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 Abstract: Nested Latin hypercube designs are useful for computer experiments with
 multi-fidelity and orthogonality is a desirable property for them. In this paper, we
 provide methods for constructing nested Latin hypercube designs with (exact or
 near) orthogonality. The constructed designs have flexible numbers of runs and
 factors with the desirable property that the sum of the elementwise product of
 any three columns is zero. The construction algorithms are given with theoretical
 support. Some designs are tabulated for practical use.
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 1. Introduction

 Computer experiments are used to study complex systems and have received
 considerable attention. Latin hypercube designs (LHDs) for them, introduced by
 McKay, Beckman, and Conover (1979), are particularly popular. Experiments
 with various levels of accuracy or fidelity have been widely used in sciences and
 engineering. Thus high-accuracy experiments are more accurate but slower and
 low-accuracy experiments are less accurate but faster (see, Kennedy and O'Hagan
 (2000), Qian and Wu (2008)). It is appealing to use LHDs with two layers to
 design computer experiments with two levels of accuracy for increasing prediction
 accuracy with limited cost. Qian, Tang, and Wu (2009) and Qian, Ai, and
 Wu (2009) proposed nested space-filling designs for multi-fidelity experiments by
 applying projections in the Galois field, and other algebraic techniques. Haaland
 and Qian (2010) provided a construction method for nested space-filling designs of

 multi-layer with the help of (t, s)-sequences. Sun, Yin, and Liu (2013) constructed
 nested space-filling designs by using nested difference matrices. Sun, Liu, and
 Qian (2014) proposed methods for constructing several classes of nested space
 filling designs based on a new group projection, and other algebraic techniques.
 Although these constructions can achieve stratification in low dimensions, they
 are not orthogonal.
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 An LHD is orthogonal if the correlation coefficient of any two columns is zero.
 For a first-order model, such a design guarantees independent estimates of linear
 effects. For a second-order model, however, designs with (a) each design column
 is orthogonal to all the others, and (b) the sum of elementwise product of any
 three columns is zero, ensure that estimates of all linear effects are uncorrelated
 with each other, and with all quadratic effects and bilinear interactions (cf., Ye
 (1998), Sun, Liu, and Lin (2009, 2010), Yang and Liu (2012)). If (a) cannot
 be satisfied, it can be relaxed to (a') each column is nearly orthogonal to the
 others in the design. An LHD satisfying (a) and (b) is said to be a second-order
 orthogonal LHD, and an LHD with properties (a') and (b) is said to be a nearly
 orthogonal LHD.

 Li and Qian (2013) provided some approaches to constructing nested orthog
 onal LHDs using nested rotation matrices and nested factorial designs. Yang, Liu,
 and Lin (2014) presented methods for constructing nested orthogonal LHDs us
 ing a special type of orthogonal design proposed by Yang and Liu (2012). Their
 designs have properties (a) and (b) with 2s factors and different layers, where
 s is a positive integer. For practical use, however, nested LHDs with (exact or
 near) orthogonality are needed, but largely unavailable.

 This paper proposes a new class of nested LHDs with (exact or near) or
 thogonality by using vectors with zero periodic autocorrelation function (PAF)
 provided by Georgiou and Efthimiou (2014). These designs satisfy (a) and (b),
 or properties (a') and (b), have flexible numbers of runs, and 2, 4, 8, 12, 16,
 20, and 24 factors, some of which cannot be obtained from Yang, Liu, and Lin
 (2014).

 The paper is organized as follows. Section 2 presents useful notation and
 definitions. Section 3 provides methods for constructing nested orthogonal LHDs
 using vectors with zero PAF. Section 4 proposes methods to construct nested
 nearly orthogonal LHDs. Section 5 extends the results of Sections 3 and 4 to
 nested orthogonal and nearly orthogonal LHDs with more layers and gives some
 concluding remarks. All proofs are deferred to Appendix A.

 2. Preliminary Results

 This section gives some notation and definitions. For vectors u = («i,...,
 un)T and v = (v\,, vn)T, we write u and v for their means, and puv for their
 correlation coefficient. Throughout, we use 0m and 1 m to denote the m x 1
 column vectors with all entries zero and one, respectively, and use Ri to denote
 the anti-diagonal identity matrix of order I with one on the anti-diagonal and zero
 elsewhere. A circulant matrix is a square matrix B = (bij) of order n with first
 row bi = (bifi, £>i,i,. -., 6i,n-i) and every next row being generated by a circulant
 permutation of its previous row, b^ = where j — i +1 is taken modulo n,
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 i = 2,... ,n and j = 0,... ,n - 1. Let A = {Aj : Aj = (aj0, aji,..., =
 1,... , r} be a set of r vectors of length I. The periodic autocorrelation function
 (PAF) Pa{$) is defined, reducing i + s modulo I, as

 r l—l

 -Pa(s) = ^ ^ S — 0, . . . ,1 1.
 j=l i=0

 The set of vectors A is said to have zero PAF if Pa(s) = 0, for all s = 1,— 1,
 and is said to have constant PAF if Pa(s) = 7, for all s = 1,— 1 for some
 integer number 7. Georgiou and Efthimiou (2014) provided an algorithm to
 search for sets of vectors with zero PAF. Some are listed in Appendix B. These
 vectors are used in Georgiou and Efthimiou (2014) for the construction of LHDs
 that satisfy (a) and (b). A design L(n, m) with n runs and m factors is called an

 LHD if it corresponds to an n x m matrix X = (x\,, xm), where column x3 is
 the jth factor and each factor includes n uniformly spaced levels.

 Consider a computer experiment involving u different levels of accuracy:
 Yi(-),..., Yu(-), where Yu(-) is the most accurate, Yu^\(-) is the second most
 accurate, and so on. For each i = 1,... ,u, let Li be a design with nt points
 associated with ii(-)- If the ith layer Li is an L(nj,m) for i = with
 Lu C • • • C L\ and nu < ■ ■ ■ < n\, then {L\ \...; Lu) is called a nested LHD
 with u layers, denoted by NL((n\,... ,nu),m) (cf., Yang, Liu, and Lin (2014)).
 If each Li is an orthogonal LHD, then {L\ \...; Lu) is called a nested orthogonal
 LHD; if L\ is a nearly orthogonal LHD and each L{, i = 2,..., u, is an orthogonal
 or nearly orthogonal LHD, then (Li;...; Lu) is called a nested nearly orthogonal
 LHD.

 We provide methods to construct orthogonal matrices that are useful for the

 construction of nested LHDs with (exact or near) orthogonality.

 Lemma 1 (Thm. 4.49 of Geramita and Seberry (1979)). Suppose there exist
 circulant matrices B\, B2, £3, B4 of order I satisfying

 B\Bf + B2B2 + B^B^ + B^Bj — cli,

 where c is a constant. Then the Goethal-Seidel array

 GS = GS(Bl,B2,Bz,Bi) =

 ( B\ B2R1 B3R1 B4R1 \
 -B2Ri Bi -BjRi BjRi
 -B3R1 BjRi B\ -BjRi

 \-B4R1 -BjRi B2 Ri B\ )

 is an orthogonal matrix of order 41.
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 Corollary 1. If there are vectors B\, Bo, B3, B4 of length I with zero PAF, they
 can be used as the first rows of circulant matrices in the Goethals-Seidel array to
 generate an orthogonal matrix of order 41.

