )−1XT�−1Y is unbiased
under the full modelM1 in (5).

Next, we proceed to the main conclusion about the D-
optimality of the design. It is mainly based on the following
lemmas (Graybill 2001).

Lemma 2. The determinant of anm × m positive definitematrix
A = (ai j) satisfies

det(A) ≤
m∏
i=1

aii,

with equality if and only if A is a diagonal matrix.

Lemma 3. The determinant of anm × m positive definitematrix
A = (ai j) satisfies

det(A) ≤
(m−k∏

i=1

aii

)
det(A2),

where A2 is the lower right k × k submatrix of A, for k ≤ m,
with equality if and only if ai j = 0 for i = 1, . . . ,m − k, j =
1, . . . ,m, j �= i.

Lemma 2 shows that among positive definite matrices with
the same diagonal elements, the diagonal matrix has the largest
determinant. Lemma 3 assumes that there are two positive
definite matrices that have the first m − k diagonal elements
identical. When this holds true, the determinants of the lower
right parts are crucial to the comparison of determinants of the
two matrices. The search for the D-optimal design thus follows
two major steps: (1) comparing the values of the product of
the diagonal elements and (2) looking for the diagonal matrix,
which can achieve the above product as the determinant. The
proofs of Lemmas 2 and 3 take advantage of simple matrix
algebra (Graybill 2001) and are omitted here.

Now, we present our main result about the D-optimality of a
design following the four steps (from Section 3.1 to Section 3.4).
Designs under our consideration satisfy the following set of
conditions.

C1. The total number of batches is n = 24 with each batch
consisting of two trials;

C2. The total numbers of trials involving B0, B1, and B2 are
equal;

C3. The total numbers of trials involving F6 = − and F6 = +
are equal;

C4. The number of nB0B−
1
is no less than four.

ConditionC1 constrains the number of trials under our bud-
get. ConditionsC2 andC3 require that the levels of F5 and F6 have

equal numbers of observations. Condition C4 is due to the four
preliminary batches with B0B−

1 .

Theorem 1. Given that each unit undergoes the initial experi-
ment and the repeated experiment, and under Conditions C1–
C4, an orthogonal array with “grouping balance” that satisfies
n00 = nSS = nDD = 0 and nSD = nDS = 4 is a D-optimal design
for the effects of β0–β8.

Remark 1. Cheng (1995) proposed the D-optimal block design
within the group of minimum-support designs. The optimal
design depends on the value of ρ = τ 2/σ 2. The D-optimality of
the design as defined in Theorem 1 does not depend on ρ and
thus can be applied with no prior knowledge of ρ.

The proposed design is constructed following the above con-
siderations for D-optimality and it satisfies all requirements in
Theorem 1 except that factors F1 and F4 are not orthogonal to
each other. The “alternate shifting” method guarantees that F4
is orthogonal to F1–F3 for the 20 new batches. However, as can
be seen from Table 2, F1 is fully aliased with F4 in the four pre-
liminary batches. While there is a way to construct a design to
achieve the orthogonality between F1 and F4, the number of level
changes must be increased. So there is a balance between the
orthogonality and the number of level changes for the design.

Define the D-efficiency of a design D to be

Defficiency(D) =
{
det(D)

det(D∗)

}1/9

,

where D∗ is the D-optimal design specified in Theorem 1. By
direct calculation, the D-efficiency of the proposed design is as
high as 0.997 and is independent of the value ofρ. Therefore, our
final design sacrifices a small amount of efficiency to achieve the
minimum number of level changes for F1 and F2.

5.2. General Applications

In this section, we provide theoretical results for general appli-
cation. Suppose the experiment has m two-level environment
factors denoted by F1, F2, . . . , Fm and one treatment factor with
t levels, ξ1, ξ2, . . . , ξt . We use a cross array to arrange the two
types of factors, of which the outer array is denoted by D1 with
run size ofN1, and the inner array is denoted byD2 in which the
treatment level ξi appears ti times, for i = 1, . . . , t (

∑t
i=1 ti =

2q). Under the cross array structure, for each row of D1, there
are 2q trials that will be grouped into q blocks of size two.