 Following Kharaghani (2000), a set of square real matrices {B\, B2, ■ ■ ■, B-2k}
 is said to be amicable if

 y^jB2i-iB2j - B2lB. £-1)  = 0.

 i=i

 Lemma 2 (Thm. 1 of Kharaghani (2000)). Let {Bi, B2, ■ ■ ■, Bs} be an amica
 ble set of circulant matrices of order I, satisfying Y^,=\BiBj = c^i- Then the
 Kharaghani array

 K =

 ( B1 B2
 —B2 B\

 —B4R1 -B3Ri
 —B3Ri B4R1

 B4R1 B3R1 BqR[
 B3R1 —B4R1 B-jRi

 Bi B2 -BjRi
 —B2 B\ Bj Ri
 8 u| —BjRi Bi

 —B5R1 B(,Ri -BjRi-BjRi —B2
 —BsRi —B7R1 —BqRi BlR, BjRi

 T d r>T r>. nT d. tjT

 B5R1 B^Ri B-R] \
 —BqRi BtRi —B$Ri

 -B6Ri-B5Ri BlRi -BTRi B

 BTRt Bi Ri —BlRi
 Bj Ri -BjRl-BjRl
 B2 -BjRi BjRi
 B\ BT Ri Bj Ri
 BjRi

 3

 B\
 -B2

 J4

 B2
 Si  / \-B7R1 BsRi B- Ri B() Rt -B:i Rt - UA Rt

 is an orthogonal matrix of order 81.

 Remark 1. As in Corollary 1, we can use eight vectors of length I with zero
 PAF to generate eight suitable amicable circulant matrices for Lemma 2.

 Lemma 3. Suppose there exist two circulant matrices B\, B2 of order I satisfying
 BiBf + B2B2 = cli. Then

 B =
 B\ B2

 -Bl Bf
 or  B =  (2.1)

 B1 B2R1 \
 -B2Ri Bi J

 is an orthogonal matrix of order 21.

 Remark 2. Two vectors of length I with zero PAF can be used as the first rows
 of the circulant matrices B\ and B2 at (2.1) to generate an orthogonal matrix of
 order 21.

 3. Generation of Nested Orthogonal LHDs

 Here we construct nested orthogonal LHDs by using a special class of or
 thogonal matrices with order 21, 41, and 81. The generated designs have flexible
 run sizes and satisfy properties (a) and (b).

 Two algorithms are provided to construct nested orthogonal LHDs with m =
 rl factors. Given a positive integer a, let A\,A2,..., Abr be row vectors of length
 I with zero PAF and satisfying one of
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 (i) the set formed by combining the absolute values of all entries of all vectors
 together is {b + (2p — 1 )a : p = 1,..., m};

 (ii) the set formed by combining the absolute values of all entries of all vectors
 together is {b + pa : p = 1,..., m}.

 Some vectors with zero PAF are listed in Appendix B, which were obtained by
 the algorithm provided in Georgiou and Efthimiou (2014). If the vectors satisfy
 (i), NOL-Algorithm 1 is used; if the vectors satisfy (ii), NOL-Algorithm 2 is used.
 The nested orthogonal LHDs generated by the two algorithms may have the same
 run size and number of factors. For ease of expression, we henceforth use r to

 denote 2,4, or 8, and use Di±j to denote the matrices A+j and A-j

 Nested orthogonal LHDs Algorithm 1 (NOL-Algorithm 1).
 Step 1. Given a positive integer a, take A\, A2, ■. ■, A~ to be r row vectors of

 length I with zero PAF satisfying Condition (i).

 Step 2. For b = 0, ±l,...,±(a — l),a, construct E by stacking Dq, D±\,...,
 At(a-i)> Da row by row, E = (JDjf, D^v ..., D^)T. Define L\ =
 (~Et, 0m, Et)t, L2a = (-DT,D%)t, and L2/3 = (~D^,0m,Dj)T.

 Step 3. Let F\ = (Li;L2q) and F2 = (Li;L2(s).

 Nested orthogonal LHDs Algorithm 2 (NOL-Algorithm 2).
 Step 1. Given a positive even integer a, take A\, A%, ■. ■, A^. to be r row vectors

 of length I with zero PAF satisfying Condition (ii).

 Step 2. For 6 = 0, —1,..., —(a—1), construct E by stacking Dq, D-i, ..., D_(0_x)

 row by row, E = (D%, DT_u ..., D^a_1))T. Define Lx = {-ET, 0m, ET)T,

 L2a = (-D^0m,D^)T, and L20 = {-DT_a/2,DT_a/2)T.

 Step 3. Let G\ — (Li; L2a) and G2 — (Ly, L2p).

 Theorem 1.

 (i) For the designs constructed in NOL-Algorithm 1, F\ is a nested orthogonal
 L((4am + 1, 2m), m) and F2 is a nested orthogonal L((4am +1,2m+l),m),
 where L\, L2a, and L2p are orthogonal LHDs with m factors and Aam + 1,
 2m, and 2m + 1 runs, respectively.

 (ii) For the designs constructed in NOL-Algorithm 2, Gi is a nested orthogonal
 L((2am + l,2m + l),m) and G2 is a nested orthogonal L((2am + 1,2m), m),
 where L\, L2a, and L2p are orthogonal LHDs with m factors and 2am + 1,
 2m + 1, and 2m runs, respectively.
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 Remark 3. NOL-Algorithm 2 works for any positive integer a. The condition
 that a be a positive even integer is to ensure that all levels of the generated
 designs are integers. NOL-Algorithms-1 and -2 are able to generate many new
 nested orthogonal LHDs that are not now available.

 The following examples show how to construct designs with m = 12 and 20
 factors. They are apparently new.

 Example 1 (m = 12). We construct nested orthogonal L((48a + 1,24), 12),
 L((48a+1, 25), 12), L((49,24), 12), and L((49,25), 12). By setting a = 2 in NOL
 Algorithm 1, we have b = —1,0,1,2. Then, by Corollary 1, vectors with zero
 PAF (in Appendix B) are A\ = (6 + 15a, — (b + 5a), 6+ 19a), A\ = (6 + 17a, — (b +
 21a), b + 23a), A3 = (b + a, b + 3a, —(b + 7a)), and A\ = (b + 9a, b + 11a, b + 13a),
 and orthogonal matrices D- 1, .Do, -Di, and D2 of order 12 are

 /  29  -9  37  45  -41  33  -13  5  1  25  21  17\
 37  29  -9  -41  33  45  5  1  -13  21  17  25
 -9  37  29  33  45  -41  1  -13  5  17  25  21

 -45  41  -33  29  -9  37  -21  —25  -17  5  -13  1
 41  -33  -45  37  29  -9  -25  -17  -21  -13  1  5

 -33  -45  41  -9  37  29  -17  -21  -25  1  5  -13
 13  -5  -1  21  25  17  29  -9  37  41  -45  —33^
 -5  -1  13  25  17  21  37  29  -9  -45  -33  41
 -1  13  -5  17  21  25  -9  37  29  -33  41  -45

 -25  -21  -17  -5  13  -1  -41  45  '6c  29  -9  37
 -21  -17  -25  13  -1  -5  45  33  -41  37  29  -9

 V  -17  -25  -21  -1  -5  13  33  -41  45  -9  37  29 /

 (  30 -10  38  46 -  -42  34  -14  6  2  26  22  18\
 38  30  -10  -42  34  46  6  2  -14  22  18  26

 -10  38  30  34  46 -  -42  2 - -14  6  18  26  22
 -46  42  -34  30 - -10  38  -22 - -26  -18  6 - -14  2
 42  -34 -46  38  30 -  -10  -26 - -18  -22  -14  2  6

 -34  -46  42  -10  38  30  -18 - -22  -26  2  6 - -14
 14  -6  -2  22  26  18  30 - -10  38  42 -  -46 - -34
 -6  -2  14  26  18  22  38  30  -10  -46 - -34  42
 -2  14  -6  18  22  26  -10  38  30  -34  42 - -46
 -26  -22  -18  -6  14  -2  -42  46  34  30 - -10  38
 -22  -18  -26  14  -2  -6  46  34 -42  38  30 - -10

 \ -18  -26  -22  12  -6  14  34 -42  46  -10  38  30/

 (  31  -11  39  47 -43  35  -15  7  3  27  23  19\
 39  31  -11  -43  35  47  7  3  -15  23  19  27

 -11  39  31  35  47 -43  3 - -15  7  19  27  23
 -47  43  -3b  31 - -11  39  -23 - -27  -19  7 - -15  3
 43  -35  -47  39  31 -  -11  -27 -19  -23  -15  3  7

 -35  -47  43  -11  39  31  -19 - -23  -27  3  7 -15
 15  -7  -3  23  27  19  31 - -11  39  43 - -47 - -35
 -7  -3  15  27  19  23  39  31  -11  -47 - -35  43
 -3  15  -7  19  23  27  -11  39  31  -35  43 - -47
 -27  -23  -19  -7  15  -3  -43  47  35  31 - -11  39
 -23  -19  -27  15  -3  -7  47  35  -43  39  31 - -11

 V -19  -27 -23  -3  -7  15  35 - -43  47  -11  39  31/
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 32  -12  40  48  -44  36  -16  8  4  28  24  20
 40  32  -12  -44  36  48  8  4  -16  24  20  28

 -12  40  32  36  48  -44  4  -16  8  20  28  24
 -48  44  —36  32  -12  40  -24  -28  -20  8  -16  4

 44  -36  -48  40  32  -12  -28  -20  -24  -16  4  8
 -36  -48  44  -12  40  32  -20  -24  -28  4  8  -16

 lb  -8  -4  24  28  20  32  -12  40  44  -48  —36
 -8  -4  16  28  20  24  40  32  -12  -48  -36  44
 -4  16  -8  20  24  28  -12  40  32  -36  44  -48

 —28 -24  —20  -8  16  -4  -44  48  36  32  -12  40
 -24  -20  -28  16  -4  -8  48  36  -44  40  32  -12
 -20  -28  -24  -4  -8  16  36  -44  48  -12  40  32

 By NOL-Algorithm 1, (LijI^a) and (Li;L2/3) are nested orthogonal
 L((97,24), 12) and L((97,25), 12), respectively, where

 Li = (-Do , Dq , -Dj,0i2, D2 , -D^, D^, -Df, Dj,)T is an orthogonal
 L( 97,12),

 L/2a — (~Dq, Dq)t is an orthogonal L( 24,12), and

 £2p = (—£)2,)0i2, ^J)7 *s an orthogonal L(25,12).

 Furthermore, by letting L'x = (L^Q, £^g)T, we have that (L'1;L2a) and (L'x; L2/3)
 are nested orthogonal L((49,24), 12) and L((49,25), 12), respectively. If we take
 other values for a, then more nested orthogonal LHDs with 12 factors and flexible
 run sizes can be constructed similarly.

 Example 2 (m — 20). We construct nested orthogonal LHDs with 20 fac
 tors. Set a = 2 in NOL-Algorithm 2, then 6 = 0, —1. Vectors with zero PAF
 (in Appendix B) are A\ = (b + 11a, b + 3a, — (b + 14a), b + 15a, b + 12a), A^ =
 (b-\- 13a, b + 16a, b-\- 17a, b + 18a, — (b-1- 19a)), AO^ — (b -I- 20a, b + a, — (b + 2a), — (b +

 4a), — (b + 5a)), and = (6 + 6a, b + 7a, — (6 + 8a), b + 9a, — (b + 10a)). Accord
 ing to Corollary 1 and NOL-Algorithm 2, nested orthogonal L((81,41), 20) and
 £((81,40), 20) can be obtained: (L\\Lia) and () with Li — (L^,Lj\p)T•,
 L2 a = {—Dq, O20, Dq)t, and L2/3 = (—-D-i) D"^l)T, where Do and 1 are listed
 in Appendix C.

 4. Generation of Nested Nearly Orthogonal LHDs

 For some parameters, a nested LHD with orthogonality may not exist. Then
 a nested nearly orthogonal LHD is a natural choice. We propose two methods
 for constructing nested nearly orthogonal LHDs, that satisfy properties (a') and
 (b) in Section 1, using r vectors with zero PAF. The main difference with the
 algorithms in Section 3 is that two more runs are added. To achieve a low
 correlation between any two distinct columns, levels +1 and —1 are added and
 original nonzero levels are taken further away from zero to make sure the resulting
 design is an LHD.
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 Nested nearly orthogonal LHDs Algorithm 1 (NNOL-Algorithm 1).
 Step 1. The same as Step 1 of NOL-Algorithm 1, except that here a > 2.

 Step 2. For b = 0, ±1,..., ±(a — 2), a — 1, a, a + 1, construct E by stacking
 Do,D±1,..., Z?±(a_2),D0_i,D0, Da+1 row by row, E = (D$,

 Define

 3. Let Qi = (-^i;^2a) and Q2 = (Li;L2/?)> where L2a and £2,9 have the
 same form as in NOL-Algorithm 1.

 Nested nearly orthogonal LHDs Algorithm 2 (NNOL-Algorithm 2).
 Step 1. The same as Step 1 of NOL-Algorithm 2.

 Step 2. For b = 1, 0, —1,..., —(a — 2), construct E by stacking D1, Do, D-1,...,

 £>-(a-2) row by row> £ = Define Li =
 (--ET, -1m, 0m, lm, ET)T.

 Step 3. Let W\ = (Li;L2a) and M'2 = (Li;L2^), where I/2a and ^2,3 have the
 same form as in NOL-Algorithm 2.