Assume the underlying model is

Y = β0 +
m∑
i=1

βiXi +
t−1∑
j=1

α jCj + Zγ + ε, (8)

where βi is the main effect of Fi, α j is the jth treatment con-
trast effect, γ = (γ1, γ2, . . . , γN1q)

′ with γk being the random
effect of the kth block, Z is the matrix of IN1q ⊗ [1, 1]′, and
ε is the random error. Further assume that γ ∼ N(0, τ 2IN1q),
ε ∼ N(0, σ 2I2N1q) and γ and ε are independent to each other.

Let P = (X0,X1, . . . ,Xm), Q = (C1,C2, . . . ,Ct−1), and X =
(P,Q). The information matrix is X ′WX , where W = IN1q ⊗
(aI2 + cJ2)with a = 1/σ 2 and c = −τ 2/(σ 2(σ 2 + 2τ 2)). Then
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we have

X ′WX =
(
P′WP P′WQ
Q′WP Q′WQ

)
.

Based upon the cross array structure, we have P = D1 ⊗ 12q,
andQ = [Q′

1,Q′
2, . . . ,Q′

N1
]′, whereQ1 is a 2q × (t − 1)matrix,

and Qi can be obtained from Q1 by row permutations, for i =
2, . . . ,N1. SupposeD1 is an orthogonal design of two levels±1,
and Q′

1 · 12q = 0t−1, then
(i) P′WP = 2N1q(a + 2c)Im+1; and
(ii) P′WQ = 0.
The information matrix can thus be simplified to

X ′WX =
(
d · Im+1 0

0 Q′WQ

)
,

where d = 2N1q(a + 2c). Thus, the D-optimality of the design
is determined by ‖Q′WQ‖. It can be seen that the matrixQ′WQ
dependents on how the 2q trials under each row ofD1 are paired
into blocks.
Remark. In the design of the icing wind tunnel experiment,
we have m = 3, t = 5, N1 = 8, t1 = 2, t2 = · · · = t5 = 1, and
q = 3. Under the cross array structure, the outer array D1 is
a factorial design 23 and the inner array for F56 is blocked
by the “grouping balance” incomplete blocking scheme. The
X ′WX is a diagonal matrix with the first four diagonal elements
being 48(a + 2c), and the last four diagonal elements being
48(2a + c), 32(a + c), 32(a + c), and 16(2a + c), respectively.

The general set for minimum number of level changes is dis-
cussed next. Suppose there are m factors, F1, . . . , Fm, each of
two levels, where the first s factors are hard-to-change, and the
lastm − s factors are easy-to-change. Each unit is experimented
under two different level combinations of F1, . . . , Fm, the initial
batch and the repeated batch. Let Fm+1 be the repetition fac-
tor, where Fm+1 = −1 and+1 for the initial and repeated batch,
respectively. Consider the designs that satisfy the following three
conditions:

C5. Each unit undergoes two batches, where the initial batch
must be carried out before the repeated batch.

C6. Under each of the 2s combinations of F1–Fs, there are at
least one initial batch and at least one repeated batch.

C7. The initial and repeated batches of the same unit are con-
ducted under different combinations of F1 to Fs.

ConditionC5 is natural for testing the effect of repetition fac-
tor. Conditions C6 and C7 are proposed to avoid confounding
between the effects of F1–Fs and Fm+1, or confounding between
the effects of F1–Fs and any potential random effects related to
units. It can be seen that the minimum number of level changes
under constraints ofC5–C7 cannot be 2s − 1 as given by the ordi-
nary minimum level change method. In the following, we pro-
pose the “alternate shifting” run order method.

Let n1 = 2s and n2 = 2m−s. Let R1,R2, . . . ,Rn1 be the
n1 level combinations of factors F1, . . . , Fs, such that the
sequence R1,R2, . . . ,Rn1 is in the one-at-a-time run order,
and r1, r2, . . . , rn2 be the n2 level combinations of factors
Fs+1, . . . , Fm. Let gki1 and gki2 denote the units conducted under
(F1, . . . , Fs) = Ri and (Fs+1, . . . , Fm) = rk with the initial exper-
iment and the repeated experiment, respectively. Table 8 illus-
trates the run order scheme. Let Gi j = {g1i j, . . . , gn2i j }; set G12 =
Gn1+1,1 = ∅ and Gi,2 = Gi−1,1. The run order of this scheme

Table . Run order scheme.

Factors F1 to Fm Repeated factor Fm+1

Level combination Level combination Units under Units under
of F1 to Fs of Fs+1 to Fm Fm+1 = − Fm+1 = +

R1 r1 g111 ∅
...