 Theorem 2.

 (i) For the designs constructed in NNOL-Algorithm 1, Q\ is a nested nearly or
 thogonal L((4am + 3, 2m), m) and Q2 is a nested nearly orthogonal L((4am +
 3, 2m+ 1 ),m), where L\ is a nearly orthogonal LHD with correlation puv =
 6/[(2am + 1)(2am + 2)(4am + 3)] for any two distinct columns u and v,
 Lza and L2/3 are orthogonal LHDs with m factors and 2m and 2m + 1 runs,
 respectively.

 (ii) For the designs constructed in NNOL-Algorithm, 2, W\ is a nested nearly
 orthogonal L{{2am + 3,2m + 1 ),m) and W2 is a nested nearly orthogonal
 L((2am + 3,2m),m), where L\ is a nearly orthogonal LHD with correlation
 puv = 6/[(am + 1 )(am + 2)(2am + 3)] for any two distinct columns u and v,
 L2q and L2/3 are orthogonal LHDs with m factors and 2m + 1 and 2m runs,
 respectively.

 The W\ in NNOL-Algorithm 2 also works for odd a with a > 2; an illustration
 is given in Example 5. The resulting design in Theorem 2 is not orthogonal, but
 the correlation between any two design columns is a small constant as given in
 Theorem 2. We thus call them nearly orthogonal.

 Example 3 (m = 8). We construct a nested nearly orthogonal L((32a+3,16), 8)
 and L((32a + 3,17), 8) by using Lemma 2 and the eight vectors A\ = b + (2? — l)a
 for i = 1,..., 8 with zero PAF. Without loss of generality, take a = 2, and then
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 b — 0,1,2,3 from NNOL-Algorithm 1. We get orthogonal matrices Do, D\, D2,
 and £>3 of order eight as

 / 2 6 14 10 22 18 30 26\
 -6 2 10 -14 18 -20 26 -30

 -14 -10 2 6 -30 26 22 -18

 -10 14 -6 2 26 30-18-22

 °~ -22 -18 30 -26 2 6 -14 10 '
 -18 22 -26 -30 -6 2 10 14

 -30 -26 -22 18 14 -10 2 6

 y —26 30 18 22 -10 -14 -6 2/
 / 3 7 15 11 23 19 31 27 \

 -7 3 11 -15 19 -21 27 -31

 -15 -11 3 7-31 27 23 -19

 _ -11 15 -7 3 27 31 -19 -23
 1_ -23 -19 31 -27 3 7-15 11 '

 -19 23 -27-31 -7 3 11 15

 -31 -27-23 19 15 -11 3 7

 \-27 31 19 23 -11 -15 -7 3/
 / 4 8 16 12 24 20 32 28 \

 -8 4 12 -16 20 -22 28 -32

 -16 -12 4 8 -32 28 24 -20

 _ -12 16 -8 4 28 32 -20 -24
 2 ~ -24 -20 32 -28 4 8 -16 12 '

 -20 24 -28 -32 -8 4 12 16

 -32 -28 -24 20 16 -12 4 8

 ^ —28 32 20 24 -12 -16 -8 4,
 / 5 9 17 13 25 21 33 29 \

 -9 5 13 -17 21 -23 29 -33

 -17-13 5 9 -33 29 25 -21

 = -13 17 -9 5 29 33 -21 -25
 3~ -25 -21 33 -29 5 9 -17 13 '

 -21 25 -29 -33 -9 5 13 17

 -33 -29 -25 21 17-13 5 9

 ^—29 33 21 25 -13 -17 -9 5y

 By using them, we obtain nested nearly orthogonal LHDs (L\\L2a) and (L\; L2b)
 of 8 factors with correlation puv = 1/12,529, where L\ = (Dq , -Dq, Dj, — 0s,
 DT> -D1> Dh 1S, -ls)T is a nearly orthogonal 1(67,8), L2a = {D^,-D^)T
 is an orthogonal 1,(16,8), and L2P = (DJ,-Dl 08)t is an orthogonal L( 17,8).
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 Table 1. The nested nearly orthogonal LHD with 8 factors and 67 runs in
 Example 3.

 Run  X\  X2  %3  X4  x5  x6  x7  x8  Run  Xi  %2  %3  £4  X5  XQ  X7  X8

 1  2  6  14  10  22  18  30  26  34  3  7  15  11  23  19  31  27

 2  -6  2  10  -14  18  -20  26  -30  35  -7  3  11  -15  19  -21  27  -31

 3  -14  -10  2  6  -30  26  22  -18  36  -15  -11  3  7  -31  27  23  -19

 4  -10  14  -6  2  26  30  -18  -22  37  -11  15  -7  3  27  31  -19  -23

 5  -22  -18  30  -26  2  6  -14  10  38  -23  -19  31  -27  3  7  -15  11

 6  -18  22  -26  -30  -6  2  10  14  39  -19  23  -27  -31  -7  3  11  15

 7  -30  -26  -22  18  14  -10  2  6  40  -31  -27  -23  19  15  -11  3  7

 8  -26  30  18  22  -10  -14  -6  2  41  -27  31  19  23  -11  -15  -7  3

 9  -2  -6  -14  -10  -22  -18  -30  -26  42  -3  -7  -15  -11  -23  -19  -31  -27

 10  6  -2  -10  14  -18  20 -26  30  43  7  -3  -11  15  -19  21  -27  31

 11  14  10  -2  -6  30  -26  -22  18  44  15  11  -3  -7  -31  27  -23  19

 12  10  -14  6  -2  -26  -30  18  22  45  11  -15  7  -3  -27  -31  19  23

 13  22  18  -30  26  -2  -6  14  -10  46  23  19  -31  27  -3  -7  15  -11

 14  18  -22  26  30  6  -2  -10  -14  47  19  -23  27  31  7  -3  -11  -15

 15  30  26  22  -18  -14  10  -2  -6  48  31  27  23  -19  -15  11  -3  -7

 16  26  -30  -18  -22  10  14  6  -2  49  27  -31  -19  -23  11  15  7  -3

 17  4  8  16  12  24  20  32  28  50  5  9  17  13  25  21  33  29

 18  -8  4  12  -16  20  -22  28  -32  51  -9  5  13  -17  21  -23  29  -33

 19  -16  -12  4  8  -32  28  24  -20  52  -17  -13  5  9  -33  29  25  -21

 20  -12  16  -8  4  28  32  -20  -24  53  -13  17  -9  5  29  33  -21  -25

 21  -24  -20  32  -28  4  8  -16  12  54  -25  -21  33  -29  5  9  -17  13

 22  -20  24  -28  -32  -8  4  12  16  55  -21  25  -29  -33  -9  5  13  17

 23  -32  -28  -24  20  16  -12  4  8  56  -33  -29  -25  21  17  -13  5  9

 24  -28  32  20  24  -12  -16  -8  4  57  -29  33  21  25  -13  -17  -9  5

 25  -4  -8  -16  -12  -24  -20  -32  -28  58  -5  -9  -17  -13  -25  -21  -33  -29

 26  8  -4  -12  16  -20  22  -28  32  59  9  -5  -13  17  -21  23  -29  33

 27  16  12  -4  -8  32  -28  -24  20  60  17  13  -5  -9  33  -29  -25  21

 28  12  -16  8  -4  -28  -32  20  24  61  13  -17  9  -5  -29  -33  21  25

 29  24  20  -32  28  -4  -8  16  -12  62  25  21  -33  29  -5  -9  17  -13

 30  20  -24  28  32  8  -4  -12  -16  63  21  -25  29  33  9  -5  -13  -17

 31  32  28  24  -20  -16  12  -4  -8  64  33  29  25  -21  -17  13  -5  -9

 32  28  -32  -20  -24  12  16  8  -4  65  29  -33  -21  -25  13  17  9  -5

 33  0  0  0  0  0  0  0  0  66  1  1  1  1  1  1  1  1

 67  -1  -1  -1  -1  -1  -1  -1  -1

 Note: The entire array is a nearly orthogonal L(67,8) with correlation puv = 1/12,529, Li; the
 subarray above the dashed line is an orthogonal L(16, 8), L2a\ and the subarray from Run 17
 to Run 33 is an orthogonal L(17, 8), 1/2(3

 The generated design (L\;L2a) is a nested nearly orthogonal L((67,16), 8), and

 (Li; -L2/3) is a nested nearly orthogonal L((67,17), 8). These are given in Table 1.
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 5. Extensions and Concluding Remarks

 Nested Latin hypercube designs (LHDs) are useful for sequentially running
 a computer model, validating a computer model, and solving stochastic opti
 mization problems (Qian (2009)). We propose a new class of nested orthogonal
 and nearly orthogonal LHDs with two layers. Extensions can be made in two
 directions. First, if a > 4 is an even integer, it is easy to construct nested or
 thogonal and nested nearly orthogonal LHDs with multiple layers by extending
 our algorithms, as in the following example.

 Example 4 (m = 4). We construct nested nearly orthogonal LHDs with four
 layers. Take vectors Ai = b + a, A2 = b + 3a, A3 = b + 5a, A4 = b + 7a.
 For a = 4, and b = 0, ±1, ±2,3,4,5, the eight corresponding orthogonal ma
 trices are Do, D±\, D±2, D3, D4, and £>5. We obtain 4-layer nested nearly or
 thogonal LHDs (H] Hz', Hf, Ha) and (H; if3; H2',Hp) with 4 factors, where H =
 (~Dq, D$, -D\, 04, Dj, -Dt_2, Dl2,-Dl E%-Dlx, D^-Df, Df, -Dj, D%,

 U,-U)T is a nearly orthogonal L(67,4) with puv = 1/12,529; H3 —
 {-DH, Dl, -Dj, 04, D\, -Dt_2, Dt_2,-Dl, Dl)T is an orthogonal L(33,4); H2 =
 (—Dq,Dq,—DJ,04,DJ)t is an orthogonal L(17,4); Ha = (—Dq, Dq)t is an
 orthogonal L(8,4); and Hp = (—Dj,O4, Dj)T is an orthogonal L(9,4). The
 resulting design is displayed in Table 2.

 As well, the run size of nested (nearly) orthogonal LHDs obtained from
 NOL-Algorithms and NNOL-Algorithms can be more flexible if the parameter b
 in vectors with zero PAF takes other values. We rewrite NNOL-Algorithm 2 to
 show such extension.

 Nested nearly orthogonal LHDs Algorithm 3 (NNOL-Algorithm 2*).
 Step 1. The same as Step 1 of NOL-Algorithm 2.

 Step 2. For j = 0,..., k — 1 with k being a positive integer, define Ej =

 ^amj' ^amj-1' • • • > ^amj-(a-2)^T anC^ = 1' * • * ' ~^q , —1 m, 0m,
 1 m,E%,...,E%_1)T.

 Step 3. Let W\ = (Ly, L2a) and W2 — (L\\ L20), where L2a and L2p have the
 same form as in NOL-Algorithm 2.

 Here W\ is a nested nearly orthogonal L((2arnk + 3,2mk + l),m) and W2 is a
 nested nearly orthogonal L((2amk + 3, 2mk),m), where L\ is a nearly orthogonal
 LHD with correlation puv = Q/[(amk+l)(amk+2)(2amk+3)) for any two distinct
 columns u and v, L2a, and L2/3 are orthogonal LHDs with m factors and 2mk +1
 and 2mk runs, respectively. NNOL-Algorithm 2* becomes NNOL-Algorithm 2
 if we take k = 1.
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 Table 2. The nested nearly orthogonal LHD with four layers in Example 4.

 Run  Xi  %2  X3  X4  Run  X\  x2  23  X4  Run  Xl  X2  ^3  X4

 1  -4  -12  -20  -28  24  -18  26  2  -10  47  —13  5  -29  21
 2  12  -4  28  -20  25  -26  -18  10  2  48  —21  29  5  -13
 3  20  -28  -4  12  26  -6  -14  -22  -30  49  -29  -21  13  5
 4  28  20  -12  -4  27  14  -6  30  -22  50  -7  -15  -23  -31
 5  4  12  20  28  28  22  -30  -6  14  51  15  -7  31  -23
 6  -12  4  -28  20  29  30  22  -14  -6  52  23  -31  -7  15
 7  -20  28  4  -12  30  6  14  22  30  53  31  23  -15  -7
 8  -28  -20  12  4  31  -14  6  -30  22  54  7  15  23  31
 9  -8  -16  -24  -32  32  -22  30  6  -14  55  -15  7  -31  23

 10  16  -8  32  -24  33  -30  -22  14  6  56  -23  31  7  -15
 11  24  -32  -8  16  34  -3  -11  -19  -27  57  -31  -23  15  7
 12  32  24  -16  -8  35  11  -3  27  -19  58  -9  -17  -25  -33
 13  0  0  0  0  36  19  -27  -3  11  59  17  -9  33  -25
 14  8  16  24  32  37  27  19  -11  3  60  25  -33  -9  17
 15  -16  8  -32  24  38  3  11  19  27  61  33  25  -17  -9
 16  -24  32  8  -16  39  -11  3  -27  19  62  9  17  25  33
 17  -32  -24  16  8  40  -19  27  3  -11  63  -17  9  -33  25
 18  -2  -10  -18  -26  41  -27  -19  11  3  64  -25  33  9  -17
 19  10  -2  26  -18  42  -5  -13  -21  -29  65  -33  -25  17  9
 20  18  -26  -2  10  43  13  -5  29  -21  66  1  1  1  1
 21  26  18  -10  -2  44  21  -29  -5  13  67  -1  -1  -1  -1
 22  2  10  18  26  45  29  21  -13  -5
 23  -10  2  -26  18  46  5  13  21  29

 Note: The Ha, 1Hp, H2, H3 and H correspond to runs 1 — 8, 9—17, 1 — 17, 1—33 and 1—67,
 respectively.