...
...

...
R1 rn2

g
n2
11 ∅

R2 r1 g121 g122
...

...
...

...
R2 rn2

g
n2
21 g

n2
22

...
...

...
...

Ri r1 g1i1 g1i2
...

...
...

...
Ri rn2

g
n2
i1 g

n2
i2

...
...

...
...

Rn1+1 r1 ∅ g1n1+1,2

...
...

...
...

Rn1+1 rn2
∅ g

n2
n1+1,2

NOTE: Each row represents an experimental run. The first and second columns list
level combinations of hard-to-change factors (F1–Fs) and easy-to-change factors
(Fs+1–Fm), respectively. The third and fourth columns list the labels of units under-
going initial and repeated experiments, respectively.

is G11 → G21 → G22 → · · · → Gn1,1 → Gn1,2 → Gn1+1,2, with
the number of level changes for the hard-to-change factors being
2s. Proposition 4 shows its theoretical properties.

Proposition 4. Under C5–C7, the “alternate shifting” method
attains the minimum number of level changes and also ensures
that Fm+1 is orthogonal to F1–Fm.

Remark. In the icing wind tunnel experiment, we have three
environment factors F1, F2, and F3, where F1 and F2 are two hard-
to-change factors. In this case n1 = 4 and n2 = 2, and the run
order is

G11 → G21 → G22 → G31 → G32 → G41 → G42 → G52,

in which the factors F1 and F2 change four times. Table 4 displays
this order.

6. Conclusions and Discussion

In this article, we present our design and analysis for the icing
wind tunnel experiment for a newly developed deicing coating.
Results confirm that the deicing coating is a promising strategy
for solving the aircraft icing problem in that it will significantly
reduce ice accumulation as compared with aluminum. Addition
of nanoparticles or one repeated usage of the coating do not
significantly impact the deicing property of the coating, which
is a good sign for the durability of such coatings. As expected,
atmospheric conditions such aswind speed and temperature sig-
nificantly affect the amount of ice accumulated. As compared
with traditional deicing coatings, the novel coating offers both
high icephobicity and prolonged service lifetime. Thus, this new
deicing coating offers a more efficient and durable alternative to
existing deicing methods.
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The icing wind tunnel experiment raises multiple challenges
on different aspects of design of experiment (DOE) theory and
practice. Conventional DOEmethods can address one challenge
but fail to account for the others in such a complex experiment.
We approach the problembydecomposing the complex problem
into several steps, with each step addressing a particular chal-
lenge. In addition, these steps are properly arranged so that the
overall design possesses nice properties.

The icing wind tunnel experiment involves multiple
between-block factors, multiple within-block factors, and
random block effects. Each block contains two trials and the
variance of the block effect is unknown prior to the experiments.
We propose a cross array structure with orthogonal design as
the outer array and the “grouping balance” incomplete blocking
scheme as the inner array for designing such an experiment.
Generally, an orthogonal design can be chosen as the outer array
to produce some uncorrelated estimations, and the D-efficiency
of the whole design will depend on the incomplete block-
ing schemes. In the meantime, we reach several conclusions.
First, orthogonality is still a desirable property when dealing
with a mixed-effect model. For experiments with fixed effects
only, orthogonality guarantees uncorrelated estimates on main
effects. This is not true, however, for general experiments with
mixed effects. In our experiment, F1–F4 take the same value
in each block; F7–F9 take opposite values in each block. For
such fixed factors, orthogonality is still a sufficient condition
for uncorrelated parameter estimates. For F5 and F6, which
can take either the same or different values within a block, we
propose additional “grouping balance” conditions. We show
that orthogonality in addition to grouping balance guarantees
uncorrelated parameter estimates. It will be interesting to study
the sufficiency and necessity of orthogonality and grouping
balance for other cases.

Not only does our design strategy give uncorrelated param-
eter estimates, but it also leads to D-optimal designs. For com-
plex situations with random factors, it may be hard to search
for D-optimal designs directly. Our example suggests a multi-
step designing scheme: work on the most important effects first
and worry about secondary effects second. In both steps, bal-
ance, orthogonality, and grouping balance are considered to be
the principles. In such a scheme, the global optimality may not
be guaranteed but high D-efficiency is to be expected.

In addition, for nuisance factors F7 to F9 that have oppo-
site levels within the same block, we show that orthogonality
for these factors to factors of interest (F1 to F6) is important in
ensuring that the parameter estimates for the factors of interest
are unbiased. This holds regardless of whether or not F7 to F9
affect the response variable. To focus on important factors, we
made F7 to F9 orthogonal to X5–X7. However, not all of them
are orthogonal to X67. Finally, we also discuss how to arrange
different batches so that the number of level changes for tem-
perature and wind speed is as small as possible. We propose
the “alternate shifting” method, which shifts between F4 being
low level (−) and F4 being high level (+). We also show that
such a method guarantees that F4 is orthogonal to other fac-
tors. The final design applies the “alternate shifting” method
to the 20 new experiments, which results in a low correlation
between F1 and F4 (correlation coefficient of 1/6). Nevertheless,
the efficiency of the design is very high and parameter estima-
tion is not affectedmuch.Had the four preliminary batches been

conducted under conditions that satisfy the “alternate shifting”
method, the designwould have guaranteedD-optimality and the
minimum number of level changes simultaneously.

Although most theoretical results in this article
(Propositions 1, 2, 3 and Theorem 1) are presented under
the context of the current design, some general principles pro-
vide guidance for designs of this type of problems. The search
for a D-optimal design under a nondiagonal covariance struc-
ture may proceed in a step-by-step fashion. First, one can start
from a design with fixed-effect factors only, taking into consid-
eration of good properties of standard design of experiments.
For example, when considering a block design with random
block effects in which both between-block factors and within-
block factors are present, we can adopt a cross array structure
for the whole design. The between-block factors form the outer
array, and the within-block factors form the inner array. Then,
experiments should be grouped into blocks according to some
balance criteria, for example, criteria for a BIBD or the concept
of “grouping balance” proposed in this article. In addition, for
incomplete block designs, it is sensible not to put the same
level of within-block factors within one block (e.g., not to pair
B0 with B0). This usually results in higher efficiency, as the
different treatment levels are compared directly. After that, one
proceeds to take care of other considerations if any, for example,
the presence of hard-to-change factors or nuisance parameters.
In the particular case of the icing wind tunnel experiment, the
orthogonality of the nuisance factors to the factors of interest
guarantees a zero aliased matrix, ensuring the unbiasedness of
parameter estimates under the reduced model. Under a general
covariance structure, the same conclusion applies when the
aliased matrix can be made zero. More generalizations to the
current design can be of interest and will be investigated in the
future, including the “grouping balance” conditions for general
type of factors, D-optimal block design with block size of more
than two, and the case with multiple random effects.

In this article, we considered batch-specific random effect
as the major source of variability, rather than random noise in
the icing wind tunnel experiment. It is arguable whether unit-
specific randomeffect (repeated usage of the same unit) and ran-
dom effect arising fromwhole plot of a split-plot like design (due
to nonrandom run order) are also possible sources of variation.
We consider these as less important in the icing wind tunnel
experiment for two reasons. First, there is much more variabil-
ity associated with the environment within the icing wind tun-
nel than the environment in the laboratory to produce the units.
Second, the actual value of F1, the most hard-to-change factor
can be recorded during the experiment and was used for the
final data analysis. This largely reduces the temporal impact of
F1 from the nonrandom run order we have used. So at the design
stage, we only assumed the existence of the batch-specific ran-
dom effect andworked out a nice solution for an efficient design.
At the analysis stage, the incorporation of these additional ran-
dom effects was also considered but showed minimal impact on
the analysis, which confirms our assumption at the design stage.

Modern experiments typically involve many complicated
setups. The proposed design method provides a step-by-step
procedure for solving such a complex problem. Experimental
scientists are becoming aware that conventional designsmay not
be appropriate for experiments with high complexities. This is
indeed the motivation of our work. As a result, the proposed
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Figure A.. The residual plot, the histogram of the residuals, and the Q-Q plot of the residuals are used to assess the goodness of fit of our model.

method and strategy is anticipated to find many applications in
modern experimental sciences. Due to confidentiality concerns,
some other potential applications are not discussed here.

Appendix A: Diagnosis

The residual plot, the histogram of the residuals and the Q-Q plot of the
residuals are used to assess the goodness of fit of our model. The plots indi-
cate a good fit after the log transformation for the response variable.

SupplementaryMaterial
The online supplementary material contains Appendix B.
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