 Example 5 (m = 4). For a — 3, consider the vectors A\ = b + ai for i =
 1, 2, 3,4 in Corollary 1 with zero PAF. We can construct nested nearly orthogonal
 L((24fc + 3, 8k + 1), 4) for any positive integer k. Without loss of generality, we
 take k — 1, so b = 1,0, — 1. With the orthogonal matrices

 D. =

 D-1 =

 / 4
 -7

 -10

 \ -13
 / 2

 -5

 -8

 V -11

 7

 4

 13

 -10

 5

 2

 11

 10

 -13

 4

 7

 13 \
 10

 -7

 4

 Dq =

 ( 3
 -6

 -9

 V -12

 6

 3

 12

 -9

 -12

 3

 6

 12 \
 9

 -6

 3 /

 8 11 \

 -11

 2

 5

 a nested nearly orthogonal L((27,9), 4) can be obtained as (Li; £20), according to
 NNOL-Algorithm 2, where L\ = (—Dq , O4, Dq, —DZ.i, -D-ii — Dj, Dj, —14,14)71
 is a nearly orthogonal L(27,4) with correlation = 1/819, and -^2q = {—Dq , O4,
 ^oT)T is an orthogonal L(9,4).
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 Table 3. The nested nearly orthogonal LHDs with 4 factors and 24/c + 3 runs
 in Example 5.

 Run  Xi  Xl  X3  Xi  Run  X\  X2  X3  X4  Run  Xl  X2  x3  X4

 1  -15  -18  -21  -24  18  -2  -5  -8  -11  34  -16  -19  -22  -25

 2  18  -15  24  -21  19  5  -2  11  -8  35  19  -16  25  -2

 3  21  -24  -15  18  20  8  -11  -2  5  36  22  -25  -16  19

 4  24  21  -18  -15  21  11  8  -5  -2  37  25  22  -19  -16

 5  -3  -6  -9  -12  22  2  5  8  11  38  16  19  22  25

 6  6  -3  12  -9  23  -5  2  -11  8  39  -19  16  -25  22

 7  9  -12  -3  6  24  -8  11  2  -5  40  -22  25  16  -19

 8  12  9  -6  -3  25  -11  -8  5  2  41  -25  -22  19  16

 9  0  0  0  0  26  -4  -7  -10  -13  42  -14  -17  -20  -23
 10  3  6  9  12  27  7  -4  13  -10  43  17  -14  23  -20

 11  -6  3  -12  9  28  10  -13  -4  7  44  20  -23  -14  17
 12  -9  12  3  -6  29  13  10  -7  -4  45  23  20  -17  -14

 13  -12  -9  6  3  30  4  7  10  13  46  14  17  20  23

 14  15  18  21  24  31  -7  4  -13  10  47  -17  14  -23  20

 15  -18  15  -24  21  32  -10  13  4  -7  48  -20  23  14  -17

 16  -21  24  15  -18  33  -13  -10  7  4  49  -23  -20  17  14

 17  —24  -21  18  15  50

 51

 -1

 1

 -1

 1

 -1

 1

 -1

 1

 Note: L\ corresponds to runs 5-13, 18-33 and 50-51; L2a corresponds to runs 5-13; L[ corre
 sponds to runs 1-51; L'2a corresponds to runs 1-17.

 For k = 2, b = 1,0, —1,13,12,11. Using D\, Dq, D_i, and the orthogonal
 matrices

 D\3 =

 D ii =

 / 16 19
 -19 16

 -22 25

 \ -25 -22

 ( 14 17
 -17 14

 -20 23

 \ -23 -20

 25 \
 22

 19

 16/
 23 \
 20

 14 -17

 17 14

 22

 -25

 16

 19

 20

 -23

 D\2 =

 / 15 18 21 24 \
 -18 15 -24 21

 -21 24 15 -18

 \ -24 -21 18 15 J

 a nested nearly orthogonal L((51,17), 4) can be obtained as (L[ ! ^2cc)' where L[ =
 (-Dj2, -Dl, 04, D%, D^-Dlv D*-D{3, D^-D^D^, -14, U)t
 is a nearly orthogonal L(51,4) with correlation puv = 1/5,525 and ^2 a ~ (_-D12)
 -Dlo4,DlD{2)T is an orthogonal L(17,4). The generated nested LHDs are
 given in Table 3.

 Some vectors for constructing such designs are listed in Appendix B. They are

 obtained by the algorithm provided by Georgiou and Efthimiou (2014). Since any
 full fold-over design is 3-orthogonal (Georgiou, Koukouvinos, and Liu (2014)),
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 Table 4. The proposed nested orthogonal and nearly orthogonal LHDs as
 well as those given in Yang, Liu, and Lin (2014).

 u  (m,... ,nu)  a  Method

 YLL(2014) 2  (2am + 1, 2m + 1)  a > 2  Theorem 1

 m = 2s,  2  (2am + 1, 2m)  a > 2, even  Theorem 1

 s > 1  2

 2

 (4m + 1, 2m)
 (4m + 1, 2m + 1)

 a > 2

 a > 2

 Corollary 1
 Corollary 1

 s - 1- 1  (m2s+1 + 1, rn2s + 1,..., 4m + 1, 2m)  2s  Theorem 3

 s+1  (m2s+1 + l,m2s + 1,..., 4m + 1 2m + 1)  2s  Theorem 3

 2  (4am + 1, 2m + 1)  a > 1  Theorem 1  i)
 2  (4am + 1, 2m)  a > 1  Theorem 1  i)
 2  (2am + 1, 2m)  a > 2, even  Theorem 1  ")
 2  (2am + 1, 2m + 1)  a > 2  Theorem 1  ii)
 2  (4m + 1, 2m + 1)  a > 2  Theorem 1

 NEW

 m = 2,4,

 8,12,16,

 20,24

 2

 2

 (4m + 1, 2m)
 (4m + 1, 2m)

 a > 2, even
 a > 1

 Theorem 1

 Theorem 1

 ")
 i)

 2

 2

 2

 (4m + 1, 2m + 1)
 (4am + 3, 2m + 1)*
 (4am + 3, 2m)*

 a > 1

 a > 2

 a > 2

 Theorem 1

 Theorem 2

 Theorem 2

 i)

 i)
 i)

 2  (2am + 3, 2m)*  a > 2, even  Theorem 2  ii)
 2  (2am + 3, 2m + 1)*  a > 2  Theorem 2  ii)
 t-t -3  (4am + 1, 2t+2m + 1, 2t+1m + 1, .., 4m + 1, 2m)  a/2®, even  Section 5

 <4 -3  (4am + 1, 2t+2m + 1, 2t+1m 4- 1, .., 4m + 1, 2m + 1) a ^ 2q, even  Section 5

 t-t -3  (4am + 3, 2t+2m 4- 1, 2t+1m + 1, .., 4m + 1, 2m)*  a ^ 2q, even  Section 5

 M -3  (4am + 3, 2'+2m -1- 1, 2t+1m + 1, ..,4m + l,2m + l)*  a/2', even  Section 5

 t-t -2  (4am + 1, 2t+1m + 1, 2'm + 1,.. , 4m + 1, 2m)  a = 2i  Section 5

 t -t- 2  (4am + 1, 2t+1m + 1, 2'm + 1,. ..  , 4m + 1, 2m + 1)  a = 2"  Section 5

 t-t  2  (4am + 3, 2i+1m + 1, 2'm + 1,. ..  , 4m + 1, 2m)*  a = 2i  Section 5

 t-t -2  (4am + 3, 2*+1m -1- 1, 2tm + 1,. . , 4m + 1, 2m + 1)*  a = 21  Section 5

 Note: The symbol * in the third column means that the corresponding design is a nested nearly orthogonal
 LHD; t = max{i : 2%\a}, x\y denotes y is divisible by x, q > 2; Yang, Liu, and Lin (2014) refers to Yang, Liu,
 and Lin (2014).

 the resulting nested orthogonal and nearly orthogonal LHDs satisfy the desirable
 property that the sum of the elementwise product of any three columns is zero.
 Such designs guarantee that the estimate of each linear effect is uncorrelated
 with all second-order effects, in addition to exactly or nearly uncorrelated with
 all other linear effects.

 The new nested orthogonal LHDs (nested nearly orthogonal LHDs), as well
 as the nested orthogonal LHDs given by Yang, Liu, and Lin (2014), are listed
 in Table 4. It can be seen there that the designs we constructed have a flexible
 number of runs and factors. In particular, we can construct nested orthogonal
 LHDs with 12, 20, and 24 factors and nested nearly orthogonal LHDs with 2,
 4, 8, 12, 16, 20, and 24 factors and a low correlation between any two distinct
 columns.
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 Appendix A: Proofs

 A.l. Proof of Theorem 1

 Without loss of generality, we only consider r = 4 (four vectors A\, A%, A$, A\).
 For r = 2 or 8, the proof is similar.

 (i) It is obvious that L2a C L\ and L2/3 C L\ hold from the definitions of
 L\, L/2ai and L2/3 in NOL-Algorithm 1. We show that the entries of each column
 of L\, L/2ai and L2-3 are equally spaced. It is easy to verify that the absolute
 values of the entries in each column of E are {1,2,..., 2am}. This indicates that
 the entries in each column of Li are {0, ±1, ±2,..., ±2am}. From the definition
 of Db, the entries in each column of L2a and L2/3 are {±a, ±3a,..., ±(2m — l)a}
 and {0, ±2a, ±4a,..., ±2am}, respectively. Thus, both (Li; I/2a) and (L\; L2/3)
 are nested LHDs. The orthogonality of L\, L2a, and L2/3 can be easily obtained
 by noting that the set of vectors {A\, A\, ^3, A\} has zero PAF.

 (ii) The proof of (ii) is similar to that of (i) and is thus omitted.

 A.2. Proof of Theorem 2

 Similar to the proof of Theorem 1, we only consider r = 4.

 (i) It is obvious that L2q; C Li and L2/3 C L\ hold from the definitions of L\, L2a,
 and L2/3 in NNOL-Algorithm 1.

 We show that the entries of each column of L\, L2a, and L20 are equally
 spaced. From the definition of D& and E, it is easy to verify that the entries in
 each column of L\, L,2a and L2/3 are {0, ±1, ±2,..., ±(2am + 1)}, {±a, ±3a,...,
 ±(2m — l)a}, and {0, ±2a, ±4a,..., ±2am}, respectively. Thus, both (Ly, Ii2a)
 and (Li;L2p) are nested LHDs.

 From the orthogonality of Db, we have
 2om+l

 LjLi = 2ETE + 2Jm — 2^ ^ ' i2 — lsjlm + 2Jm
 i=1

 f(2am + l)(2am + 2)(4am + 3) T n T
 — ^ ^ 2Jim. 2iJmi
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 where Im is the identity matrix of order m and Jm is the m x m matrix with
 all entries unity. Obviously puv = 6/[(2am + 1)(2am + 2)(4am + 3)] for any two
 distinct columns u and v of L\. Thus, L\ is a nearly orthogonal LHD. From the
 definition of Db, we know that

 rp 2a2m(2m + l)(2m — 1) T 2a2m(2m + l)(2m + 2)
 2a = o m a 2/3-^2/3 = ^ Im

 Thus we obtain the near orthogonality of L\ and the orthogonality of L2a and
 L2/3

 (ii) Similar to the proof of (i), consider L\, L2Q, and L2/3 given in NNOL
 Algorithm 2. Since the entries of L\ are {0, ±1,..., ±(am + 1)}, puv = 6/[(am +
 1) (am + 2) (2am + 3)], where u and v are any two distinct columns of L\. Follow
 ing the proof of (i), (.L\-,L2a) is the desired nested nearly orthogonal L((2am +
 3, 2m + 1), m) and (L1; L2/3) is a nested nearly orthogonal L((2am + 3, 2m), m)
 with correlation puv = 6/[(am + l)(am + 2)(2am + 3)], for any two distinct
 columns u and v of L\.

 Appendix B: Vectors with Zero PAF Used in the Algorithms

 Table B.l. General vectors with zero PAF used in NOL-Algorithm 1 and
 NNOL- Algorithm 1.

 Number
 Needed vectors

 of factors

 2  A  = (b ~\f~ a), A% — (b -t~ 3a)

 4  A\  = (6 + a), Ai, = (b + 3a), A$ = (b + 5a), A\ = (b + 7a)
 8  A  = (b + (2i — l)a), i = 1,..., 8

 12  A\

 A
 = (6 + 15a, — (6 + 5a), b + 19a), A\ = (b + 17a, —(b + 21a), b + 23a),
 = (b + a, b + 3a, —(b + 7a)), A\ = (b + 9a, b + 11a, b + 13a)

 16
 A
 A\

 A\

 = (b + a, b + 3a), = (b + 5a, — {b + 7a)), = (b + 9a, —(b + 11a)),
 = (£>+13a, 6+15a), Ag = (b+l7a, — (6+19a)), A\ — (6+21a, 6+23a),
 = (b + 25a, b + 27a), Ab8 = {b + 29a, -(6 + 31a))

 20
 = (6+21a, 6+5a, — (b+27a), b+29a, b+23a), A% = (6+25a, 6+31a,

 b + 33a, b + 35a, — (b + 37a)), A\ — (b + 39a,b + a, — (b + 3a), —(b + 7a),

 — (b 4- 9a)), A\ = (b + 11a, b + 13a, —(b + 15a), b + 17a, —(b + 19a))

 24

 A
 A
 4
 A

 = (6 + a, fr + 27a, 6 + 3a), A2 = (b + 5a, 6 + 7a, — (fr + 9a)),

 = (6+lla, —(6+13a), — (fr+15a)), A\ = (6+17a, 6+19a, —(6+21a)),
 = {!)-•- 23a, —(6 -f" 25a), b -1- 29a), A!q — (b -i- 31a, b 33a, —(6 ~ 35a)),

 = (b + 37a, b + 39a, b + 41a), A\ = (b + 43a, b + 45a, —(b + 47a))
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 Table B.2. General vectors with zero PAF used in NOL-Algorithm 2 and
 NNOL-Algorithm 2.

 Number
 Needed vectors

 of factors

 2  (i> + a), A! = (b + 2a)

 4  A\ =  (6 + a), A\ = (6 + 2a), = (6 + 3a), A4 = (b + 4a)
 8  4 =  (b + ia), i = 1,..., 8

 12  A\ =
 A\ =

 (b ~~t~ 8a, —(fe -f" 3a), b -{- 10a), A2 — (b 9a, —(b -{- 11a), b 12a),

 {b -(- a, b 2a, —(fo ~r 4a)), A4 = (6 -f- 5a, b -f- 6a, & -I- 7a)

 16

 A\ =
 A\ =
 A\ =

 (b + a,b + 2a), ^2 = (& + 3a, ~(b + 4a)), A3 = (b + 5a, —(6 + 6a)),
 (6 + 7a, & + 8a), .A5 = (& + 9a, —(6 + 10a)), Aq = (b + 11a, b + 12a),
 (b + 13a,b + 14a), A\ = (b + 15a, —{b + 16a))

 20
 A^ — (b H- 11a, 6 -K 3a, —(6 -f- 14a), b -f~ 15a, 6 -K 12a),.A2 — (fr "I- 13a,

 b H~ 16a, b -1- 17a, b -b 18a, —(b -1- 19a)), A3 — (b -f~ 20a, b -f- a, —(6 -1- 2a),

 — (6 + 4a), —(b + 5a)), A\ = (6 + 6a, 6 + 7a, —(6 + 8a), 6 + 9a, —(6 + 10a))

 24

 A\ =
 4 =
 4 =

 [b a, b + 14a, b -j- 2a), .A2 — (6 -f- 3a, b f• 4a, —(6 -1- 5a)),

 (6 + 6a, —(6 + 7a), — (b + 8a)), A\ = (b + 9a,b + 10a, —(b + 11a)),

 {b + 12a, -(& + 13a), & + 15a), Ah6 = {b+ 16a, b + 17a, -(6 + 18a)),
 4" 19a, b 20a, b -f- 21a), .Ag — (b -{- 22a, 6 -1- 23a, —(6 -{- 24a))

 Appendix C: Constructed Designs in Example 2

 C.l. Do and D-\ in Example 2
 Do

 22 6-28 30 24-38 36 34 32 26-10 -8 -4 2 40-20 18-16 14 12
 24 22 6-28 30 36 34 32 26-38 -8 -4 2 40-10 18-16 14 12-20
 30 24 22 6-28 34 32 26-38 36 -4 2 40-10 -8-16 14 12-20 18

 -28 30 24 22 6 32 26-38 36 34 2 40-10 -8 -4 14 12-20 18-16
 6-28 30 24 22 26-38 36 34 32 40-10 -8 -4 2 12-20 18-16 14
 38-36-34-32-26 22 6-28 30 24-14 16-18 20 12 2 -4 -8-10 40

 -36-34-32-26 38 24 22 6-28 30 16-18 20 12-14 -4 -8-10 40 2
 -34-32-26 38-36 30 24 22 6-28-18 20 12-14 16 -8-10 40 2 -4
 -32-26 38-36-34-28 30 24 22 6 20 12-14 16-18-10 40 2 -4 -8
 -26 38-36-34-32 6-28 30 24 22 12-14 16-18-29 40 2 -4 -8-10
 10 8 4 -2-40 14-16 18-20 12 22 6-28 30 24-32-34-36 38-26
 8 4 -2-40 10-16 18-20 12 14 24 22 6-28 30-34-36 38-26-32
 4 -2-40 10 8 18-20 12 14-16 30 24 22 6-28-36 38-26-32-34

 -2-40 10 8 4-20 12 14-16 18-28 30 24 22 6 38-26-32-34-36
 -40 10 8 4 -2 12 14-16 18-20 6-28 30 24 22-26-32-34-36 38
 20-18 16-14-12 -2 4 8 10-40 32 34 36-38 26 22 6-28 30 24

 -18 16-14-12 20 4 8 10-40 -2 34 36-38 26 32 24 22 6-28 30
 16-14-12 20-18 8 10-40 -2 4 36-38 26 32 34 30 24 22 6-28

 -14-12 20-18 16 10-40 -2 4 8-38 26 32 34 36-28 30 24 22 6
 -12 20-18 16-14-40 -2 4 8 10 26 32 34 36-38 6-28 30 24 22
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 D-1
 21 5 -27 29 23-37 35 33 31 25 -9 -7 -3 1 39-19 17-15 13 11
 23 21 5-27 29 35 33 31 25 -37 -7 -3 1 39 -9 17-15 13 11 -19
 29 23 21 5 -27 33 31 25-37 35 -3 1 39 -9 -7-15 13 11 -19 17

 -27 29 23 21 5 31 25 -37 35 33 1 39 -9 -7 -3 13 11 -19 17-15
 5 -27 29 23 21 25 -37 35 33 31 39 -9 -7 -3 1 11 -19 17-15 13

 37-35 -33-31 -25 21 5 -27 29 23 -13 15 -17 19 11 1 -3 -7 -9 39
 -35-33-31 -25 37 23 21 5-27 29 15-17 19 11 -13 -3 -7 -9 39 1
 -33 -31 -25 37-35 29 23 21 5 -27-17 19 11 -13 15 -7 -9 39 1 -3
 -31 -25 37-35 -33 -27 29 23 21 5 19 11 -13 15 -17 -9 39 1 -3 -7
 -25 37-35-33-31 5-27 29 23 21 11 -13 15-17 19 39 1 -3 -7 -9

 9 7 3 -1 -39 13-15 17-19 11 21 5-27 29 23 -31 -33 -35 37-25
 7 3 -1 -39 9 -15 17-19 11 13 23 21 5 -27 29-33-35 37-25 -31
 3 -1 -39 9 7 17-19 11 13 -15 29 23 21 5 -27-35 37-25-31 -33

 -1 -39 9 7 3 -19 11 13 -15 17-27 29 23 21 5 37-25 -31 -33 -35
 -39 9 7 3 -1 11 13-15 17-19 5 -27 29 23 21 -25 -31 -33-35 37
 19 -17 15-13 -11 -1 3 7 9 -39 31 33 35 -37 25 21 5-27 29 23

 -17 15-13-11 19 3 7 9 -39 -1 33 35 -37 25 31 23 21 5-27 29
 15 -13-11 19 -17 7 9 -39 -1 3 35 -37 25 31 33 29 23 21 5 -27

 -13 -11 19-17 15 9-39 -1 3 7-37 25 31 33 35 -27 29 23 21 5
 -11 19 -17 15 -13 -39 -1 3 7 9 25 31 33 35 -37 5 -27 29 23 21
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